
Journal of Machine Learning Research 10 (2009) 1349-1388 Submitted 1/08; Revised 12/08; Published 7/09

Learning Linear Ranking Functions for Beam Search
with Application to Planning

Yuehua Xu xuyu@eecs.oregonstate.edu
Alan Fern afern@eecs.oregonstate.edu
School of Electrical Engineering and Computer Science
Oregon State University

Sungwook Yoon Sungwook.Yoon@parc.com

Palo Alto Research Center

Editor: Michael Littman

Abstract

Beam search is commonly used to help maintain tractability in large search spaces at
the expense of completeness and optimality. Here we study supervised learning of lin-
ear ranking functions for controlling beam search. The goal is to learn ranking functions
that allow for beam search to perform nearly as well as unconstrained search, and hence
gain computational efficiency without seriously sacrificing optimality. In this paper, we
develop theoretical aspects of this learning problem and investigate the application of this
framework to learning in the context of automated planning. We first study the computa-
tional complexity of the learning problem, showing that even for exponentially large search
spaces the general consistency problem is in NP. We also identify tractable and intractable
subclasses of the learning problem, giving insight into the problem structure. Next, we an-
alyze the convergence of recently proposed and modified online learning algorithms, where
we introduce several notions of problem margin that imply convergence for the various
algorithms. Finally, we present empirical results in automated planning, where ranking
functions are learned to guide beam search in a number of benchmark planning domains.
The results show that our approach is often able to outperform an existing state-of-the-art
planning heuristic as well as a recent approach to learning such heuristics.
Keywords: beam search, speedup learning, automated planning, structured classification

1. Introduction

Throughout artificial intelligence and computer science, heuristic search is a fundamental
approach to solving complex problems. Unfortunately, when the heuristic is not accurate
enough, memory and time constraints make pure heuristic search impractical. One common
way to attempt to maintain tractability of heuristic search is through a pruning technique
known as beam search. At each search step, beam search maintains a “beam” of the
heuristically best b nodes, pruning all other nodes from the search queue. Due to this
pruning, beam search is not guaranteed to be complete nor optimal. However, if the heuristic
is good enough to keep a good solution path in the beam, then the solution will be found
quickly.

The goal of this paper is to study the problem of learning heuristics, or ranking functions,
that allow beam search to quickly find solutions, without seriously sacrificing optimality

c©2009 Yuehua Xu, Alan Fern and Sungwook Yoon.

Xu, Fern and Yoon

compared to unconstrained search. We consider this problem for the case of linear ranking
functions, where each search node v is associated with a feature vector f(v) and nodes are
ranked according to w · f(v) where w is a weight vector. Each instance in our training set
corresponds to a search space that is labeled by a set of target solutions, each solution being
a (satisficing) path from the initial node to a goal node. Given a training set, our learning
objective is to select a weight vector w such that a beam search of a specified beam width
always maintains one of the target paths in the beam until finally reaching a goal node.
Such a w effectively represents a ranking function that allows beam search to efficiently
solve all of the training instances, and ideally new search problems for which the training
set is representative.

Recent work (Daumé III and Marcu, 2005) has considered the problem of learning beam
search ranking functions in the context of structured classification. Structured classification
is the problem of learning a mapping from structured inputs (e.g., sentences) to structured
outputs (e.g., syntactic parses) and there has been much recent work that extends tradi-
tional classification algorithms to this setting including conditional random fields (Lafferty
et al., 2001), the generalized Perceptron algorithm (Collins, 2002), and margin optimiza-
tion (Taskar et al., 2003). The approach of Daumé III and Marcu (2005) differs from prior
approaches in that it explicitly views structured classification as a search problem, where
given an input x, the problem of labeling x by a structured output y is treated as searching
through an exponentially large set of candidate outputs. For example, in part-of-speech
tagging where x is a sequence of words and y is a sequence of word tags, each node in
the search space is a pair (x, y′) where y′ is a partial labeling of the words in x. Learning
corresponds to inducing a ranking function that quickly guides the search to the search
node (x, y∗) where y∗ is the desired output. This framework, known as learning as search
optimization (LaSO), has demonstrated highly competitive performance on a number of
structured classification problems.

This paper builds on the LaSO framework and makes two key contributions. First, we
analyze the learning problem theoretically, in terms of its computational complexity and
the convergence properties of various learning algorithms. Secondly, this paper provides an
empirical evaluation in the context of automated planning, a problem that is qualitatively
very different from structured classification.

Our complexity analysis considers a number of subclasses of the general beam-search
learning problem. First, we provide an upper bound on the complexity of the general
problem by showing that even for exponentially large search spaces, which are the norm,
the consistency problem (i.e., finding a w that solves all training instances) remains in
NP. Next, we identify several core tractable and intractable subclasses of the beam-search
learning problem. Interestingly, some of these subclasses resemble more traditional “learning
to rank” problems (Agarwal and Roth, 2005) with clear analogies to applications.

Our convergence analysis studies convergence properties of perceptron-style online learn-
ing algorithms. In prior work, Daumé III and Marcu (2005) proposed a notion of linear
separability for this learning problem and proved convergence of the algorithm for linearly
separable data. However, here we show that result to be inaccurate for subtle reasons and
give a counter example. We then propose new notions of problem margin and show that
convergence can be guaranteed for revised versions of the algorithm given positive margins.
For the case where training data is ambiguous, that is, where many good solutions to a

1350

Learning Linear Ranking Functions for Beam Search with Application to Planning

search problem are not included in the target solution set, we also give sufficient conditions
on the minimum beam width to guarantee convergence. This result also provides a formal
characterization of the intuition that the learning problem should become easier as the beam
width increases, by showing that the mistake bound decreases with increasing beam width.

While the LaSO framework has been empirically evaluated in structured classification,
with impressive results, its utility in other types of search problems has not been demon-
strated. Here we consider the application of a LaSO-style algorithm to automated planning,
which is a problem that is qualitatively very different compared to structured classification.
The planning problems we consider are most naturally viewed as goal-finding problems,
where we must search for a short path to a goal node in an exponentially large graph.
Rather, structured classification is most naturally viewed as an optimization problem, where
we must search for a structured object that optimizes an objective function. While the two
problem classes are related they differ in significant ways. For example, the search problems
studied in structured classification typically have a single or small number of solution paths,
whereas in automated planning there are often a large number of equally good solutions,
which can contribute to ambiguous training data. Furthermore, the size of the search spaces
encountered in automated planning are usually much larger than in structured classification,
because of the larger depths and branching factors. These differences raise the empirical
question of whether a LaSO-style approach will be effective in automated planning.

To evaluate this question we incorporated a LaSO-style learning mechanism into a for-
ward state-space search planner in order to learn domain-specific heuristics, or ranking
functions, from training examples. For a given planning domain, the training examples
given to our learner include solution plans to a set of planning problems from the domain.
The learned ranking function for a domain can then be used to guide beam search in order
to solve new test problems from the same domain. We evaluate this approach on a num-
ber of benchmark planning domains and show that our learned ranking functions are often
able to outperform both a state-of-the-art domain-independent planning heuristic and the
heuristics learned by another recently proposed learning mechanism based on linear regres-
sion.

The remainder of this paper proceeds as follows. In Section 2, we introduce our formal
setup of the beam-search learning problem and then, in Section 3, study the computational
complexity of this learning problem. In Section 4, we describe two online learning mecha-
nisms followed by their convergence analysis. In Section 5, we apply the learning problem
to automated planning and present the experimental results. Finally Section 6 concludes
and suggests future directions.

2. Problem Setup

In this section, we first describe two different beam search paradigms: breadth-first beam
search and best-first beam search. We then introduce the learning problems that we study in
these two paradigms, followed by an illustrative example from automated planning. Finally,
we describe how our formulation, which was motivated by automated planning, relates to
structured classification.

1351

Xu, Fern and Yoon

2.1 Beam Search

We first define breadth-first and best-first beam search, the two paradigms considered in
this work. A search space is a tuple 〈I, s(·), f(·), <〉, where I is the initial search node,
s is a successor function from search nodes to finite sets of search nodes, f is a feature
function from search nodes to m-dimensional real-valued vectors, and < is a total preference
ordering on search nodes. We think of f as defining properties of search nodes that are
useful for evaluating their relative goodness and < as defining a canonical ordering on
nodes, for example, lexicographic. In this work, we use f to define a linear ranking function
w · f(v) on nodes where w is an m-dimensional weight vector, and nodes with larger values
are considered to be higher ranked, or more preferred. Since a given w may assign two
nodes the same rank, we use < to break ties such that v is ranked higher than v′ given
w · f(v′) = w · f(v) and v′ < v, arriving at a total rank ordering on search nodes. We
denote this total rank ordering as r(v′, v|w,<), or just r(v′, v) when w and < are clear from
context, indicating that v is ranked higher than v′.

Given a search space S = 〈I, s(·), f(·), <〉, a weight vector w, and a beam width b,
breadth-first beam search simply conducts breadth-first search, but at each search depth
keeps only the b highest ranked nodes according to r. More formally, breadth-first beam
search generates a unique beam trajectory (B0, B1, . . .) as follows,

• B0 = {I} is the initial beam;

• Cj+1 = BreadthExpand(Bj , s(·)) =
⋃

v∈Bj
s(v) is the depth j + 1 candidate set of

the depth j beam;

• Bj+1 is the unique set of b highest ranked nodes in Cj+1 according to the total ordering
r.

Note that for any j, |Cj | ≤ cb and |Bj | ≤ b, where c is the maximum number of children of
any search node.

Best-first beam search is almost identical to breadth-first beam search except that we
replace the function BreadthExpand with BestExpand(Bj , s(·)) = Bj∪s(v∗)−v∗, where
v∗ is the unique highest ranking node in Bj . Thus, instead of expanding all nodes in the
beam at each search step, best-first search is more conservative and only expands the single
best node. Note that unlike breadth-first search this can result in beams that contain search
nodes from different depths of the search space relative to I.

2.2 Learning Problems

Our learning problems provide training sets of pairs {〈Si, Pi〉}, where the Si = 〈Ii, si(·), fi(·), <i

〉 are search spaces constrained such that each fi has the same dimension. As described in
more detail below, the Pi encode sets of target search paths that describe desirable search
paths through the corresponding search spaces. Roughly speaking the learning goal is to
learn a ranking function that can produce a beam trajectory of a specified width for each
search space that contains at least one of the corresponding target paths in the training
data. For example, in the context of automated planning, the Si would correspond to plan-
ning problems from a particular domain, encoding the state space and available actions,
and the Pi would encode optimal or satisficing plans for those problems. A successfully

1352

Learning Linear Ranking Functions for Beam Search with Application to Planning

learned ranking function would be able to quickly find at least one of the target solution
plans for each training problem and ideally new target problems.

We represent each set of target search paths as a sequence Pi = (Pi,0, Pi,1, . . . , Pi,d) of
sets of search nodes where Pi,j contains target nodes at depth j and Pi,0 = {Ii}. It is useful
to think about Pi,d as encoding the goal nodes of the i′th search space. We will refer to
the maximum size t of any target node set Pi,j as the target width of Pi, which will be
referred to in our complexity analysis. The generality of this representation for target paths
allows for pathological targets where certain nodes do not lead to the goal. In order to
arrive at convergence results, we rule out such possibilities by assuming that the training
set is dead-end free. That is, for all i and j < d each v ∈ Pi,j has at least one child node
v′ ∈ Pi,j+1. Note that in almost all real problems this property will be naturally satisfied.
For our complexity analysis, we will not need to assume any special properties of the target
search paths Pi.

Intuitively, for a dead-end free training set, each Pi represents a layered directed graph
with at least one path from each target node to a goal node in Pi,d. Thus, the training set
specifies not only a set of goals for each search space but also gives possible solution paths
to the goals. For simplicity, we assume that all target solution paths have depth d, but all
results easily generalize to non-uniform depths.

For breadth-first beam search we specify a learning problem by giving a training set and
a beam width 〈{〈Si, Pi〉}, b〉. The objective is to find a weight vector w that generates a
beam trajectory containing at least one of the target paths for each training instance. More
formally, we are interested in the consistency problem:

Definition 1 (Breadth-First Consistency) Given the input 〈{〈Si, Pi〉}, b〉 where b is a
positive integer and Pi = (Pi,0, Pi,1, . . . , Pi,d), the breadth-first consistency problem asks us
to decide whether there exists a weight vector w such that for each Si, the corresponding beam
trajectory (Bi,0, Bi,1, . . . ,
Bi,d), produced using w with a beam width of b, satisfies Bi,j ∩ Pi,j 6= ∅ for each j?

A weight vector that demonstrates a “yes” answer is guaranteed to allow a breath-first
beam search of width b to uncover at least one goal node (i.e., a node in Pi,d) within d beam
expansions for all training instances.

Unlike the case of breadth-first beam search, the length of the beam trajectory required
by best-first beam search to reach a goal node can be greater than the depth d of the target
paths. This is because best-first beam search, does not necessarily increase the maximum
depth of search nodes in the beam at each search step. Thus, in addition to specifying a
beam width for the learning problem, we also specify a maximum number of search steps,
or horizon, h. The objective is to find a weight vector that allows a best-first beam search
to find a goal node within h search steps, while always keeping some node from the target
paths in the beam.

Definition 2 (Best-First Consistency) Given the input 〈{〈Si, Pi〉}, b, h〉, where b and
h are positive integers and Pi = (Pi,0, . . . , Pi,d), the best-first consistency problem asks us
to decide whether there is a weight vector w that produces for each Si a beam trajectory
(Bi,0, . . . , Bi,k) of beam width b, such that k ≤ h, Bi,k ∩ Pi,d 6= ∅ (i.e., Bi,k contains a goal
node), and each Bi,j for j < k contains at least one node in

⋃
j Pi,j?

1353

Xu, Fern and Yoon

Again, a weight vector that demonstrates a “yes” answer is guaranteed to allow a best-first
beam search of width b to find a goal node in h search steps for all training instances.
Example from Automated Planning. Figure 1, shows a pictorial example of a sin-
gle training example from an automated planning problem. The planning domain in this
example is Blocksworld where individual problems involve transforming an initial config-
uration of blocks to a goal configuration using simple actions such as picking up, putting
down, and stacking the various blocks. The figure shows a search space Si where each
node corresponds to a configuration of blocks and the arcs indicate when it is possible to
take an action that transitions from one configuration to another. The figure depicts, via
highlighted nodes, two target paths. The label Pi would encode these target paths by a
sequence Pi = (Pi,0, Pi,1, . . . , Pi,4) where Pi,j contains the set of all highlighted target nodes
at depth j. A solution weight vector, for this training example, would be required to keep
at least one of the highlighted paths in the beam until uncovering the goal node.

…

…

…

… …

…

…

…

pickup(B) pickup(C)

stack(B, A)

pickup(C)

A B C D

A

B C D A

B

C D A B

C

D A B C

D

pickup(A) pickup(D)

A
B

C D A
B

C D A B
C

D A B
C
D

stack(B, D) stack(C, A) stack(C, D)

A
B C

D

A
B C

D

A

B
C
D

pickup(B)

… …stack(B, A)stack(C, D)

A
B

C

D

pickup(D)

A

B
C
D

pickup(A)

…
…

A
B
C

D

stack(C, B)

A

B
C
D

stack(B, C)

Figure 1: An example from automated planning.

2.2.1 Example from Structured Classification

Daumé III and Marcu (2005) considered learning ranking functions to control beam search
in the context of structured classification. Structured classification involves learning a
function that maps structured inputs x to structured outputs y. As an example, consider
part-of-speech tagging where the inputs correspond to English sentences and the correct
output for a sentence is the sequence of part-of-speech tags for the words in the sentence.
Figure 2 shows how Daumé III and Marcu (2005) formulated a single instance of part-of-
speech tagging as a search problem. Each search node is a pair (x, y′) where x is the input
sentence and y′ is a partial labeling of the words in x by part-of-speech tags. The arcs in
this space correspond to search steps that label words in the sentence in a left-to-right order
by extending y′ in all possible ways by one element. The leaves, or terminal nodes, of this
space correspond to all possible complete labelings of x. Given a ranking function and a
beam width, Daumé III and Marcu (2005) return a predicted output for x by conducting a
beam search until a terminal node becomes the highest ranked node in the beam, and then
return the output component of that terminal node. This approach to making predictions
suggests that the learning objective should require that we learn a ranking function such

1354

Learning Linear Ranking Functions for Beam Search with Application to Planning

((the cat ran),(- - -))

((the cat ran), (verb - -))((the cat ran), (article - -))

((the cat ran), (article verb -)) ((the cat ran), (article noun -))

((the cat ran), (article noun verb)) ((the cat ran), (article noun noun))

…

…

…

Goal Node (x, y)

x = (The cat ran)

y = (article noun verb)

Terminal Node (x, y’)

Figure 2: An example from structured classification.

that the goal terminal node, is the first terminal node to become highest ranked in the beam.
In the figure, there is a single goal terminal node (x, y) where y is the correct labeling of x
and there is a unique target path to this goal.

From the above example, we see that there is a difference between the learning objective
used by Daumé III and Marcu (2005) for structured classification and the learning objective
under our formulation, which was motivated by automated planning. In particular, our
formulation does not force the goal node to be the highest ranked node in the final beam,
but rather only requires that a goal node appear somewhere in the final beam. While these
formulations appear quite different, it turns out that they are polynomially reducible to one
another, which we prove in Appendix A. Thus, all of the results in this paper apply equally
well to the structured-classification formulation of Daumé III and Marcu (2005).

3. Computational Complexity

In this section, we study the computational complexity of the above consistency problems.
We first focus on breadth-first beam search, and then give the corresponding best-first
results at the end of this section. It is important to note that the size of the search spaces
will typically be exponential in the encoding size of the learning problem. For example,
in automated planning, standard languages such as PDDL (McDermott, 1998) are used to
compactly encode planning problems that are potentially exponentially large, in terms of
the number of states, with respect to the PDDL encoding size. Throughout this section we
measure complexity in terms of the problem encoding size, not the potentially exponentially
larger search space size. All discussions in this section apply to general search spaces and
are not tied to a particular language for describing search space such as PDDL.

Our complexity analysis will consider various sub-classes of the breadth-first consistency
problem, where the sub-classes will be defined by placing constraints on the following prob-
lem parameters: n - the number of training instances, d - the depth of target solution paths,
c - the maximum number of children of any search node, t - the maximum target width of
any Pi as defined in Section 2.2, and b - the beam width. Figure 3 gives a pictorial depiction
of these key problem parameters. Throughout the complexity analysis we will restrict our
attention to problem classes where the maximum number of children c and beam width

1355

Xu, Fern and Yoon

b are polynomial in the problem size, which are necessary conditions to ensure that each
beam search step requires only polynomial time and space. We will also assume that all
feature functions can be evaluated in polynomial time in the problem size.

Note that restricting the number of children c may rule out the use of certain search space
encodings for some problems. For example, in a multi-agent planning scenario, there are an
exponential number of joint actions to consider from each state, and thus an exponential
number of children. However, here it is possible to re-encode the search space by increasing
the depth of the search tree, so that each joint action is encoded by a sequence of steps where
each agent selects an action in turn followed by all of them executing the selected actions.
The resulting search space has only a polynomial number of children and thus satisfies our
assumption, though the required search depth has increased. This form of re-encoding from
a search space with exponentially many children to one with polynomially many children
can be done whenever the actions in the original space have a compact, factored encoding,
which is typically the case in practice.

. . . .

b

n

d

Figure 3: The key problem parameters: n - the number of training instances, d - the depth
of target solution paths, b - the beam width. Not depicted in the figure are: c -
maximum number of children of any node, t - the maximum target width of any
example.

3.1 Hardness Upper Bounds

We first show an upper bound on the complexity of breadth-first consistency by proving
that the general problem is in NP even for exponentially large search spaces.

Observe that given a weight vector w and beam width b, we can easily generate a unique
depth d beam trajectory for each training instance. Our upper bound is based on considering
the inverse problem of checking whether a set of hypothesized beam trajectories, one for
each training instance, could have been generated by some weight vector. The algorithm
TestTrajectories in Figure 4 efficiently carries out this check. The main idea is to observe
that for any search space S it is possible to efficiently check whether there is a weight vector
that starting with a beam B could generate a beam B′ after one step of breadth-first beam
search. This can be done by constructing an appropriate set of linear constraints on the
weight vector w that are required to generate B′ from B. In particular, we first generate
the set of candidate nodes C from B by unioning all children of nodes in B. Clearly we
must have B′ ⊆ C in order for there to be a solution weight vector. If this is the case then

1356

Learning Linear Ranking Functions for Beam Search with Application to Planning

we create a linear constraint for each pair of nodes (u, v) such that u ∈ B′ and v ∈ C −B′,
which forces u to be preferred to v:

w · f(u) > w · f(v)

where w = (w1, w2, . . . , wm) are the constraint variables and f(·) = (f1(·), f2(·), . . . , fm(·))
is the vector of feature functions. Note that if u is more preferred than v in the total
preference ordering, then we only need to require that w · f(u) ≥ w · f(v). The overall
algorithm TestTrajectories simply creates this set of constraints for each consecutive pair
of beams in each beam trajectory and then tests to see whether there is a w that satisfies
all of the constraints.

Lemma 3 Given a set of search spaces {Si} and a corresponding set of width b beam tra-
jectories {(Bi,0, . . . , Bi,d)}, the algorithm TestTrajectories (Figure 4) decides in polynomial
time whether there exists a weight vector w that can generate (Bi,0, . . . , Bi,d) in Si for all i.

Proof It is straightforward to show that w satisfies the constraints generated by TestTra-
jectories iff for each i, j, r(v′, v| <i, w) leads beam search to generate Bi,j+1 from Bi,j . The
linear program contains m variables and at most ndcb2 constraints. Since we are assuming
that the maximum number of children of a node v is polynomial in the size of the learning
problem, the size of the linear program is also polynomial and thus can be solved in poly-
nomial time (Khachiyan, 1979).

This lemma shows that sets of beam trajectories can be used as efficiently-checkable cer-
tificates for breadth-first consistency, which leads to an upper bound on the problem’s
complexity.

Theorem 4 Breadth-first consistency is in NP.

Proof Given a learning problem 〈{〈Si, Pi〉}, b〉 our certificates correspond to sets of beam
trajectories {(Bi,0, . . . , Bi,d)} each of size at most O(ndb) which is polynomial in the prob-
lem size. The certificate can then be checked in polynomial time to see if for each i,
(Bi,0, . . . , Bi,d) contains a target solution path encoded in Pi as required by Definition 1. If
it is consistent then according to Lemma 3 we can efficiently decide whether there is a w
that can generate {(Bi,0, . . . , Bi,d)}.

This result suggests an enumeration-based decision procedure for breadth-first consis-
tency as given in Figure 4. In that procedure, the function Enumerate creates a list of
all possible combinations of beam trajectories for the training data. Thus, each element
of this list is a list of beam trajectories, one for each training example, where a beam tra-
jectory is simply a sequence of sets of nodes that are selected from the given search space.
For each enumerated combination of beam trajectories, the function IsConsistent checks
whether the beam trajectory for each example contains a target path for that example and
if so TestTrajectories will be called to determine whether there exists a weight vector that
could produce those trajectories. The following gives us the worst case complexity of this
algorithm in terms of the key problem parameters.

1357

Xu, Fern and Yoon

ExhaustiveAlgorithm ({〈Si, Pi〉}, b)
Γ = Enumerate({〈Si, Pi〉}, b)
// enumerates all possible sets of beam trajectories
for each {(Bi,0 . . . , Bi,d)} ∈ Γ

if IsConsistent({Pi}, {(Bi,0 . . . , Bi,d)}) then
w= TestTrajectories({Si}, {(Bi,0, . . . , Bi,d)})
if w 6= false then

return w
return false

TestTrajectories({Si}, {(Bi,0, . . . , Bi,d)})
// Si = 〈Ii, si(·), fi(·), <i〉
construct a linear programming problem LP as below

the variables are w = {w1, w2, . . . , wm}
for (i, j) ∈ {1, . . . , n} × {1, . . . , d}

Ci,j =BreadthExpand(Bi,j−1, si(·))
if Bi,j ⊆ Ci,j then

for each u ∈ Bi,j and v ∈ Ci,j −Bi,j

if v <i u then
add a constraint w · fi(u) ≥ w · fi(v)

else add a constraint w · fi(u) > w · fi(v)
else return false

w = LPSolver(LP)
if LP is solved then

return w
return false

Figure 4: The exhaustive algorithm for breadth-first consistency.

Theorem 5 The procedure ExhaustiveAlgorithm (Figure 4) decides breadth-first consis-
tency and returns a solution weight vector if there is a solution in time O

(
(t + poly(m)) (cb)bdn

)
.

Proof We first bound the number of certificates. Breadth-first beam search expands nodes
in the current beam, resulting in at most cb nodes, from which b nodes are selected for the
next beam. Enumerating these possible choices over d levels and n trajectories, one for
each training instance, we can bound the number of certificates by O

(
(cb)bdn

)
. For each

certificate the enumeration process checks consistency with the target paths {Pi} in time
O(tbdn) and then calls TestTrajectories which runs in time poly(m,ndcb2). The total time
complexity then is O

((
tbdn + poly(m,ndcb2)

)
(cb)bdn

)
= O

(
(t + poly(m)) (cb)bdn

)
.

Not surprisingly the complexity is exponential in the beam width b, target path depth d,
and number of training instances n. However, it is polynomial in the maximum number of
children c and the maximum target width t. Thus, breadth-first consistency can be solved

1358

Learning Linear Ranking Functions for Beam Search with Application to Planning

in polynomial time for any problem class where b, d, and n are constants. Of course, for
most problems these constants would be too large for this result to be of practical interest.
This leads to the question of whether we can do better than the exhaustive algorithm for
restricted problem classes. For at least one problem class we can.

Theorem 6 The class of breadth-first consistency problems where b = 1 and t = 1 is
solvable in polynomial time.

Proof Given a learning problem 〈{〈Si, Pi〉}, b〉 where Pi = (Pi,0, . . . , Pi,d), t = 1 implies
that each Pi,j contains exactly one node. Since the beam width b = 1, then the only way
that a beam trajectory (Bi,0, . . . , Bi,d) can satisfy the condition Bi,j∩Pi,j 6= ∅ for any i, j, is
for Bi,j = Pi,j . Thus there is exactly one beam trajectory for each training example, equal
to the target trajectory, and using Lemma 3 we can check for a solution weight vector for
these trajectories in polynomial time.

This problem class, as depicted in Figure 5, corresponds to the case where each training
instance is labeled by exactly a single solution path and we are asked to find a w that leads
a greedy hill-climbing search, or reactive policy, to follow those paths. This is a common
learning setting, for example, when attempting to learn reactive control policies based on
demonstrations of target policies, perhaps from an expert, as in Khardon (1999).

. . .

Figure 5: A tractable class of breadth-first consistency, where b = 1 and t = 1.

3.2 Hardness Lower Bounds

Unfortunately, outside of the above problem classes it appears that breadth-first consistency
is computationally hard even under strict restrictions. In particular, the following three
results show that if any one of b, d, or n are not bounded then the consistency problem is
hard even when the other problem parameters are small constants.

First, we show that the problem class where n = d = t = 1 but b ≥ 1 is NP-complete.
That is, a single training instance involving a depth one search space is sufficient for hard-
ness. This problem class, resembles more traditional ranking problems and has a nice
analogy in the application domain of web-page ranking, where the depth 1 leaves of our
search space correspond to possibly relevant web-pages for a particular query. One of those
pages is marked as a target page, for example, the page that a user eventually went to.
The learning problem is then to find a weight vector that will cause for the target page to
be ranked among the top b pages. Our result shows that this problem is NP-complete and
hence will be exponential in b unless P = NP .

1359

Xu, Fern and Yoon

Theorem 7 The class of breadth-first consistency problems where n = 1, d = 1, t = 1, and
b ≥ 1 is NP-complete.

Proof Our reduction is from the Minimum Disagreement problem for linear binary classi-
fiers, which was proven to be NP-complete by Hoffgen et al. (1995). The input to this prob-
lem is a training set T = {x+

1 , · · · , x+
r1

, x−1 , · · · , x−r2
} of positive and negative m-dimensional

vectors and a positive integer k. A weight vector w classifies a vector as positive iff w ·x ≥ 0
and otherwise as negative. The Minimum Disagreement problem is to decide whether there
exists a weight vector that commits no more than k misclassification.

Given a Minimum Disagreement problem we construct an instance 〈〈S1, P1〉, b〉 of the
breadth-first consistency problem as follows. Assume without loss of generality S1 =
〈I, s(·), f(·), <〉. Let s(I) = {q0, q1, · · · , qr1+r2}. For each i ∈ {1, · · · , r1}, define f(qi) =
−x+

i ∈ Rm. For each i ∈ {1, · · · , r2},define f(qi+r1) = x−i ∈ Rm. Define f(q0) = 0 ∈ Rm,
P1 = ({I}, {q0}) and b = k + 1. Define the total ordering < to be a total ordering in which
qi < q0 for every i = 1, . . . , r1 and q0 < qi for every i = r1 + 1, . . . , r1 + r2.We claim that
there exists a linear classifier with at most k misclassifications if and only if there exists a
solution to the corresponding consistency problem.

First, suppose there exists a linear classifier w · x ≥ 0 with at most k misclassifications.
Using the weight vector w, we have

• w · f(q0) = 0;

• for i = 1, · · · , r1 :
if w · x+

i ≥ 0, w · f(qi) = w · (−x+
i) ≤ 0;

if w · x+
i < 0, w · f(qi) = w · (−x+

i) > 0;

• for i = r1 + 1, . . . , r1 + r2:
if w · x−i ≥ 0, w · f(qi) = w · x−i ≥ 0;
if w · x−i < 0, w · f(qi) = w · x−i < 0.

For i = 1, · · · , r1 + r2, the node qi in the consistency problem is ranked lower than q0 if
and only if its corresponding example in the Minimum Disagreement problem is labeled
correctly, is ranked higher than q0 if and only if its corresponding example in the Minimum
Disagreement problem is labeled incorrectly. Therefore, there are at most k nodes which
are ranked higher than q0. With beam width b = k + 1, the beam Bi,1 is guaranteed to
contain node q0, indicating that w is a solution to the consistency problem.

On the other hand, suppose there exists a solution w to the consistency problem. There
are at most b − 1 = k nodes that are ranked higher than q0. That is, at least r1 + r2 − k
nodes are ranked lower than q0. For i = 1, . . . , r1, qi is ranked lower than q0 if and only if
w · f(qi) ≤ w · f(q0). For i = r1 + 1, . . . , r1 + r2, qi is ranked lower than q0 if and only if
w · f(qi) < w · f(q0). Since w · f(q0) = 0, we have

• for i = 1, · · · , r1 :
w · f(qi) ≤ 0 ⇒ w · (−x+

i) ≤ 0 ⇒ w · x+
i ≥ 0;

• for i = r1 + 1, . . . , r1 + r2 :
w · f(qi) < 0 ⇒ w · x−i < 0 ⇒ w · x−i < 0.

1360

Learning Linear Ranking Functions for Beam Search with Application to Planning

Therefore, using the linear classifier w ·x ≥ 0, at least r1 +r2−k nodes are labeled correctly,
that is, it makes at most k misclassifications.

Since the time required to construct the instance 〈〈S1, P1〉, b〉 from T, k is polynomial in
the size of T, k, we conclude that the consistency problem is NP-Complete even restricted
to n = 1, d = 1 and t = 1.

The next result shows that if we do not bound the number of training instances n, then
the problem remains hard even when the target path depth and beam width are equal to
one. Interestingly, this subclass of breadth-first consistency corresponds to the multi-label
learning problem as defined in Jin and Ghahramani (2002). In multi-label learning each
training instance can be viewed as a bag of m-dimensional vectors, some of which are labeled
as positive, which in our context correspond to the target nodes. The learning goal is to
find a w that for each bag, ranks one of the positive vectors as best.

Theorem 8 The class of breadth-first consistency problems where d = 1, b = 1, c = 6,
t = 3, and n ≥ 1 is NP-complete.

Proof The proof is by reduction from 3-SAT (Garey and Johnson, 1979), which is the
following.

“Given a set U of boolean variables, a collection Q of clauses over U such that each
clause q ∈ Q has |q| = 3, decide whether there a satisfying truth assignment for C.”

Let U = {u1, . . . , um}, Q = {q11 ∨ q12 ∨ q13, . . . , qn1 ∨ qn2 ∨ qn3} be an instance of
the 3-SAT problem. Here, qij = u or ¬u for some u ∈ U . We construct from U,Q an
instance 〈{〈Si, Pi〉}, b〉 of the breadth-first consistency problem as follows. For each clause
qi1 ∨ qi2 ∨ qi3, let si(Ii) = {pi,1, · · · , pi,6} , Pi = ({Ii}, {pi,1, pi,2, pi,3}), b = 1, and the total
ordering <i is defined so that pi,j <i pi,k for j = 1, 2, 3 and k = 4, 5, 6. Let ek ∈ {0, 1}m

denote a vector of zeros except a 1 in the k′th component. For each i = 1, . . . , n, j = 1, 2, 3,
if qij = uk for some k then fi(pi,j) = ek and fi(pi,j+3) = −ek/2, otherwise if qij = ¬uk for
some k then fi(pi,j) = −ek and fi(pi,j+3) = ek/2. We claim that there exists a satisfying
truth assignment if and only if there exists a solution to the corresponding consistency
problem.

First, suppose that there exists a satisfying truth assignment. Let w = (w1, · · · , wm),
where wk = 1 if uk is true, and wk = −1 if uk is false in the truth assignment. For each
i = 1, . . . , n, j = 1, . . . , 3, we have:

• if qij is true, then
w · fi(pi,j) = 1 and w · fi(pi,j+3) = −1/2;

• if qij is false, then
w · fi(pi,j) = −1 and w · fi(pi,j+3) = 1/2.

Note that for each clause qi1 ∨ qi2 ∨ qi3, at least one of the literals is true. Thus, for every
set of nodes {pi,1, pi,2, pi,3}, at least one of the nodes will have the highest rank value equal
to 1, resulting in Bi,1 = {v} where v ∈ {pi,1, pi,2, pi,3}. By the definition, the weight vector
w is a solution to the consistency problem.

On the other hand, suppose that there exists a solution w = (w1, . . . , wm) to the con-
sistency problem. Assume the beam trajectory for each i is ({Ii}, {vi}). Then vi = pi,j

1361

Xu, Fern and Yoon

for some j ∈ {1, 2, 3}, and for this i and j, qij = uk or ¬uk for some k. Let uk be true if
qij = uk and be false if qij = ¬uk. As long as there is no contradiction in this assignment,
this is a satisfying truth assignment because at least one of {qi1, qi2, qi3} is true for every i,
that is, every clause is true.

Now we will prove that there is no contradiction in this assignment, that is, any variable
is assigned either true or false, but not both. Note that for any node v ∈ {pi,1, pi,2, pi,3},
there always exists a node v′ ∈ {pi,4, . . . , pi,6} such that:

• w · fi(v) < 0 ⇔ w · fi(v′) > 0;

• w · fi(v) > 0 ⇔ w · fi(v′) < 0;

• w · fi(v) = 0 ⇔ w · fi(v′) = 0.

Then because of the total ordering <i we defined, the node vi = pi,j appearing in the
beam trajectory, must has w · fi(vi) > 0. Assume without loss of generality that qij = uk,
then uk is assigned to be true. Although ¬uk might appear in other clauses, for example,
qi′j′ = ¬uk, its corresponding node pi′,j′ can never appear in the beam trajectory because
w · fi′(pi′,j′) = w · (−ek) = −w · ek = −w · fi(pi,j) < 0. Therefore, uk will never be assigned
false. A similar proof can be given for the case of qij = ¬uk.

Since the time required to construct the instance 〈{〈Si, Pi〉}, b〉 from U,Q is polynomial
in the size of U,Q, we conclude that the consistency problem is NP-Complete for the case
of d = 1, b = 1, c = 6 and t = 3.

Finally, we show that when the depth d is unbounded the consistency problem remains hard
even when b = n = 1.

Theorem 9 The class of breadth-first consistency problems where n = 1, b = 1, c = 6,
t = 3, and d ≥ 1 is NP-complete.

Proof Assume x = 〈{〈Si, Pi〉|i = 1, . . . , n}, b〉, where Si = 〈Ii, si(·), fi(·), <i〉 and Pi =
({Ii}, Pi,1), is an instance of the consistency problem with d = 1, b = 1, c = 6 and t = 3.
We can construct an instance y of the consistency problem with n = 1, b = 1, c = 6, and
t = 3. Let y = 〈〈S̄1, P̄1〉, b〉 where S̄1 = 〈I1, s̄(·), f̄(·), <̄〉, and P̄1 = ({I1}, P1,1, P2,1, . . . , Pt,1).
We define s̄(·), f̄(·), <̄ as below.

• s̄(I1) = s1(I1), f̄(I1) = f1(I1);

• for each i = 1, . . . , n− 1
∀v ∈ si(Ii), f̄(v) = fi(v) and s̄(v) = si+1(Ii+1);
∀(v, v′) ∈ si(Ii), <̄(v, v′) =<i (v, v′);

• ∀v ∈ sn(In), f̄(v) = fn(v);
∀(v, v′) ∈ sn(In), <̄(v, v′) =<n (v, v′).

Obviously, a weight vector w is a solution for the instance x if and only if w is a solution
for the constructed instance y.

1362

Learning Linear Ranking Functions for Beam Search with Application to Planning

b n d c t Complexity
poly ≥ 1 ≥ 1 poly ≥ 1 NP
K K K poly ≥ 1 P
1 ≥ 1 ≥ 1 poly 1 P

poly 1 1 poly 1 NP-Complete
1 ≥ 1 1 6 3 NP-Complete
1 1 ≥ 1 6 3 NP-Complete

Figure 6: Complexity results for breadth-first consistency. Each row corresponds to a sub-
class of the problem and indicates the computational complexity. K indicates
a constant value and “poly” indicates that the quantity must be polynomially
related to the problem size.

Figure 6 summarizes our main complexity results from this section for breadth-first
consistency. For best-first beam search, most of these results can be carried over. Recall
that for best-first consistency the problem specifies a search horizon h in addition to a
beam width. Using a similar approach as above we can show that best-first consistency is
in NP assuming that h is polynomial in the problem size, which is a reasonable assumption.
Similarly, one can extend the polynomial time result for fixed b, n, and d. The remaining
results in the table can be directly transferred to best-first search, since in each case either
b = 1 or d = 1 and best-first beam search is equivalent to breadth-first beam search in
either of these cases.

4. Convergence of Online Updates

In the previous section, we identified a limited set of tractable problem classes and saw that
even very restricted classes remain NP-hard. We also saw that some of these hard classes
had interesting application relevance. Thus, it is desirable to consider efficient learning
mechanisms that work well in practice. Below we describe two such algorithms based on
online perceptron updates.

4.1 Online Perceptron Updates

Figure 7 gives the LaSO-BR algorithm for learning ranking functions for breadth-first beam
search. It resembles the learning as search optimization (LaSO) algorithm for best-first
search by Daumé III and Marcu (2005). LaSO-BR iterates through all training instances
〈Si, Pi〉 and for each one conducts a beam search of the specified width. After generating
the depth j beam for the ith training instance, if at least one of the target nodes in Pi,j are
in the beam then no weight update occurs. Rather, if none of the target nodes in Pi,j are in
the beam then a search error is flagged and weights are updated according to the following
perceptron-style rule,

1363

Xu, Fern and Yoon

LaSO-BR ({〈Si, Pi〉}, b)
w ← 0
repeat until w is unchanged or a large number of iterations

for every i
Update-BR(Si, Pi, b, w)

return w

Update-BR (Si, Pi, b, w)
// Si = 〈Ii, si(·), f(·), <i〉 and Pi = (Pi,0, . . . , Pi,d)
B ← {Ii} // initial beam
for j = 1, . . . , d

C ← BreadthExpand(B, si(·))
for every v ∈ C

H(v) ← w · f(v) // compute heuristic value of v
Order C according to H and the total ordering <i

B ← the first b nodes in C
if B ∩ Pi,j = ∅ then

w ← w + α ·
(∑

v∗∈Pi,j∩C f(v∗)

|Pi,j∩C| −
∑

v∈B f(v)

b

)

B ← Pi,j ∩ C
return

Figure 7: The LaSO-BR online algorithm for breadth-first beam search.

w = w + α ·
(∑

v∗∈Pi,j∩C f(v∗)

|Pi,j ∩ C| −
∑

v∈B f(v)
b

)

where 0 < α ≤ 1 is a learning rate parameter, B is the current beam and C is the candidate
set from which B was generated (i.e., the beam expansion of the previous beam). For
simplicity of notation, here we assume that f is a feature function for all training instances.
Intuitively this weight update moves the weights in the direction of the average feature
function of target nodes that appear in C, and away from the average feature function of
non-target nodes in the beam. This has the effect of increasing the rank of target nodes in
C and decreasing the rank of non-targets in the beam. Ideally, this will cause at least one of
the target nodes to become preferred enough to remain on the beam next time through the
search. Note that the use of averages over target and non-target nodes is important so as
to account for the different sizes of these sets of nodes. After each weight update, the beam
is reset to contain only the set of target nodes in C and the beam search then continues.
Importantly, on each iteration, the processing of each training instance is guaranteed to
terminate in d search steps.

Figure 8 gives the LaSO-BST algorithm for learning in best-first beam search, which
is a slight modification of the original LaSO algorithm. The main difference compared to
the original LaSO is in the weight update equation, a change that appears necessary for

1364

Learning Linear Ranking Functions for Beam Search with Application to Planning

LaSO-BST ({〈Si, Pi〉}, b)
w ← 0
repeat until w is unchanged or a large number of iterations

for every i
Update-BST(Si, Pi, b, w)

return w

Update-BST (Si, Pi, b, w)
// Si = 〈Ii, si(·), f(·), <i〉 and Pi = (Pi,0, . . . , Pi,d)
B ← {Ii} // initial beam
P̄ = Pi,0 ∪ Pi,2 ∪ . . . ∪ Pi,d

while B ∩ Pi,d = ∅
C ← BestExpand(B, si(·))
for every v ∈ C

H(v) ← w · f(v) // compute heuristic value of v
Order C according to H and the total ordering <i

B ← the first b nodes in C
if B ∩ P̄ = ∅ then

w ← w + α ·
(∑

v∗∈P̄∩C f(v∗)
|P̄∩C| −

∑
v∈B f(v)

b

)

B ← P̄ ∩ C
return

Figure 8: Online algorithm for best-first beam search.

our convergence analysis. The algorithm is similar to LaSO-BR except that a best-first
beam search is conducted, which means that termination for each training instance is not
guaranteed to be within d steps. Rather, the number of search steps for a single training
instance remains unbounded without further assumptions, which we will address later in
this section. In particular, there is no bound on the number of search steps between weight
updates for a given training example. This difference between LaSO-BR and LaSO-BST was
of great practical importance in our automated planning application. In particular, LaSO-
BST typically did not produce useful learning results due to the fact that the number
of search steps between weight updates was extremely large. Note that in the case of
structured classification, Daumé III and Marcu (2005) did not experience this difficulty due
to the bounded-depth nature of their search spaces.

4.2 Previous Result and Counter Example

Adjusting to our terminology, Daumé III and Marcu (2005) defined a training set to be linear
separable iff there is a weight vector that solves the corresponding consistency problem. Also
for linearly separable data they defined a notion of margin of a weight vector, which we
refer to here as the search margin. The formal definition of search margin is given below.

Definition 10 (Search Margin) The search margin of a weight vector w for a linearly
separable training set is defined as γ = min{(v∗,v)}(w·f(v∗)−w·f(v)), where the set {(v∗, v)}

1365

Xu, Fern and Yoon

contains any pair where v∗ is a target node and v is a non-target node that was compared
during the beam search guided by w.

Daumé III and Marcu (2005) state that the existence of a w with positive search margin,
which implies linear separability, implies convergence of the original LaSO algorithm after
a finite number of weight updates. On further investigation, we have found that a positive
search margin is not sufficient to guarantee convergence for LaSO, LaSO-BR, or LaSO-BST.
Intuitively, the key difficulty is that our learning problem contains hidden state in the form
of the desired beam trajectory. Given the beam trajectory of a consistent weight vector one
can compute the weights, and likewise given consistent weights one can compute the beam
trajectory. However, we are given neither to begin with and our approach can be viewed as
an online EM-style algorithm, which alternates between updating weights given the current
beam and recomputing the beam given the updated weights. Just as traditional EM is
quite prone to local minima, so are the LaSO algorithms in general, and in particular even
when there is a positive search margin as demonstrated in the following counter example.
Note that the standard Perceptron algorithm for classification learning does not run into
this problem since there is no hidden state involved.

Counter Example 1 We give a training set for which the existence of a weight vector
with positive search margin does not guarantee convergence to a solution weight vector for
LaSO-BR or LaSO-BST. Consider a problem that consists of a single training instance with
search space shown in Figure 9, preference ordering C < B < F < E < D < H < G, and
single target path P = ({A}, {B}, {E}).

A

B C D

)1,1()(Bf

E F G H

)1,1()(Ef)1,0()(Ff)1,1()(Gf)1,1()(Hf

)1,0()(Cf)0,0()(Df

)1,1()(Af

Figure 9: Counter example for convergence under positive search margin.

First we will consider using breadth-first beam search with a beam width of b = 2. Using
the weight vector w = [γ, γ] the resulting beam trajectory will be (note that higher values of
w · f(v) are better):

{A}, {B, C}, {E, F}.
The search margin of w, which is only sensitive to pairs of target and non-target nodes that
were compared during the search, is equal to,

γ = w · f(B)− w · f(C) = w · f(E)− w · f(F)

1366

Learning Linear Ranking Functions for Beam Search with Application to Planning

which is positive. We now show that the existence of w does not imply convergence under
perceptron updates.

Consider simulating LaSO-BR starting from w′ = 0. The first search step gives the
beam {D, B} according to the given preference ordering. Since B is on the target path we
continue expanding to the next level where we get the new beam {G,H}. None of the nodes
are on the target path so we update the weights as follows:

w′ = w′ + f(E)− 0.5[f(G) + f(H)]
= w′ + [1, 1]− [1, 1]
= w′.

This shows that w′ does not change and we have converged to the weight vector w′ = 0,
which is not a solution to the problem.

For the case of best-first beam search, the performance is similar. Given the weight vector
w = [γ, γ], the resulting beam search with beam width 2 will generate the beam sequence,

{A}, {B, C}, {E, C}

which is consistent with the target trajectory. From this we can see that w has a positive
search margin of:

γ = w · f(B)− w · f(C) = w · f(E)− w · f(C).

However, if we follow the perceptron algorithm when started with the weight vector w′ = 0
we can again show that the algorithm does not converge to a solution weight vector. In
particular, the first search step gives the beam {D, B} and since B is on the target path, we
do not update the weights and generate a new beam {G,H} by expanding the node D. At
this point there are no target nodes in the beam and the weights are updated as follows

w′ = w′ + f(B)− 0.5[f(G) + f(H)]
= w′ + [1, 1]− [1, 1]
= w′

showing that the algorithm has converged to w′ = 0, which is not a solution to the problem.
Thus, we have shown that a positive search margin does not guarantee convergence for

either LaSO-BR or LaSO-BST. This counter example also applies to the original LaSO
algorithm, which is quite similar to LaSO-BST.

4.3 Convergence Under Stronger Notions of Margin

Given that linear separability, or equivalently a positive search margin, is not sufficient
to guarantee convergence we consider a stronger notion of margin, the level margin, which
measures by how much the target nodes are ranked above (or below) other non-target nodes
at the same search level.

1367

Xu, Fern and Yoon

Definition 11 (Level Margin) The level margin of a weight vector w for a training set
is defined as γ = min{(v∗,v)}(w · f(v∗)−w · f(v)), where the set {(v∗, v)} contains any pair
such that v∗ is a target node at some depth j and v can be reached in j search steps from
the initial search node—that is, v∗ and v are at the same level.

For breadth-first beam search, a positive level margin for w implies a positive search margin,
but not necessarily vice versa, showing that level margin is a strictly stronger notion of
separability. The following result shows that a positive level margin is sufficient to guarantee
convergence of LaSO-BR. Throughout we will let R be a constant such that for all training
instances, for all nodes v and v′, ‖f(v)−f(v′)‖ ≤ R. The proof of this result follows similar
lines as the Perceptron convergence proof for standard classification problems Rosenblatt
(1962).

Theorem 12 Given a dead-end free training set such that there exists a weight vector w
with level margin γ > 0 and ‖w‖ = 1, LaSO-BR will converge with a consistent weight
vector after making no more than (R/γ)2 weight updates.

Proof First note that the dead-end free property of the training data can be used to show
that unless the current weight vector is a solution it will eventually trigger a “meaningful”
weight update (one where the candidate set contains target nodes).

Let wk be the weights before the k′th mistake is made. Then w1 = 0. Suppose the k′th
mistake is made for the training data 〈Si, Pi〉, when B ∩ Pi,j = ∅. Here, Pi,j is the j′th
element of Pi, B is the beam generated at depth j for Si and C is the candidate set from
which B is selected. Note that C is generated by expanding all nodes in the previous beam
and at least one of them is in Pi,j−1. With the dead-end free property, we are guaranteed
that C ′ = Pi,j ∩C 6= ∅. The occurrence of the mistake indicates that, ∀v∗ ∈ Pi,j ∩C, v ∈ B,
wk · f(v∗) ≤ wk · f(v), which lets us derive an upper bound for ‖wk+1‖2.

‖wk+1‖2 = ‖wk +
∑

v∗∈C′ f(v∗)
|C ′| −

∑
v∈B f(v)

b
‖2

= ‖wk‖2 + ‖
∑

v∗∈C′ f(v∗)
|C ′| −

∑
v∈B f(v)

b
‖2

+ 2wk · (
∑

v∗∈C′ f(v∗)
|C ′| −

∑
v∈B f(v)

b
)

≤ ‖wk‖2 + ‖
∑

v∗∈C′ f(v∗)
|C ′| −

∑
v∈B f(v)

b
‖2

≤ ‖wk‖2 + R2

where the first equality follows from the definition of the perceptron-update rule, the first
inequality follows because wk · (f(v∗) − f(v)) < 0 for all v∗ ∈ C ′, v ∈ B, and the second
inequality follows from the definition of R. Using this upper-bound we get by induction
that

‖wk+1‖2 ≤ kR2.

1368

Learning Linear Ranking Functions for Beam Search with Application to Planning

Suppose there is a weight vector w such that ||w|| = 1 and w has a positive level margin,
then we can derive a lower bound for w · wk+1.

w · wk+1 = w · wk + w · (
∑

v∗∈C′ f(v∗)
|C ′| −

∑
v∈B f(v)

b
)

= w · wk +
∑

v∗∈C′ w · f(v∗)
|C ′| −

∑
v∈B w · f(v)

b

≥ w · wk + γ.

This inequality follows from the definition of the level margin γ of the weight vector w.
By induction, we get that w · wk+1 ≥ kγ. Combining this result with the above upper

bound on ‖wk+1‖ and the fact that ‖w‖ = 1 we get that

1 ≥ w · wk+1

‖w‖‖wk+1‖ ≥
√

k
γ

R
⇒ k ≤ R2

γ2
.

Without the dead-end free property, LaSO-BR might generate a candidate set that con-
tains no target nodes, which would allow for a mistake that does not result in a weight
update. However, for a dead-end free training set, it is guaranteed that the weights will be
updated if and only if a mistake is made. Thus, the mistake bound is equal to the bound
on the weight updates.

Note that for the example search space in Figure 9 there is no weight vector with a
positive level margin since the final layer contains target and non-target nodes with identical
weight vectors. Thus, the non-convergence of LaSO-BR on that example is consistent with
the above result. Unlike LaSO-BR, LaSO-BST and LaSO do not have such a guarantee
since their beams can contain nodes from multiple levels. This is demonstrated by the
following counter example.

Counter Example 2 We give a training set for which the existence of a w with positive
level margin does not guarantee convergence for LaSO-BST. Consider a single training
example with the search space in Figure 10, single target path P = ({A}, {B}, {E}), and
preference ordering C < B < E < F < G < D.

Given the weight vector w = [2γ, γ], the level margin of w is equal to γ. However,
starting with w′ = 0 and running LaSO-BST the first search step gives the beam {D, B}.
Since B is on the target path, we get the new beam {G,F} by expanding the node D. This
beam does not contain a target node, which triggers the following weight update:

w′ = w′ + f(B)− [f(F) + f(G)]/2
= w′ + [1, 0]− [1, 0]
= w′.

Since w′ does not change the algorithm has converged to w′ = 0, which is not a solution
to this problem. This shows that a positive level margin is not sufficient to guarantee the
convergence of LaSO-BST. The same can be shown for the original LaSO.

1369

Xu, Fern and Yoon

A

B C D

)0,1()(Bf

E F G

)1,1()(Ef)0,1()(Ff)0,1()(Gf

)0,0()(Cf)1,0()(Df

)0,0()(Af

Figure 10: Counter example to convergence under positive level margin.

In order to guarantee convergence of LaSO-BST, we require an even stronger notion of
margin, global margin, which measures the rank difference between any target node and
any non-target node, regardless of search space level.

Definition 13 (Global Margin) The global margin of a weight vector w for a training
set is defined as γ = min{(v∗,v)}(w · f(v∗) − w · f(v)), where the set {(v∗, v)} contains any
pair such that v∗ is any target node and v is any non-target node in the search space.

Note that if w has a positive global margin then it has a positive level margin. The converse
is not necessarily true. The global margin is similar to the common definitions of margin
used to characterize the convergence of linear perceptron classifiers (Novikoff, 1962).

To ensure convergence of LaSO-BST we also assume that the search spaces are all finite
trees. This avoids the possibility of infinite best-first beam trajectories that never terminate
at a goal node. Tree structures are quite common in practice and it is often easy to transform
a finite search space into a tree. The structured classification experiments of Daumé III and
Marcu (2005) and our own automated experiments both involve tree structured spaces.

Theorem 14 Given a dead-end free training set of finite tree search spaces such that there
exists a weight vector w with global margin γ > 0 and ‖w‖ = 1, LaSO-BST will converge
with a consistent weight vector after making no more than (R/γ)2 weight updates.

The proof is similar to that of Theorem 12 except that the derivation of the lower bound
makes use of the global margin and we must verify that the restriction to finite tree search
spaces guarantees that each iteration of LaSO-BST will terminate with a goal node being
reached. We were unable to show convergence for the original LaSO algorithm even under
the assumptions of this theorem.

In summary, this section has introduced three different notions of margin: search margin,
level margin, and global margin. Both algorithms converge for a positive global margin,
which implies a positive search margin and a positive level margin. For LaSO-BR, but not
LaSO-BST, convergence is guaranteed for a positive level margin, which implies a positive
search margin. This shows that LaSO-BR converges under a strictly weaker notion of
margin than LaSO-BST due to the fact that the ranking decisions of breadth-first search are
restricted to nodes at the same level of the search space, as opposed to best-first search. This

1370

Learning Linear Ranking Functions for Beam Search with Application to Planning

suggests that it may often be easier to define effective feature spaces for the breadth-first
paradigm. Finally, a positive search margin corresponds exactly to linear separability, but
is not enough to guarantee convergence for either algorithm. This is in contrast to results
for linear classifier learning, where linear separability implies convergence of perceptron
updates.

4.4 Convergence for Ambiguous Training Data

Here we study convergence for linearly inseparable training data. Inseparability is often
the result of training-data ambiguity, in the sense that many “good” solution paths are
not included as target paths. For example, this is common in automated planning where
there can be many (nearly) optimal solutions, many of which are inherently identical (e.g.,
differing in the orderings of unrelated actions). It is usually impractical to include all
solutions in the training data, which can make it infeasible to learn a ranking function that
strictly prefers the target paths over the inherently identical paths not included as targets.
In these situations, the above notions of margin will all be negative. Here we consider the
notion of beam margin that allows for some amount of ambiguity, or inseparability.

For each instance 〈Si, Pi〉, where Si = 〈Ii, si(·), f(·), <i〉 and Pi = (Pi,1, Pi,2, . . . , Pi,di),
let Dij be the set of nodes that can be reached in j search steps from Ii. That is, Dij is the
set of all possible non-target nodes that could be in beam Bi,j . A beam margin is a triple
(b′, δ1, δ2) where b′ is a non-negative integer, and δ1, δ2 ≥ 0.

Definition 15 (Beam Margin) A weight vector w has beam margin (b′, δ1, δ2) on a train-
ing set {〈Si, Pi〉}, if for each i, j there is a set D′

ij ⊆ Dij such that |D′
ij | ≤ b′ and

∀v∗ ∈ Pi,j , v ∈ Dij −D′
ij , w · f(v∗)− w · f(v) ≥ δ1 and,

∀v∗ ∈ Pi,j , v ∈ D′
ij , δ1 > w · f(v∗)− w · f(v) ≥ −δ2.

A weight vector w has beam margin (b′, δ1, δ2) if at each search depth it ranks the target
nodes better than most other non-target nodes (those in Dij −D′

ij) by a margin of at least
δ1, and ranks at most b′ non-target nodes (those in D′

ij) better than the target nodes by a
margin no greater than δ2. Whenever this condition is satisfied we are guaranteed that a
beam search of width b > b′ guided by w will solve all of the training problems. The case
where b′ = 0 corresponds to the level margin, where the data is separable. By allowing
b′ > 0 we can consider cases where there is no “dominating” weight vector that ranks all
targets better than all non-targets at the same level. The following result shows that for a
large enough beam width, which is dependent on the beam margin, LaSO-BR will converge
to a consistent solution.

Theorem 16 Given a dead-end free training set, if there exists a weight vector w with
beam margin (b′, δ1, δ2) and ‖w‖ = 1, then for any beam width b > (1 + δ2/δ1) b′ =
b∗, LaSO-BR will converge with a consistent weight vector after making no more than
(R/δ1)

2 (
1− b∗b−1

)−2 weight updates.

Proof Let wk be the weights before the k′th mistake is made, so that w1 = 0. Suppose
that the k′th mistake is made when B ∩Pi,j = ∅ where B is the beam generated at depth j

1371

Xu, Fern and Yoon

for the ith training instance. We can derive the upper bound of ‖wk+1‖2 ≤ kR2 as in the
proof of Theorem 12.

Next we derive a lower bound on w · wk+1. Denote by B′ ⊆ B the set of nodes in the
beam such that δ1 > w · (f(v∗) − f(v)) ≥ −δ2 and let C ′ = Pi,j ∩ C. By the definition of
beam margin, we have |B′| < b′.

w · wk+1 = w · wk + w · (
∑

v∗∈C′ f(v∗)
|C ′| −

∑
v∈B f(v)

b
)

= w · wk + w ·
∑

v∈B−B′

∑
v∗∈C′ f(v∗)
|C′| − f(v)

b

+ w ·
∑

v∈B′

∑
v∗∈C′ f(v∗)
|C′| − f(v)

b

≥ w · wk +
(b− b′)δ1

b
− b′δ2

b
.

By induction, we get that w·wk+1 ≥ k (b−b′)δ1−b′δ2
b . Combining this result with the above up-

per bound on ‖wk+1‖ and the fact that ‖w‖ = 1 we get that 1 ≥ w·wk+1

‖w‖‖wk+1‖ ≥
√

k (b−b′)δ1−b′δ2
bR .

The mistake bound follows by noting that b > b∗ and algebra.
Similar to Theorem 12, the dead-end free property of the training set guarantees that

the mistake bound is equal to the bound on the weight updates.

Note that when there is a positive level margin (i.e., b′ = 0), the mistake bound here
reduces to (R/δ1)

2, which does not depend on the beam width and matches the result for
separable data. This is also the behavior when b >> b∗.

An interesting aspect of this result is that the mistake bound depends on the beam
width. Rather, all of our previous convergence results were independent of the beam width
and held even for beam width b = 1. Thus, those previous results did not provide any
formalization of the intuition that the learning problem will often become easier as the
beam width increases, or equivalently as the amount of search increases. Indeed, in the
extreme case of exhaustive search, no learning is needed at all, whereas for b = 1 the
ranking function has little room for error.

To get a sense for the dependence on the beam width consider two extreme cases. As
noted above, for very large beam widths such that b >> b∗, the bound becomes (R/δ1)

2.
On the other extreme, if we assume δ1 = δ2 and we use the smallest possible beam width
allowed by the theorem b = 2b′ + 1, then the bound becomes ((2b′ + 1)R/δ1)

2, which is a
factor of (2b′ + 1)2 larger than when b >> b′. This shows that as we increase b (i.e., the
amount of search), the mistake bound decreases, suggesting that learning becomes easier,
agreeing with intuition.

It is also possible to define an analog to the beam margin for best first beam search.
However, in order to guarantee convergence, the conditions on ambiguity would be relative
to the global state space, rather than local to each level of the search space.

1372

Learning Linear Ranking Functions for Beam Search with Application to Planning

5. Application to Automated Planning

In this section, we present an empirical evaluation of beam-search learning in the context
of automated planning. We first give related background, followed by the technical de-
tails regarding our application to automated planning. Then, we present the experimental
results.

5.1 Background

Here we give background related to automated planning, the problem of learning to plan,
and prior related work in the area of learning to plan.

5.1.1 Automated Planning

Planning is a subfield of artificial intelligence that studies algorithms for selecting sequences
of actions in order to achieve goals. In this work, we consider planning domains and planning
problems described using the STRIPS fragment of the planning domain description language
(PDDL) (McDermott, 1998), which we now outline.

A planning domain D defines a set of possible actions A and a set of world states W
in terms of a set of predicate symbols P , action types Y , and constants C. A state fact is
the application of a predicate to the appropriate number of constants, with a state being
a set of state facts. Each action a ∈ A consists of: 1) an action name, which is an action
type applied to the appropriate number of constants, 2) a set of precondition state facts
Pre(a), 3) two sets of state facts Add(a) and Del(a) representing the add and delete effects
respectively. An action a is applicable to a world state ω iff Pre(a) ⊆ ω, and the application
of an (applicable) action a to ω results in the new state ω′ = (ω \ Del(a)) ∪ Add(a). That
is, the application of an action adds the facts in the add list to the state and deletes facts
in the delete list.

Given a planning domain, a planning problem is a tuple (ω,A, g), where A ⊆ A is a
set of actions, ω ∈ W is the initial state, and g is a set of state facts representing the
goal. A solution plan for a planning problem is a sequence of actions 〈a1, . . . , al〉, where
the sequential application of the sequence starting in state ω leads to a goal state ω′ where
g ⊆ ω′. In this paper, we will view planning problems as directed graphs where the vertices
represent states and the edges represent possible state transitions. Planning then reduces
to graph search for a path from the initial state to goal.

Figure 1 shows an example of the search space corresponding to a problem from the
Blocksworld planning domain. Here, the initial state is described by the facts

ω0 = {clear(A), clear(B), clear(C), clear(D), ontable(A),
ontable(B), ontable(C), ontable(D), armempty}.

An example action from the domain is pickup(A) with the following definition:

Pre(pickup(A)) = {clear(A), ontable(A), armempty}
Add(pickup(A)) = {holding(A)}
Del(pickup(A)) = {clear(A), ontable(A), armempty}.

1373

Xu, Fern and Yoon

Note that the precondition of this action is satisfied in ω0 and hence can be applied from
ω0, which would result in the new state

ω1 = {holding(A), clear(B), clear(C), clear(D), ontable(B), ontable(C), ontable(D)}.

If the goal of the planning problem is g = {on(C, D), on(B, A), clear(C), clear(B)}, then one
solution for the problem, as shown in Figure 1, is the action sequence 〈pickup(B), stack(B, A),
pickup(C), stack(C, D)〉.

There has been much recent progress in automated planning. One of the most successful
approaches, and the one most relevant to this paper, is to solve planning problems using
forward state-space search guided by powerful domain-independent planning heuristics. A
number of recent state-of-the-art planners have followed this approach including HSP (Bonet
and Geffner, 1999), FF (Hoffmann and Nebel, 2001), and AltAlt (Nguyen et al., 2002) to
name just a few.

5.1.2 Learning to Plan

It is common for planning systems to be asked to solve many problems from a particular
domain. For example, the bi-annual international planning competition is organized around
a number of planning domains and includes many problems of varying difficulty from each
domain. Given that problems from the same domain share significant structure, it is natural
to attempt to learn from past experience in a domain in order to solve future problems from
the same domain more efficiently. However, most state-of-the-art planning systems do not
have any such learning capability and rather solve each problem from the domain as if
it were the first problem ever encountered by the planner. The goal of our work is to
develop the capability for a planner to learn domain-specific knowledge in order to improve
performance in a target domain of interest.

More specifically, we focus on developing learning capabilities within the simple, but
highly successful, framework of heuristic state-space search planning. Our goal is to learn
heuristics, or ranking functions, that can quickly solve problems using beam search with a
small beam width. Given a representative training set of problems from a planning domain,
our approach first solves the problems using potentially expensive search (e.g., using a large
beam width), guided by an existing heuristic. These solutions are then used to learn a
heuristic that can guide a small width beam search to the same solutions. The hope is that
the learned heuristic will then generalize and allow for the quick solution of new problems
that could not be practically solved before learning.

5.1.3 Prior Work

There has been a long history of work on learning-to-plan, originating at least back to the
original STRIPS planner (Fikes et al., 1972), which learned triangle tables or macros that
could later be exploited by the planner. For a collection and survey of work on learning in
AI planning see Minton (1993) and Zimmerman and Kambhampati (2003).

A number of learning-to-plan systems have been based on the explanation-based learning
(EBL) paradigm, for example, Minton et al. (1989) among many others. EBL is a deductive
learning approach, in the sense that the learned knowledge is provably correct. Despite
the relatively large effort invested in EBL research, the best approaches typically did not

1374

Learning Linear Ranking Functions for Beam Search with Application to Planning

consistently lead to significant gains, and even hurt performance in many cases. A primary
way that EBL can hurt performance is by learning too many, overly specific control rules,
which results in the planner spending too much time simply evaluating the rules at the cost
of reducing the number of search nodes considered. This problem is commonly referred to
as the EBL utility problem (Minton, 1988).

Partly in response to the difficulties associated with EBL-based approaches, there have
been a number of systems based on inductive learning, sometimes combined with EBL. The
inductive approach involves applying statistical learning mechanisms in order to find com-
mon patterns that can distinguish between good and bad search decisions. Unlike EBL,
the learned control knowledge typical does not have guarantees of correctness, however,
the knowledge is typically more general and hence more effective in practice. Some repre-
sentative examples of such systems include learning for partial-order planning (Estlin and
Mooney, 1996), learning for planning as satisfiability (Huang et al., 2000), and learning
for the Prodigy means-ends framework (Aler et al., 2002). While these systems typically
showed better scalability than their EBL counterparts, the evaluations were typically con-
ducted on only a small number of planning domains and/or small number of test problems.
There is no empirical evidence that such systems are robust enough to compete against
state-of-the-art non-learning planners across a wide range of domains.

More recently there have been several learning-to-plan systems based on the idea of
learning reactive policies for planning domains (Khardon, 1999; Martin and Geffner, 2000;
Yoon et al., 2002). These approaches use statistical learning techniques to learn policies,
or functions, that map any state-goal pair from a given domain to an appropriate action.
Given a good reactive policy for a domain, problems can be solved quickly, without search,
by iterative application of the policy. Despite its simplicity, this approach has demonstrated
considerable success. However, these approaches have still not demonstrated the robust-
ness necessary to outperform state-of-the-art non-learning planners across a wide range of
domains.

More closely related is work by La Rosa et al. (2007), which uses a case-based reasoning
approach to obtained an improved heuristic for forward state-space search. It is likely that
our weight learning approach could be combined with their system to harness the benefits
of both approaches. The most closely related approach to our work is based on extending
forward state-space search planners by learning improved heuristics (Yoon et al., 2006), an
approach which is among the state-of-the-art among learning-based planners. That work
focused on improving the relaxed plan length heuristic used by the state-of-the-art planner
FF (Hoffmann and Nebel, 2001). Note that FF consists of two stages: an incomplete
local search and a complete best first search. In particular, Yoon et al. (2006) applied
linear regression to learn an approximation of the difference between FF’s heuristic and the
observed distances-to-goal of states in the training plans. The primary contribution of the
work was to define a generic knowledge representation for features and a features-search
procedure that allowed learning of good regression functions across a range of planning
domains. While the approach showed promising results, the learning mechanism has a
number of potential shortcomings. Most importantly, the mechanism does not consider the
actual search performance of the heuristic during learning. That is, learning is based purely
on approximating the observed distances-to-goal in the training data. Even if the learned

1375

Xu, Fern and Yoon

heuristic performs poorly on the training data when used for search, the learner makes no
attempt to correct the heuristic in response.

A primary motivation for this paper is to develop a heuristic learning mechanism that
is more tightly integrated with the search process. Our LaSO-style algorithms for learning
beam-search ranking functions do exactly that. Our learning approach can be viewed as
error-driven in the sense that it directly attempts to correct errors as they arise in the
search process, rather than attempting to precisely model the distance-to-goal. In many
areas of machine learning, such error-driven methods have been observed to outperform
their traditional passive counterparts. The experimental results presented here agree with
that observation in a number of planning domains.

5.2 Experimental Setup

We present experiments in eight STRIPS domains: Blocksworld, Pipesworld, Pipesworld-
with-tankage, PSR, Philosopher, DriverLog, Depots and FreeCell. All of these domains
with the exception of Blocksworld were taken from the 3rd and 4th international planning
competitions (IPC3 and IPC4). With only two exceptions, this is the same set of domains
used to evaluate the approach of Yoon et al. (2006), which is the only prior work that we are
aware of for learning heuristics to improve forward state-space search in automated planning.
The difference between our set of domains and theirs is that we include Blocksworld, while
they did not, and we do not include the Optical Telegraph domain, while they did. Our
reason for not showing results for Optical Telegraph is that none of the systems we evaluated
were able to solve any of the problems.1

5.2.1 Domain Problem Sets

For each domain we needed to create a set of training problems and testing problems on
which the learned heuristics would be trained and evaluated. In Blocksworld, all problems
were generated using the BWSTATES generator (Slaney and Thiébaux, 2001), which pro-
duces random Blocksworld problems. Thirty problems with 10 or 20 blocks were used as
training data, and 30 problems with 20, 30, or 40 blocks were used for testing. For Driver-
Log, Depots and FreeCell, the first 20 problems are taken from IPC3 and we generated 30
more problems of varying difficulty to arrive at a set of 50 problems, roughly ordered by
difficulty. For each domain, we used the first 15 problems for training and the remaining
35 for testing. The other four domains are all taken from IPC4. Each domain includes 50
or 48 problems, roughly ordered by difficulty. In each case, we used the first 15 problems
for training and the remaining problems for testing.

5.2.2 Search Space Definition

We now describe the mapping between the planning problem described in Section 5.1.1
and the general search spaces described in Section 2, which were the basis for describing

1. The results in Yoon et al. (2006) indicated that their linear regression learning method was effective in
Optical Telescope. Our implementation of linear regression, however, was unable to solve any of the
problems. After investigating this difference, we found that it is due to a subtle difference in the way
that ties are broken during forward state-space search, indicating that the linear regression method was
not particularly robust in this domain.

1376

Learning Linear Ranking Functions for Beam Search with Application to Planning

our algorithms. Recall that a general search space is a tuple 〈I, s(·), f(·), <〉 giving the
initial state, successor function, feature function, and preference ordering respectively. In
the context of planning each search node is a state-goal pair (ω, g), where ω can be thought
of as the current world state, g is the current goal, and both are represented as sets of facts.
Note that it is important that nodes contain both state and goal information, rather than
just state information, since the evaluation/ranking of a search node depends on how good
ω is with respect to the particular goal g. The initial search node I is equal to (ω0, g), where
ω0 is the initial state of the planning problem and g is the problem’s goal. The successor
function s maps a search node (ω, g) to the set of all nodes of the form (ω′, g) where ω′ is
a state that can be reached from ω via the application of some action whose preconditions
are satisfied in ω. Note that according to this definition all nodes in a search space contain
the same goal component. The feature function f((ω, g)) = (f1((ω, g)), . . . , fm((ω, g))) can
be any function over world states and goals. The particular functions we use in this work
are describe later in this section. Finally, the preference ordering < is simply the default
ordering used by the planner FF, which is the planner our implementation is based on.

5.2.3 Training Data Generation

The LaSO-style algorithms learn from target solution paths, which requires that we generate
solution plans for all of the training problems. To do this, for each training problem, we
selected the shortest plan out of those found by running the planner FF and beam search
with various large beam widths guided by FF’s relaxed-plan heuristic. The resulting plans
are totally ordered sequences of actions and one could simply label each training problem
by its corresponding sequence of actions. However, in many cases, it is possible to produce
equivalent plans by permuting the order of certain actions in the totally ordered plans.
That is, there are usually many other equivalent totally ordered plans. Thus, including
only the single plan found via the above approach in the training data results in significant
ambiguity in the sense described in Section 4.4.

In order to help reduce the ambiguity it is desirable to try to include as many equivalent
plans as possible as part of the target plan set for a particular problem. To do this, instead
of using just a single totally ordered solution plan in the training data for each problem, we
transform each such totally ordered plan into a partial-order plan, which contains the same
set of actions but only includes action-ordering constraints that appear to be necessary.
Finding minimal partial-order plans from total-order plans is an NP-hard problem and
hence we use the heuristic algorithm described in Veloso et al. (1991). For each training
problem, the resulting partial-order plan provides an implicit representation for a potentially
exponentially large set of solution trajectories. By using these partial-order plans as the
labels for our training problems we can significantly reduce the ambiguity in the training
data. In preliminary experiments, the performance of our learning algorithms improved in
a number of domains when using training data that included the partial-order plans rather
than the original total-order plans.

5.2.4 Heuristic Representation and Domain Features

We consider learning heuristic functions that are represented as weighted linear combina-
tions of features, that is, H(v) = Σiwi ·fi(v) where v is a search node, fi is a feature of search

1377

Xu, Fern and Yoon

nodes, and wi is the weight of feature fi. One of the challenges with this representation
is to define a generic feature space from which features can be selected for each domain.
This space must be rich enough to capture important properties of a wide range of planning
domains, but also be amenable to searching for those properties. For this purpose we will
draw on prior work Yoon et al. (2008) that defined such a feature space using a first-order
language.

Each feature in the above space is defined by a taxonomic class expression, which repre-
sents a set of constants/objects in the planning domain. For example, a simple taxonomic
class expression for the Blocksworld planning domain is clear, which represents the set of
blocks that are currently clear, that is, the set of blocks x such that clear(x) ∈ ω where
the current search node is v = (ω, g). The respective feature value represented by a class
expression is equals to the cardinality of the class expression when evaluated at a search
node. For example, if we let f1 be the feature represented by the class expression clear then
f1((ω, g)) is simply the number of clear blocks in ω. So in the example states from Section
5.1.1, f1(v0) = f1((ω0, g)) = 4 and f1(v1) = f1((ω1, g)) = 3. A more complex example for
this problem is clear ∩ gclear, which represents the set of blocks that are clear in both the
current state and the goal, that is, the set containing any block x such that clear(x) ∈ ω
and clear(x) ∈ g. If f2 represents the feature corresponding to this expression then in the
example states from 5.1.1 we get that f2(v0) = 2 and f2(v1) = 2.

Since our work in this paper is focused on weight learning, we refer to Yoon et al.
(2008) for the full definition of the taxonomic feature language. Here we simply use a set
of taxonomic features that have been automatically learned in prior work (Yoon et al.,
2008) and tune their weights. In our experiments, this prior work gave us 15 features in
Blocksworld, 35 features in Pipesworld, 11 features in Pipesworld-with-tankage, 54 features
in PSR, 19 features in Philosopher, 22 features in DriverLog, 3 features in Depot and
3 features in FreeCell. In all cases, we include FF’s relaxed-plan-length heuristic as an
additional feature.

5.3 Experimental Results

For each domain, we use LaSO-BR to learn weights with a learning rate of 0.01 for beam
widths 1, 10, 50, and 100 and we will denote LaSO-BR run with beam width b by LaSO-
BRb. The maximum number of LaSO-BR iterations was set to 5000. In the evaluation
procedure, we set a time cut-off of 30 CPU minutes per problem and considered a problem
to be unsolved if a solution was not found within the cut-off.

In preliminary work, we also tried to apply LaSO-BST to our problems. However, this
turned out to be an impractical approach due to the large potential search depths of these
problems. In particular, we found that in many cases LaSO-BST would become stuck
processing training examples, in the sense that it would neither update the weights nor
make progress with respect to following the target trajectories. This typically occurred
because LaSO-BST would maintain an early target node in the beam and thus not trigger
a weight update, but at the same time would not progress to include deeper nodes on the
target trajectories and instead explore paths off the target trajectories. To help remedy
this behavior, we experimented with a variant of LaSO-BST that forces progress along the
target trajectories after a specified number of search steps. For the Blocksworld planning

1378

Learning Linear Ranking Functions for Beam Search with Application to Planning

Domain b = 1 b = 10 b = 50 b = 100
Blocksworld 3 15 66 128
Pipesworld 1 4 13 24

Pipesworld-with-tankage 3 17 76 149
PSR 53 127 403 690

Philosopher 3 24 121 260
DriverLog 1 5 22 44
Depots 5 32 160 320
FreeCell 10 68 315 654

Figure 11: The average training time required by LaSO-BR per iteration for all training
instances (seconds).

domain and preliminary experiments in the other domains, we found that the results tended
to improve compared to the original LaSO-BST, but still were not competitive with LaSO-
BR. Thus for the experiments reported below we focus on LaSO-BR.

Note that the experiments in Daumé III and Marcu (2005) for structured classification
produced good results using an algorithm very similar to LaSO-BST. There, however, the
search spaces have small maximum depths (e.g., the length of a sentence), which apparently
helped to avoid the problem we experienced here.

5.3.1 Training Time

Figure 11 gives the average training time required by LaSO-BR per iteration in each of
our domains for four different beam widths. Note that Pipesworld was the only domain
for which LaSO-BR converged to a consistent weight vector using a learning beam width
100. For all other training sets LaSO-BR never converged and thus terminated after 5000
iterations. The training time varies widely across the domains and depends on various
factors including: number of features, number of actions, number of state predicates, and
the number and length of target trajectories per training example. As expected the training
times increase with the training beam width across the domains. It is difficult, however,
to predict the relative times between different domains due to the complicated interactions
among the above factors. Note that while these training times can be significant in many
domains, the cost of training needs to only be paid once and then it is amortorized over all
future problems. Furthermore, as we can observe later in the experimental results, a small
beam width of 10 typically performs as well as larger widths.

5.3.2 Description of Tables

Before presenting our results we will first provide an overview of the information contained
in our results tables. Figure 12 compares the performance of LaSO-BR10 to three other
algorithms,

• LEN : beam search using FF’s relaxed plan length heuristic

1379

Xu, Fern and Yoon

• U : beam search using a heuristic with uniform weights for all features

• LR : beam search using the heuristic learned from linear regression following the
approach in Yoon et al. (2006).

We selected LaSO-BR10 here because its performance is on par or better than other training
beam widths. Note that in practice one could select the best beam width to use via cross-
validation with a validation set of problems.

There is one table for each of our domains and each column in the tables is labeled
by the algorithm used to generate the results. The rows correspond to the beam width
used to generate the results on the testing problems, with the last row corresponding to
using full best-first search (BFS) with an infinite beam width, which is the native search
procedure used by FF. The columns are divided into three sets. The first four data columns
labeled “Problems solved” give the number of problems solved using the testing beam width
corresponding to the row, where a problem is considered solved if a solution is found within
30 minutes. The second set of columns labeled “Median plan length” gives the median
length of solutions to the planning problems that were solved. The last 4 columns labeled
“Median runtime ” give the median runtime of each solver on the problems it solved. So, for
example, the table shows that the heuristic learned via LaSO-BR10 solves 26 Blocksworld
test problems with a median solution length of 139 and a median runtime of 58.8 seconds
using a testing beam width of 50, and solved 19 problems with a median solution length of
142 and a median runtime of 20.9 seconds using BFS.

Figure 13 is similar in structure to Figure 12 but compares the performance of heuristics
learned using LaSO-BR with a variety of training beam widths and evaluated using a variety
of testing beam widths. Only the number of problems solved and the median length of
solutions that are found are considered here. For example, the upper left-most data point
gives the number of problems solved using a learning beam width of 1 and a testing beam
width of 1, while the first entry in the last column gives the median plan length of solved
problems when learning with beam width 100 and testing with beam width 1.

5.3.3 Performance Across Testing Beam Widths

From Figure 12, in general, for all algorithms (learning and non-learning) we see that as the
testing beam width begins to increase the number of solved problems and runtime increase
and solution lengths improve. However, at some point as the beam width continues to
increase the number of solved problems typically decreases. This behavior is typical for
beam search, since as the testing beam width increases there is a greater chance of not
pruning a solution trajectory, but the computational time and memory demands increase.
Thus, for a fixed time cut-off we expect a decrease in performance as the beam width
becomes large.

The median runtime typically increases as the test beam width increases, because more
search nodes need to be evaluated. However, it is not always the case. The number of
search nodes that are going to be evaluated also depends on the plan length. For example,
while using LEN in the Depots planning domain, the median runtime of beam width 50 is
smaller than that of beam width 10, because the median plan length improves from 195 to
25. Also note that it is not necessarily true that the plan lengths are strictly non-increasing
with testing beam width. With large testing beam widths the number of candidates for the

1380

Learning Linear Ranking Functions for Beam Search with Application to Planning

Blocksworld
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 13 0 11 24 3318 - 938 499 12.3 - 3.4 4.5
10 22 0 19 24 449 - 120 293 15.9 - 9.9 25.1
50 20 0 19 26 228 - 64 139 37.5 - 10.4 58.8
100 19 0 20 24 110 - 67 144 52.0 - 42.8 110.3
500 17 0 23 17 80 - 74 96 74.2 - 379.1 133.2
BFS 5 0 13 19 80 - 76 142 3.7 - 18.0 20.9

Pipesworld
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 11 13 8 16 114 651 2476 2853 0.6 3.2 21.7 17.8
10 17 17 21 23 112 360 194 222 15.6 13.2 10.2 15.8
50 18 19 21 26 34 167 89 80 9.4 42.8 25.5 27.8
100 18 16 21 24 32 39 60 62 19.7 12.0 23.3 39.3
500 21 18 21 25 30 33 31 53 62.9 58.3 101.8 95.1
BFS 15 7 7 15 44 54 42 54 35.5 1.1 3.1 1.3

Pipesworld-with-tankage
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 6 4 2 7 119 416 1678 291 8.0 18.2 92.1 8.4
10 6 8 9 8 68 603 399 117 70.2 256.5 125.6 33.4
50 6 5 6 11 61 111 94 122 358.4 281.4 186.1 116.3
100 5 4 5 8 54 105 43 55 482.4 279.4 255.5 190.6
500 5 6 4 10 42 97 41 76 938.5 586.1 210.7 492.0
BFS 5 3 2 3 59 60 126 100 431.2 17.1 935.7 22.0

PSR
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 0 0 0 - - - - - - - -
10 1 20 13 13 516 157 151 193 840.1 367.9 186.6 492.4
50 13 17 16 10 99 109 99 97 685.3 658.2 890.4 802.4
100 13 15 13 6 103 89 89 85 999.4 1121.9 1215.0 643.1
500 4 4 2 1 55 59 48 39 1035.6 1157.6 689.1 423.9
BFS 13 0 21 21 89 - 131 141 686.7 - 290.8 526.0

Philosopher
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 33 33 33 - 363 363 363 - 12.5 18.1 13.3
10 0 33 33 11 - 363 363 1154 - 121.3 171.0 101.3
50 0 6 23 13 - 215 308 1579 - 77.6 387.4 825.1
100 0 16 18 6 - 292 281 1076 - 489.0 507.6 911.1
500 0 7 7 2 - 220 220 745 - 792.3 844.6 1280.7
BFS 0 33 33 0 - 363 363 - - 9.5 329.8 -

DriverLog
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 0 0 8 - - - 6801 - - - 364.2
10 3 0 0 12 789 - - 1439 967.8 - - 781.3
50 4 8 0 12 108 177 - 541 1199.3 457.6 - 998.5
100 1 11 0 11 98 147 - 275 1398.9 737.9 - 1131.6
500 0 3 0 1 - 86 - 94 - 1780.2 - 1237.1
BFS 6 2 0 1 162 181 - 138 1249.7 555.5 - 125.4

Depots
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 1 1 2 3 462 790 411 790 3.9 6.5 3.8 6.7
10 4 1 4 6 195 28 981 3295 38.7 2.4 93.1 594.8
50 3 4 5 6 25 511 51 467 22.4 912.8 17.3 156.0
100 4 7 3 7 232 157 26 207 554.9 669.4 45.6 189.9
500 5 4 6 11 38 62 39 53 274.2 351.2 422.7 477.8
BFS 2 2 3 2 46 48 33 48 292.4 809.3 14.2 386.8

FreeCell
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 5 7 4 9 96 120 146 123 12.2 21.5 13.8 14.0
10 20 22 19 21 82 117 243 89 99.7 165.2 305.2 91.9
50 23 24 12 19 65 73 102 66 456.2 503.4 619.0 367.9
100 20 18 7 21 65 63 70 65 723.5 720.9 673.4 796.1
500 3 3 2 4 53 55 59 55 1400.0 1418.8 1518.5 1431.8
BFS 23 20 12 20 78 87 111 97 102.1 77.9 238.4 92.3

Figure 12: Experimental results for different planners. For each domain, we show the num-
ber of solved problems, the median plan length and median runtime of the solved
problems. A dash in the table indicates that the planner was unable to solve
any of the problems.

1381

Xu, Fern and Yoon

next beam increases, making it more likely for the heuristic to get confused by “bad” states.
This is also one possible reason why performance tends to decrease with larger testing beam
widths.

5.3.4 LaSO-BR10 Versus No Learning

From Figure 12, we see that compared to LEN, the heuristic learned by LaSO-BR10 tends
to significantly improve the performance of beam search, especially for small beam widths.
For example, in Blocksworld with beam width 1, LaSO-BR10 solves almost twice as many
problems as LEN. The median plan length has also been reduced significantly for beam
width 1. As the beam width increases the gap between LaSO-BR10 and LEN decreases but
LaSO-BR10 still solves more problems with comparable solution quality. In Pipesworld,
LaSO-BR10 has the best performance gap with beam width 50, solving 8 more problems
than LEN. As the beam width increases, again the performance gap decreases, but LaSO-
BR10 consistently solves more problems than LEN. In this domain, the median plan lengths
of LEN tend to be better, though a direct comparison of these lengths is not exactly fair since
LaSO-BR10 solves more problems, which are often the harder problems that result in longer
plans. The trends with respect to number of solved problems are similar in other domains,
with the exception of PSR and FreeCell. In PSR, LEN solves slightly more problems than
LaSO-BR10 at large beam widths. In FreeCell, LaSO-BR10 is better than LEN for most
case except for beam width 50.

These results show that LaSO-BR10 is able to learn heuristics that significantly improve
on the state-of-the-art heuristic LEN when using beam search. In general, the best per-
formance was achieved for small beam widths close to those used for training, which is
beneficial in terms of time and memory efficiency. Note that in practice one could use a
validation set of problems in order to select the best combination of training beam width
and testing beam width for a given domain. This is particularly natural in our current
setting where our goal is to perform well relative to problems drawn from a given problem
generator, in which case we can easily draw both training and evaluation problem sets.

5.3.5 Comparing LaSO-BR10 with Linear Regression

To compare with prior passive heuristic learning work we learned weights using linear re-
gression following the approach of Yoon et al. (2006). To our knowledge this is the only
previous system that addresses the heuristic learning problem in the context of forward
state-space search in automated planning. In these experiments we used the linear re-
gression tool available under Weka. The results for the resulting learned linear-regression
heuristics are shown in the columns labeled LR in Figure 12.

For Blocksworld, LR solves fewer problems than LaSO-BR10 with beam widths smaller
than 500 but solves more problems than LaSO-BR10 with beam width 500. The median
plan length tends to favor LR except for the smallest beam width b = 1. For Pipesworld,
DriverLog and Depots, LaSO-BR10 always solves more problems than LR, with plan length
again favoring LR to varying degrees. In Pipesworld-with-tankage, LaSO-BR10 is better
than LR for most case except for beam width 10, solving one less problem. In PSR and
Philosopher, LR outperforms LaSO-BR10 but LaSO-BR10 achieves a comparable perfor-

1382

Learning Linear Ranking Functions for Beam Search with Application to Planning

mance with small beam widths. In FreeCell, LaSO-BR10 always solves more problems than
LR with improved plan length.

These results indicate that error-driven learning can significantly improve over prior
passive learning (here regression) in a number of domains. Indeed, there appears to be
utility in integrating the learning process directly in the search procedure. However, the
results also indicate that in some cases our current error-driven training method can fail to
converge to a good solution in cases where regression happens to work well.

5.3.6 Effects of Learning Beam Width

Figure 13 compares the performance of LaSO-BR with different learning beam widths. For
most domains, the performance doesn’t change much as the learning beam width changes.
Even with learning beam width 1, LaSO-BR can often achieve performance on par with
larger learning beam widths. For example, in Blocksworld, LaSO-BR1 results in the best
performance at most testing beam widths except for beam width 500. For the other domains,
LaSO-BR10 typically is close to the performance of the best learning beam width. In a
number of cases we see that LaSO-BR10 performs significantly better than LaSO-BR100,
which suggests that learning with smaller beam widths can have some practical advantages.
One reason for this might be due to the additional ambiguity in the weight updates when
using larger beam widths. In particular, the weight update equations involve averages of all
target and non-target nodes in the beams. The effect of this averaging is to effectively mix
the feature vectors of large numbers of search nodes together. In many cases there will be a
wide variety of non-target nodes in the beam, and this mixing can increase the difficulty of
uncovering key patterns, which we conjecture might increase the requirements on training
iterations and examples. In cases where the features are rich enough to support successful
beam search with small width, it is then likely that learning with smaller widths will be
better given a fixed number of iterations and examples. Note that the feature space we have
used in this work has been previously demonstrated (Fern et al., 2006) to be particularly
well suited to Blocksworld, which is perhaps one reason that b = 1 performed so well in
that domain.

Finally note that contrary to what we originally expected it is not typically the case that
the best performance for a particular testing beam width is achieved when learning with
that same beam width. Rather the relationship between learning and testing beam widths is
quite variable. Note that for most domains LaSO-BR never converged to a consistent weight
vector in our experiments, indicating that either the features were not powerful enough for
consistency or the learning beam widths and/or number of iterations needed to be increased.
In such cases, there is no clear technical reason to expect the best testing beam width to
match the learning beam width. Thus, in general, we suggest the use of validation sets
to select the best pair of learning and testing beam widths for a particular domain. Note
that the lack of relationship between learning and test beam width is in contrast to that
observed in Daumé III and Marcu (2005) for structured classification, where there appeared
to be a small advantage to training and testing using the same width.

1383

Xu, Fern and Yoon

Blocksworld
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 27 24 18 13 840 499 92 314
10 27 24 20 19 206 293 96 150
50 27 26 23 24 180 139 72 82
100 25 24 23 23 236 144 72 86
500 23 17 19 24 122 96 62 77
BFS 21 19 18 17 116 142 73 124

Pipesworld
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 16 16 21 15 1803 2853 1403 6958
10 25 23 23 21 227 222 179 270
50 25 26 25 22 74 80 119 75
100 27 24 23 22 146 62 104 47
500 23 25 20 21 60 53 61 37
BFS 14 15 13 8 59 54 103 42

Pipesworld-with-tankage
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 5 7 2 7 55 291 197 300
10 8 8 8 10 103 117 68 77
50 9 11 8 9 48 122 37 42
100 8 8 10 10 53 55 122 55
500 9 10 5 10 30 76 39 96
BFS 6 3 4 6 48 100 70 63

PSR
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 0 0 0 0 - - - -
10 12 13 3 14 182 193 550 205
50 6 10 16 17 75 97 126 129
100 3 6 10 13 82 85 113 86
500 2 1 4 4 61 39 58 64
BFS 19 21 3 25 164 141 170 142

Philosopher
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 6 33 33 0 589 363 363 -
10 19 11 1 1 319 1154 451 1618
50 13 13 2 2 297 1579 1023 855
100 9 6 5 1 253 1076 255 1250
500 4 2 2 0 226 745 253 -
BFS 0 0 0 0 - - - -

DriverLog
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 0 8 0 3 - 6801 - 4329
10 5 12 2 7 1227 1439 1061 435
50 0 12 1 1 - 541 129 136
100 0 11 0 1 - 275 - 98
500 0 1 0 0 - 94 - -
BFS 1 1 0 2 154 138 - 332

Depots
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 4 3 2 2 1526 790 588 588
10 5 6 7 6 3259 3295 2042 715
50 2 6 7 3 517 467 707 392
100 4 7 6 5 43 207 147 54
500 6 11 11 5 47 53 53 38
BFS 4 2 2 2 106 48 48 48

FreeCell
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 7 9 5 5 132 123 125 133
10 23 21 23 19 89 89 85 71
50 25 19 24 24 69 66 68 68
100 24 21 22 28 68 65 65 72
500 19 4 21 19 61 55 62 61
BFS 23 20 27 25 104 97 104 104

Figure 13: Experimental results for various learning beam widths. For each domain, we
show the number of solved problems and the median plan length of the solved
problems. A dash in the table indicates that the planner was unable to solve
any of the problems.

1384

Learning Linear Ranking Functions for Beam Search with Application to Planning

5.3.7 Best First Search Results

While our heuristic was learned for the purpose of controlling beam search we conducted
one more experiment in each domain where we used the heuristics to guide Best First Search
(BFS). We include these results primarily because BFS was the search procedure used to
evaluate LR in Yoon et al. (2006) and is the native search strategy used by FF.2 These
results are shown in the bottom row of each table in Figure 12 and 13.

In Blocksworld, Pipesworld, PSR, LaSO-BR10 was as good or better than the other
three algorithms. Especially in Blocksworld, LaSO-BR10 solves 19 problems while LEN
only solves 5 problems. In Philosopher, neither LEN nor LaSO-BR10 solves any problem.
LEN is the best in Pipesworld-with-tankage, DriverLog and FreeCell, and LR works best in
Depots. But for Pipesworld-with-tankage, Depots and FreeCell, the performance of LaSO-
BR10 is very close to the best planner.

These results indicate that the advantage of error-driven learning over regression is not
just restricted to beam search, but appears to extend to other search approaches. That is, by
learning in the context of beam search it is possible to extract problem solving information
that is useful in other contexts.

5.3.8 Plan Length

LaSO-BR can significantly improve success rate at small beam widths, which is one of our
main goals. However, the plan lengths at small widths are quite suboptimal, which is typical
of beam search. Ideally we would like to obtain these success rates without paying a price
in plan length. We are currently investigating ways to improve LaSO-BR in this direction.
However, we note that typically one of the primary difficulties of automated planning is to
simply find a path to the goal. After finding such a path, if it is significantly sub-optimal,
incomplete plan analysis or plan rewriting rules can be used to significantly prune the plan,
for example, see Ambite et al. (2000). Thus, despite the long plan lengths, the improved
success rate of LaSO-BR at small beam widths could provide a good starting point for a
fast plan length optimization.

6. Summary and Future Work

This paper presented a detailed study of the problem of learning ranking functions for beam
search with an application to automated planning. On the theoretical side we first studied
the computational complexity of this learning problem, highlighting the main dimensions
of complexity by identifying core tractable and intractable subclasses. Next, we studied
the convergence of recent online learning algorithms for this problem. The results clarified
convergence issues, correcting and extending previous results. This included an analysis
of convergence given ambiguous training data, giving a result that highlights the trade-off
between the amount of allowed search and the difficulty of the resulting learning problem.
Our experiments in the domain of automated planning showed that the approach has ben-
efits compared to existing learning and non-learning state-space search planners. These

2. FF actually uses two search strategies. In the first state it uses an incomplete strategy called enforced
hill climbing. If that initial search does not find a solution then a best-first search is conducted.

1385

Xu, Fern and Yoon

results complement the positive empirical results in structured classification (Daumé III
and Marcu, 2005) showing the general utility of the method.

In future work, we plan to extend the algorithms described here to allow for feature
induction and more robust parameter estimation. We are also interested in studying learning
in the context of search for other search strategies such as best-first and k-best-first search.
In our initial investigations, we have found that the LaSO-style approach for these strategies
has great difficulty in automated planning due to the very large depths of the search spaces,
which makes it difficult to “assign credit” to search errors. This suggests that a key aspect
of future work is to understand general credit-assignment mechanisms in the context of
error-driven learning for search. Another important direction is to consider the application
of these methods to new problem domains, in particular we are interested in more complex
planning domains that include concurrency, durative actions, and uncertainty. It will also be
interesting to consider learning beam-search heuristics for other search-based formulations
of planning such as partial-order planning where the search is conducted directly in the
space of partial-order plans.

Acknowledgments

Some of the material in this paper was first published at ICML-2007 (Xu and Fern, 2007)
and IJCAI-07 (Xu et al., 2007).

Appendix A. Relation to Structured Classification

This Appendix assumes that the reader is familiar with the material in Section 3. The
learning framework introduced in Section 2.2 is motivated by automated planning, with the
objective of finding a goal node. It is important to note that the learning objective does
not place a constraint on the rank of a goal node in the final beam compared to non-goal
nodes, but rather only requires that there exists some goal node in the final beam. This is
a natural formulation for automated planning where when solving test problems it is easy
to test each beam to determine whether a goal node has been uncovered and to return a
solution trajectory if one has. Thus, the exact ordering of the goal node in the final beam
is not important with respect to finding solutions to planning problems.

In contrast, as described in the example at the end of Section 2.2, the formulation of
structured classification as a search problem appears to require that we do pay attention to
the rank of the goal nodes in the final beam. In particular, the formulation of Daumé III
and Marcu (2005) requires the goal node to not only be contained in the final beam, but to
be ranked higher than any other terminal node in the beam.

Since our formulation of the beam-search learning problem does not constrain the rank-
ing of goal nodes relative to other nodes, it is not immediately clear how our formulation
relates to structured classification. It turns out that these two formulations are polyno-
mially equivalent, meaning that there is a polynomial reduction from each problem to the
other. Thus, it is possible to compile away the explicit requirement that goal nodes have
the highest rank in the final beam.

1386

Learning Linear Ranking Functions for Beam Search with Application to Planning

Below we adapt the definitions of the learning problems in Section 2.2 for structured
classification. First, we introduce the notion of terminal node, which can be thought of as
a possible solution to be returned by a structured classification algorithm, for example, a
full parse tree for a sentence. We will denote the set of all terminal nodes as T and will
assume a polynomial time test for determining whether a node is in this set. Note that
some terminal nodes correspond to target solutions and others do not. When using beam
search for structured classification the search is halted whenever a terminal node becomes
highest ranked in the beam and the path leading to that terminal node is returned as the
solution. Thus, successful learning must ensure both that no non-target terminal node ever
becomes ranked first in any beam and also that eventually a target terminal node does
become ranked first. This motivation leads to the following definitions for the breadth-first
and best-first structured classification problems. Below, given the context of a weight vector
w, we will denote the highest ranked node relative to w in a beam B by B(1).

Definition 17 (Breadth-First Structured Classification) Given the input 〈{〈Si, Pi〉}, b〉,
where b is a positive integer and Pi = (Pi,0, . . . , Pi,d), the breadth-first structured classifi-
cation problem asks us to decide whether there is a weight vector w such that for each Si,
the corresponding beam trajectory (Bi,0, . . . , Bi,d), produced using w with a beam width of b,
satisfies Bi,j ∩ Pi,j 6= ∅ for each j, B

(1)
i,d ∈ Pi,d, and B

(1)
i,j /∈ T for j < d?

Definition 18 (Best-First Structured Classification) Given the input 〈{〈Si, Pi〉}, b〉,
where b is a positive integer and Pi = (Pi,0, . . . , Pi,d), the best-first structured classification
problem asks us to decide whether there is a weight vector w that produces for each Si a beam
trajectory (Bi,0, . . . , Bi,k) of beam width b, such that k ≤ h, each Bi,j for j < k contains at
least one node in

⋃
j Pi,j, B

(1)
i,k ∈ Pi,d, and B

(1)
i,j /∈ T for j < k?

We prove that these problems are polynomially equivalent to breadth-first and best-
first consistency by showing that they are NP-complete. Since Section 3 proves that the
consistency problems are also NP-complete we immediately get equivalence.

Theorem 19 Breadth-first structured classification is NP-complete.

Proof We can prove that the problem is in NP, following the structure of the proof of
Theorem 4. Each certificate corresponds to a set of beam trajectories and has a size that
is polynomial in the problem size. The certificate can be checked in polynomial time to see
if for each i, it satisfies the conditions defined in Definition 17. From Lemma 3 in Section
3 we can then use the algorithm TestTrajectories in Figure 4 to decide whether there is
a weight vector that generates the certificate in polynomial time. To show hardness we
reduce from breadth-first consistency for the class of problems where b = 1, d = 1, c = 6,
t = 3, and n ≥ 1, which from Figure 6 is NP-complete. Since for this class the search spaces
have depth 1 and the beam width is 1 it is easy to see that for any problem in this class, a
weight vector is a solution to the consistency problem if and only if it is a solution to the
structured classification problem. This shows that breadth-first structured classification is
NP-hard and thus NP-complete.

1387

Xu, Fern and Yoon

Using an almost identical proof we can prove the same result for best-first structured
classification.

Theorem 20 Best-first structured classification is NP-complete.

References

Shivani Agarwal and Dan Roth. Learnability of bipartite ranking functions. In Proceedings
of the Conference on Learning Theory, 2005.

Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using genetic programming to learn and
improve control knowledge. Artificial Intelligence, 141(1-2):29–56, 2002.

José Luis Ambite, Craig A. Knoblock, and Steven Minton. Learning plan rewriting rules.
In Proceeding of Artificial Intelligence Planning Systems, pages 3–12, 2000.

Blai Bonet and Hećtor Geffner. Planning as heuristic search: New results. In Proceedings
of the European Conference on Planning, pages 360–372, 1999.

Michael Collins. Discriminative training methods for hidden Markov models: Theory and
experiments with the perceptron algorithm. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2002.

Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large
margin methods for structured prediction. In Proceedings of the International Conference
on Machine Learning, 2005.

Tara A. Estlin and Rymond J. Mooney. Multi-strategy learning of search control for partial-
order planning. In Proceedings of the Thirteenth National Conference on Artificial Intel-
ligence, 1996.

Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policy iteration with a pol-
icy language bias: Solving relational markov decision processes. Journal of Artificial
Intelligence Research, 25:85–118, 2006.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence Journal, 3(1–3):251–288, 1972.

Michael R. Garey and David S. Johnson, editors. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

Klaus-Uwe Hoffgen, Hans-Ulrich Simon, and Kevin S. Van Horn. Robust trainability of
single neurons. Journal of Computer and System Sciences, 50(1):114–125, 1995.

Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:263–302, 2001.

Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learning declarative control rules for
constraint-based planning. In Proceedings of Seventeenth International Conference on
Machine Learning, pages 415–422, 2000.

1388

Learning Linear Ranking Functions for Beam Search with Application to Planning

Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Proceedings of the
Sixteenth Annual Conference on Neural Information Processing Systems, 2002.

Leonid G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20(1):191–194, 1979.

Roni Khardon. Learning action strategies for planning domains. Artificial Intelligence, 113
(1-2):125–148, 1999.

Tomás La Rosa, Angel Garćıa Olaya, and Daniel Borrajo. Using cases utility for heuristic
planning improvement. In Proceedings of the Seventh International Conference on Case
Based Reasoning, 2007.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings of the Inter-
national Conference on Machine Learning, pages 282–289, 2001.

Mario Martin and Hector Geffner. Learning generalized policies in planning domains using
concept languages. In In Proceedings of Seventh International Conference on Principles
of Knowledge Representation and Reasoning, 2000.

Drew McDermott. PDDL- the planning domain definition language. In The 1st Interna-
tional Planning Competition, 1998.

Steven Minton. Quantitative results concerning the utility of explanation-based learning.
In In Proceedings of National Conference on Artificial Intelligence, 1988.

Steven Minton, editor. Machine Learning Methods for Planning. Morgan Kaufmann Pub-
lishers, 1993.

Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel Kuokka, Oren Etzioni,
and Yolanda Gil. Explanation-based learning: A problem solving perspective. Artificial
Intelligence, 40:63–118, 1989.

Xuanlong Nguyen, Subbarao Kambhampati, and Romeo S. Nigenda. Planning graph as the
basis for deriving heuristics for plan synthesis by state space and CSP search. Artificial
Intelligence, 135(1-2):73–123, 2002.

Albert B. Novikoff. On convergence proofs on perceptrons. In Symposium on the Mathe-
matical Theory of Automata, pages 615–622, 1962.

Frank Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1962.

John Slaney and Sylvie Thiébaux. Blocks world revisited. Artificial Intelligence, 125:119–
153, 2001.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In Neural
Information Processing Systems Conference, 2003.

1389

Xu, Fern and Yoon

Manuela M. Veloso, M. Alicia Pérez, and Jamie G. Carbonell. Nonlinear planning with par-
allel resource allocation. In Workshop on Innovative Approaches to Planning, Scheduling
and Control, pages 207–212, 1991.

Yuehua Xu and Alan Fern. On learning linear ranking functions for beam search. In
Proceedings of the Twentieth International Conference on Machine Learning, 2007.

Yuehua Xu, Alan Fern, and Sungwook Yoon. On learning linear ranking functions for beam
search. In Proceedings of the International Joint Conference on Artificial Intelligence,
2007.

Sungwook Yoon, Alan Fern, and Robert Givan. Inductive policy selection for first-order
MDPs. In In Proceedings of Eighteenth Conference in Uncertainty in Artificial Intelli-
gence, 2002.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning heuristic functions from relaxed
plans. In International Conference on Automated Planning and Scheduling (ICAPS),
2006.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning control knowledge for forward
search planning. Journal of Machine Learning Research, 9:683–718, 2008.

Terry Zimmerman and Subbarao Kambhampati. Learning-assisted automated planning:
Looking back, taking stock, going forward. AI Magazine, 24(2)(2):73–96, 2003.

1390

