
Gradient Boosting for Sequence Alignment

Charles Parker
Oregon State University

Kelley Engineering Center
Corvallis, OR 97333
parker@cs.orst.edu

Alan Fern
Oregon State University

Kelley Engineering Center
Corvallis, OR 97333
parker@cs.orst.edu

Prasad Tadepalli
Oregon State University

Kelley Engineering Center
Corvallis, OR 97333
tadepall@cs.orst.edu

Abstract

Sequence alignment is a common subtask in many ap-
plications such as genetic matching and music infor-
mation retrieval. Crucial to the performance of any se-
quence alignment algorithm is an accurate model of the
reward of transforming one sequence into another. Us-
ing this model, we can find the optimal alignment of
two sequences or perform query-based selection from a
database of target sequences with a dynamic program-
ming approach. In this paper, we describe a new algo-
rithm to learn the reward models from positive and neg-
ative examples of matching sequences. We develop a
gradient boosting approach that reduces sequence learn-
ing to a series of standard function approximation prob-
lems that can be solved by any function approximator.
A key advantage of this approach is that it is able to
induce complex features using function approximation
rather than relying on the user to predefine such fea-
tures. Our experiments on synthetic data and a fairly
complex real-world music retrieval domain demonstrate
that our approach can achieve better accuracy and faster
learning compared to a state-of-the-art structured SVM
approach.

Introduction
The problem of sequential alignment and selection is not
new to the literature. Over the last 40+ years, it has been
shown that solutions to this problem are useful in a number
of ways - from common applications like protein similarity
detection (Kroghet al. 1994) and speech recognition (Ra-
biner 1989) to more exotic applications like plant identifica-
tion (Sinha 2004) and music information retrieval (Dannen-
berget al. 2003).

Most if not all of the solutions developed focus around
a set of reward functions or edit distance functions that
describe the proximity of one sequence to another. Such
functions can be put to a variety of uses, including retriev-
ing similar sequences from databases, clustering sequences
into hierarchical classes, and evaluating the similarity be-
tween two sequences. Unfortunately, effective reward func-
tions can be highly complex and dependent on the domain.
Rather than having to design them by hand for every new

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

domain, we would like to be able to learn approximate ver-
sions of the functions, given some alignments for training
purposes. Since training data is usually expensive to collect,
we want to be able to learn as efficiently as possible.

Most prior work has used generative modeling to learn
these functions, and typically requires the sequence ele-
ments to be characters from a finite alphabet. Thus, offer-
ing no mechanism for generalizing the learning to charac-
ters not present in the training data (Meek 2004). More re-
cently, discriminative learning methods, based on support
vector machines (SVM), have been developed for this prob-
lem (Tsochantaridiset al. 2004). This has lead to improved
accuracy, in some domains, at a reward of increased training
time. Still, however, the existing SVM-based system does
not address the issue of generalization over sequence ele-
ments.

In this paper, we describe a new learning approach for
aligning sequences of rich objects with informative inter-
nal structure. Our technique is discriminative like the SVM-
based approach but can be trained in a fraction of the time.
Our approach also facilitates a type of automated feature
construction, helping to avoid the need for substantial fea-
ture engineering. The main idea is to convert Friedman’s loss
function from “LogitBoost” (Friedman, Hastie, & Tibshirani
2000) to a loss function meaningful for sequence learning,
then to use a function approximator to estimate the gradi-
ent function at points unseen in the training data. We then
demonstrate experiments on synthetic data and real-world
data from the music retrieval domain that show that our ap-
proach can perform better than the state-of-the-art SVM-
based technique at a fraction of the training time, as well as
outperforming the traditional generative modeling approach.

Sequence Alignment
A sequence-matching problemis a tuple (T ,D,Q,P),
whereT is a set of finitetarget sequences{t1, t2, . . . , tk}
over thetarget domainD, i.e. ti ∈ D∗. Q is thequery do-
main, lettingQ = Q∗ be the set of all finitequery sequences
constructed fromQ. Finally, P is a probability distribution
over T × Q. Intuitively, P is a distribution over possible
queries paired with the correct target sequences. The objec-
tive is to find amatching functionf such that for target-
query pairs(t,q) drawn fromP there is a high probability
thatf(q, T) = argmax

t∈T P(t,q).

To give a more concrete example, consider the speech
recognition domain. The target set is a dictionary of words,
represented as sequences ofphonemes. A query is a se-
quence of phones (a word) spoken by a user, and the task
is to select the word spoken by the user from the dictio-
nary. Typically, this is done by designing ascoring function
F : T × Q 7→ ℜ which is to be maximized at the correct
output, so that:

f(q, T) = argmax
t∈T

F (t,q)

Typically the scoring functionF is defined using the no-
tion of sequence alignment. That is,F (t,q) returns the re-
ward for the highest reward series of edit operations (such
as match, insert, and delete) that transforms the targett into
the query sequenceq. Each edit operation is associated with
a reward function. In this paper we consider the operations
match, insert, and delete with associated reward functions:
rm(a, b) giving the reward for replacing charactera in the
target withb, ri(a) giving the reward for insertinga, and
rd(a) giving the reward for deletinga. These reward func-
tions serve as our parameterization ofF . Figure 1 shows
an alignment between the target sequenceCABIN and the
query sequenceDRAIN1, indicating the series of edit opera-
tions in the top row. The reward for the alignment is the sum
of the individual edit operations.

i i d m d m m

- - C A B I N

D R - A - I N

Figure 1: A Lexicographical Example of Sequential Align-
ment.

To find the highest reward alignment of two se-
quences we use the Smith-Waterman algorithm (1981). Let
align(i, j, t,q) be the reward of the optimal alignment be-
tween the postfix oft starting at positioni and the postfix of
q starting atj. This function has the following decomposi-
tion,

align(i, j, t,q) =

max

{

rm(ti, qj) + align(i + 1, j + 1, t,q)
ri(qj) + align(i, j + 1, t,q)
rd(ti) + align(i + 1, j, t,q)

(1)

which yields a straightforward dynamic programming pro-
cedure for computing the optimal alignment. The proce-
dure completes in time proportional to the product of the
sequence lengths. One can define versions of the algorithm
that ignore prefixes or suffixes in the query as desired. See
(Meek 2004) for further discussion.

Learning Reward Functions
We have seen how to apply sequence alignment to the
problem of sequence matching. However, sequence align-
ment requires that we provide a reward function, and high-
performance reward functions tend to be highly complex and

1Thanks to (Meek 2004) for the example.

domain specific. Thus, significant effort has been invested in
techniques for automatically learning reward functions from
examples. In this learning problem, the training examples
are target and query sequences, properly aligned, and as-
signed a correct score. Our goal is to learn the functionsrm,
ri, andrd mentioned above. Here we explore two primary
techniques for learning these functions, and discuss some
shortcomings that our work addresses.

Generative Approach
The generative approach to learning reward functions as-
sumes a probabilistic model for generating queries from tar-
get sequences (1998). The model specifies the probability
of various edit operations and a query is “generated” from
a target sequence by applying the various operations to the
target according to their probabilities. The goal of the gener-
ative learning process, then, is to produce estimates of these
probabilities based on the given training alignments. Under
this model, the probability of a particular alignment of two
sequences is simply the product of the probabilities of each
edit operation in the alignment. We take the reward for an
alignment to be the logarithm of the probability of the align-
ment.

Under this model our reward functions become log prob-
abilities of the edit operation probabilities:

rm(t, q) = log(P (q|t, e = match)P (e = match))
ri(q) = log(P (q|e = insert)P (e = insert))
rd(t) = log(P (t|e = delete)P (e = delete))

whereP (e) is the probability of generating edit operation
e, P (q|t, e = match) is the probability that query symbol
q is generated when a match operation is applied to target
symbolt, P (q|e = insert) is the probability that query sym-
bol q is inserted by an insert operation, andP (t|e = delete)
is the probability that target symbolt is deleted by a delete
operation.

Now suppose we are given a training setS of alignments,
where each training example inS is a triple (t,q,a) of a
targett, queryq, and corresponding alignmenta that we in-
terpret as the optimal alignment oft andq. Note thata is
simply a sequence of the edit operations or events. We can
use counts of the edit events inS to estimate the above prob-
abilities. For example, let#S(p) be the number of events in
S for which p is true. Then to estimaterm for a particular
pair of charactersti andqj :

P (q = qj |t = ti, e = match) =
#S(q=qj ,t=ti,e=match)

#S(t=ti,e=match)

P (e = match) = #S(e=match)
n

and similarly for ri and rd. This is standard maximum-
likelihood estimation for discrete probability models. Note
that this formulation assumes that the query and target se-
quence elements are from discrete finite domains. This as-
sumption has been predominant in generative approaches for
sequence alignment.

There are at least two problems with this method. First,
the generative training of the model does not take advan-
tage of the discriminatory nature of the underlying task, and

only correct target-query alignments are used in the train-
ing process. For example, if there is a small set of features
that can uniquely identify a target, it makes sense to learn to
recognize them, rather then having to learn a full generative
model, which might be quite complicated. There are many
examples from the machine-learning literature showing that
discriminative training often significantly outperforms gen-
erative approaches (Lafferty, McCallum, & Pereira 2001;
Taskar, Guestrin, & Koller 2004). Second, it seems that there
is no way to extend the learning process so that the reward
behavior of one character can be applied to another, except
in domain-specific instances. That is, the sequence elements
are treated as atomic entities with no internal structure that
facilitates generalization.

We note, that while most prior generative approaches have
assumed that sequence elements are unstructured, it is pos-
sible to extend them to exploit structured elements. This re-
quires selecting a suitable probabilistic model for the data
types of the sequence elements. For example, if the elements
are real-valued vectors, Gaussian models may be appropri-
ate. However, selecting an appropriate model for a particular
application is often quite difficult, requiring experimentation
and insight into the problem. Our approach described in Sec-
tion 4 can be viewed as a way to avoid the need to explicitly
make such choices.

SVM-align
Recent work on sequence-alignment learning addresses the
first of the above problems by developing a more discrimina-
tive approach (Joachims 2003; Tsochantaridiset al. 2004).
Here, we are again given a series of alignments of query and
correct target as training data. However, we are also given a
number ofincorrect or decoy targets. That is, our training set
S contains tuples(t,q,a,N), wherea is the best alignment
between the queryq and correct targett andN ⊆ T is a set
of incorrect target sequences. The learning problem is then
formulated as a constrained optimization problem.

More formally, letΨ(t,q,a) be a vector of counts of each
possible edit event in the alignment (e.g. the number of times
’a’ was matched with ’b’). If we let the weight vectorw
represent the rewards for each of the possible events, then
the total reward of an alignment is given by〈w,Ψ(t,q,a)〉
and the corresponding scoring function is given by,

F (t,q) = max
a

〈w,Ψ(t,q,a)〉

Our goal, is to learn weightsw such that for query-target
pairs(q, t) drawn from our problem distribution the score
of the correct targett is greater than that of all other targets
in T . For this purpose, SVM-align tries to find weights such
that for each training instance(t,q,a,N) we have,

∀t′ ∈ N ,

〈w,Ψ(t,q,a)〉 − max
a′

〈w,Ψ(t′,q, a′)〉 > 0 (2)

There may be manyw that satisfy these constraints, and
as customary for SVMs (Vapnik 1998), the SVM-align ap-
proach selects thew that maximizes a suitable notion of
margin. This is non-trivial constrained optimization prob-
lem since the number of constraints in Equation 2 is on

the order of the number of possible sequence alignments,
which is exponential in the length of the sequences. How-
ever, (Joachims 2003) shows that near-optimal solutions can
be found in polynomial time using an incremental constraint
generation approach. While polynomial time, this approach
to sequence-alignment learning is typically orders of magni-
tude slower than generative approaches.

While this technique provides a powerful discriminative
approach to sequence-alignment learning, it still does notad-
dress the latter concern from the previous subsection. Since
the current implementation of SVM-align is based on the
count-based feature representation described above, we still
must utilize a discrete, unstructured domain for the sequence
elements. Thus, we are still unable to generalize to charac-
ters not present in the training data, and we are still forced
to “flatten” our representation of the sequence to a one-
dimensional character set.

Though an implementation is not available, we note that
this theoretical framework does allow for extension to more
structured sequence elements. In particular, the reward func-
tions can in general be any linear combination of features
of the sequence elements. These features, however, must be
hand engineered. Such feature engineering can be quite te-
dious and requires significant insight into the domain. Our
approach described below will attempt to address this short-
coming.

Application of Gradient Boosting
In our motivating application of music retrieval, the se-
quence elements are vectors of real-valued features extracted
via standard music processing. Thus, a straightforward ap-
plication of the above approaches requires flattening the vec-
tor space into single character elements, which as discussed
above can be undesirable. In addition, extending the above
approaches to directly utilize the element structure requires
significant insight into the domain. That is, good reward
functions for this application appear to be non-linear in the
primitive features, meaning that one must hand-engineer ap-
propriate non-linear features to be used by SVM-align, or
carefully choose the probabilistic model used by a genera-
tive approach. These difficulties motivated us to develop a
new approach that can more powerfully utilize a given rep-
resentation.

Our approach is inspired by the gradient boosting frame-
work of (Friedman, Hastie, & Tibshirani 2000), which has
been previously applied to solve classification and regres-
sion problems and more recently to train conditional ran-
dom fields (Dietterich, Ashenfelter, & Bulatov 2004). We
begin by defining our loss function which is based on the
margin-based loss function used by the “LogitBoost” proce-
dure (Friedman, Hastie, & Tibshirani 2000) for binary clas-
sification:

log(1 + exp(−2yiF (xi))) (3)

where themargin in this loss function is2yiF (xi). This mar-
gin only makes sense for binary classification, as in Fried-
man’s paper, but we can make it meaningful in our appli-
cation by redefining the margin. A reasonable definition for
the margin in this application is the difference, for a given

queryqi, between the correct target and the highest scor-
ing incorrect target. Suppose thatti is the correct target for
query sequenceqi andt̂i is the highest scoring incorrect tar-
get for this query under alignmentâi. If F (xi,yi,ai) is the
reward for aligning sequencex to sequencey with the se-
ries of alignment operationsai, then we define the margin
for this example to be:

F (ti,qi,ai) − F (t̂i,qi, âi) (4)

and accordingly the loss function for the query exampleqi

to be:

log(1 + exp(F (t̂i,qi, âi) − F (ti,qi,ai)) (5)

Notice that the loss function monotonically decreases with
increasing margin as desired.

We can express our scoring function,F as a sum of the re-
wards for the various events in the alignment. To do this, let
us definer(a, b) to represent a combination of the three re-
ward functions discussed in previous sections (wherea andb
can be a null character in the case of insertions and deletions,
respectively). Also definef(a, b,xi,yi,ai) to be the number
of times that charactera is replaced byb in the alignmentai

of sequencexi with sequenceyi. Thus we can express the
scoring function as:

F (ti,qi,ai) =
∑

a

∑

b

r(a, b)[f(a, b, ti,qi,ai)] (6)

With this formulation, our learning process, which is a direct
application of functional gradient descent, is to iteratively
learn the functionr(a, b) in order to minimize the loss func-
tion. More specifically letrk be the reward function afterk
iterations. Initially we setr0 to be a human provided func-
tion, perhaps based on prior knowledge or uninformative.
Givenrk we computerk+1 by approximating the functional
gradientδk+1 of the loss function with respect tork and then
settingrk+1 = rk − δk+1. This tends to moverk+1 in a di-
rection that decreases the loss function. The iteration repeats
until a stopping condition is reached (e.g. a specified number
of iterations). The key step of this process is to compute the
approximate functional gradients, which we now describe.

To approximate the functional gradientδk+1 we will es-
timate the value of this gradient at each query-target sym-
bol pair (a, b) in the training data, noting that for large
structured alphabets many possible(a, b) pairs will not
appear in the training set. This provides a training set
{〈(a, b), δk+1(a, b)〉} which can be passed to a function ap-
proximator yielding an approximationδk+1 that generalizes
across all possible pairs(a, b). The key step in creating the
training set then is to compute the functional gradient of the
loss function for a given pair, which we describe below.

For convenience define∆fi(a, b) for training examplei
to be,

∆fi(a, b) = f(a, b, ti,qi,ai) − f(a, b, t̂i,qi, âi)

With this definition the cumulative loss over the training set
is given by:

L =
∑

i

log[1 + exp(−
∑

a

∑

b

r(a, b)[∆fi(a, b)])]

and the function gradient at pair(a, b) is derived as follows:

δk+1(a, b) =
∂L

∂rk(a, b)

= −
∑

i

exp(−
∑

a′

∑

b′
rk(a′, b′)∆fi(a

′, b′))∆fi(a, b)

1 + exp(−
∑

a′

∑

b′
rk(a′, b′)∆fi(a′, b′))

= −
∑

i

∆fi(a, b)

1 + exp(
∑

a′

∑

b′
rk(a′, b′)∆fi(a′, b′))

Intuitively, our gradient function attempts to increase the
rewards of events occurring in positive alignments and de-
crease the events occurring in negative alignments at each
iteration. In this way, we have maintained the discrimina-
tive learning aspect of SVM-align. However, our approach
is much more computationally efficient and able to general-
ize over the character space. We accomplish both of these
goals by training regression trees to approximate each func-
tional gradientδk. Of course, any other function approxima-
tor could be applied to the training data. This bodes well for
our method given the amount of work on function approxi-
mation that can be found in the literature.

In addition to this computational advantage we now have
a representational advantage: There are now no restrictions
on the way in which our sequence elements must be repre-
sented. We are equally as comfortable with a finite alphabet
as we are with real numbers, or vectors of real numbers as
our sequence elements, so long as we have an appropriate
function approximator for the data type. Neither are we lim-
ited to linear cost functions as we can simply use non-linear
approximators to represent complex relationships among the
primitive features of the sequence elements.

Experiments
In the following experiments, we run over training data sets
of different sizes with a fixed target set size. For each train-
ing set size, we learn 100 models for each learning process
with randomly selected training data, to minimize the effects
of randomness. For both domains,Error is the fraction of
the time the correct target is not selected from the target set
based on a given query. For SVM-align, we use the default
options. Regression trees are trained to minimize squared-
error

Synthetic Domain
Our first set of training data is generated from a synthetic do-
main with structured elements designed to show the benefit
of exploiting structure in domains where it is present. The
elements of the synthetic target sequences are tuples(t1, t2)
wheret1 is an integer in the range(0, 9) andt2 is an integer
in the range(0, 29). We generate 10 random sequences of
five elements each as our target set. To generate a query, we
select a random target from the set. Beginning at the first tu-
ple in the sequence, we use the following model to generate
a series of query tuples of the form(q1, q2) and drawn from
the same domain:

1. With probability 0.3, generate a random tuple in the query
whereq2 ≥ 15 (aninsert event).

2. Else, ift2 < 15, generate amatch event. If the target tuple
is (t1, t2), the matching tuple in the query is(t1, t2 + 1
mod 30). Move to the next tuple in the target.

3. Else, move to the next tuple in the target (adelete event).

Query-by-humming Domain
In the query-by-humming domain (Meek 2004; Dannenberg
et al. 2003), we are given as a query an audio file of a per-
son singing or playing a song. We have a target database of
sequences of notes. Our job is to match the audio file to the
correct sequence of notes.

The process of “transcribing” a series of notes from a sung
query is well-documented elsewhere (Meek 2004) and not of
particular interest here. When transcription is complete, the
events in the query sequence will be real and vector-valued,
containing a component for both theaverage pitch and the
duration of an event, so a query songs is represented by a
series of tuples:

s = {(sp
1, s

d
1), (s

p
2, s

d
2), . . . , (s

p

|s|, s
d
|s|)}

Furthermore, the pitch and duration of the starting event
is immaterial so long as the properrelative pitches and du-
rations are maintained. Thus, we instead represent the song
usingpitch differences andduration ratios:

s = {(sδ
1, s

r
1), (s

δ
2, s

r
2), . . . , (s

δ
|s|, s

r
|s|)}

wheresδ
i = s

p
i+1 − s

p
i andsr

i =
sd

i+1

sd
i

.

We discretize and flatten these real-valued quantities to a
finite alphabet for the purposes of training in the SVM-align
and Bayesian formalisms. For training with our method, the
data remains real and vector-valued. If we use the levels
of granularity suggested in the literature (Carré, Philippe,
& Apélian 2001; Pardo & Birmingham 2002), we have 27
levels for pitch difference and 4 for duration ratio, giving
27 × 4 = 108 characters in the alphabet.

Our query set consists of 587 queries collected by the first
author from college and church choirs. Twelve target songs
and 50 different singers were used to generate these queries.
To compose our training and test data, we first split both
targets and queries into training and test sets, then we draw
randomly from the these sets to compose the training and
test data. For the target sets we draw from theDigital Tradi-
tion database of folk melodies in monophonic midi format.
To generate alignments for training, we use the state of the
art “note-interval” reward model described in (Dannenberg
et al. 2003).

Results
Synthetic Domain In the synthetic domain, our method
has an advantage over both the traditional Bayesian method
and SVM-align, as shown in Figure 2. Both SVM-align and
our method are able to learn a reasonable model with less
training data than the Bayesian method, but with about 15
training sequences, our method is able to begin exploiting
the structure of the domain that the other two methods ig-
nore.

In Figure 3, we see that our method also has an advantage
in computation time over SVM-align even at small test set
sizes, and the gap grows dramatically even as we approach
a training set as small as 40 sequences. We also note that the
code for our method is running as interpreted Java inside of
a development environment, whereas the SVM-align code
is compiled C. The difference, therefore, is actually much
larger than it appears.

0 5 10 15 20 25 30 35 40 45
0.4

0.5

0.6

0.7

0.8

0.9

1

Training Sequences

E
rr

or

Gradient Boosting
SVM−Align
Generative Modeling

Figure 2: Learning curves for all models in the synthetic do-
main. Training sequences are an average of 5 elements in
length.

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

Training Sequences

T
ra

in
in

g
T

im
e

(s
ec

.)

Gradient Boosting
SVM−align

Figure 3: Running time for gradient boosting vs. SVM align
in the synthetic domain. Training sequences are an average
of 30 elements in length.

Query-by-humming Domain In the query-by-humming
domain, we see that the SVM-align moves quickly to a
reasonable error rate, but at around 60 training sequences,
SVM-align is overtaken by gradient boosting. Eventually,
with about twice as much training data, SVM-align manages
to catch up to gradient boosting. This provides evidence that
gradient boosting is able to generalize to unseen data with
greater ease than SVM-align. We note that both methods

vastly outperform the traditional Bayesian learning meth-
ods, in keeping with the results found in (Tsochantaridiset
al. 2004).

0 20 40 60 80 100 120 140 160 180
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Training Sequences

E
rr

or

Gradient Boosting
SVM−align
Generative Modeling

Figure 4: Learning curves for the models in the query-by-
humming domain. Target set size is fixed at 50.

Conclusions and Future Work
We have shown a new algorithm for sequence alignment
based on gradient tree boosting and LogitBoost. We have
shown that this algorithm is able to perform as well or bet-
ter than two competing techniques in both a synthetic and
a real-world domain in a fraction of the training time. We
have also seen that it is highly flexible in two ways: That it
can use any regression algorithm and that the features given
to the algorithm need not be symbols from a single-character
alphabet.

A further comparison of gradient boosting to SVM-align
would involve incorporating kernels. However, conversa-
tions with the developers of SVM-align showed that it is
not obvious how to incorporate kernels into the method. The
only obvious way to tailor the method to a particular applica-
tion is to engage in the time-consuming and domain-specific
feature construction discussed earlier. If kernels are incor-
porated into SVM-align at a later date, a comparison will be
warranted.

Also, while we have seen good performance with the mu-
sic and synthetic data, one can imagine that there are other
domains where the reward relationship between edit opera-
tions can be exploited further. Another thrust of future work
is to investigate other domains where gradient boosting can
be useful.

Another interesting consequence of our method’s con-
struction is a unique ability to incorporate prior knowledge.
Our initial reward functionr0 was uninformative for our ex-
periments here, but experiments using the state-of-the-art re-
ward function in (Dannenberget al. 2003) as the initial re-
ward function show that gradient boosting can improve the
accuracy of the state-of-the-art function by about 10%.

Finally, one of the keys to SVM-align is that the formal-
ism is extensible to all types of structured data. Future work

may attempt to apply the gradient boosting method to struc-
tured data such as trees or graphs in which the elements of
the structures have complex structure themselves.

References
Carŕe, M.; Philippe, P.; and Aṕelian, C. 2001. New query-
by-humming music retrieval system conception and evalu-
ation based on a query nature study. InProc. COST G-6
Conference on Digital Audio Effects.
Dannenberg, R. B.; Birmingham, W. P.; Tzanetakis, G.;
Meek, C.; Hu, N.; and Pardo, B. 2003. The musart testbed
for query-by-humming evaluation. InProc. 4th Interna-
tional Symposium on Music Information Retrieval.
Dietterich, T. G.; Ashenfelter, A.; and Bulatov, Y. 2004.
Training conditional random fields via gradient tree boost-
ing. In International Conference on Machine Learning.
Durbin, R.; Eddy, S.; Krogh, A.; and Mitchison, G. 1998.
Biological Sequence Analysis. Cambridge University
Press.
Friedman, J.; Hastie, T.; and Tibshirani, R. 2000. Additive
logistic regression: a statistical view of boosting.Annals of
Statistics 28(2):337–407.
Joachims, T. 2003. Learning to align sequences, a maxi-
mum margin approach. Technical report, Cornell Univer-
sity.
Krogh, A.; Brown, M.; Mian, I. S.; Sj̈olander, K.; and
Haussler, D. 1994. Hidden Markov models in computa-
tional biology: Applications to protein modeling.Journal
of Molecular Biology 235:1501–1531.
Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Condi-
tional random fields: Probabilistic models for segmenting
and lebeling sequence data. InICML.
Meek, C. 2004.Modelling error in query-by-humming ap-
plications. Ph.D. Dissertation, The University of Michigan.
Pardo, B., and Birmingham, W. 2002. Encoding timing
information for musical query matching. InProc. 3rd In-
ternational Symposium on Music Information Retrieval.
Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition.Proceed-
ings of the IEEE 77(2):257–285.
Sinha, S. 2004. Leaf shape recognition via support vec-
tor machines with edit distance kernels. Master’s thesis,
Oregon State University.
Smith, M. S., and Waterman, T. F. 1981. Identification
of common molecular subsequence.Journal of Molecular
Biology 147:195–197.
Taskar, B.; Guestrin, C.; and Koller, D. 2004. Max margin
markov networks. InNIPS.
Tsochantaridis, I.; Hofmann, T.; Joachims, T.; and Altun,
Y. 2004. Support vector machine learning for interdepen-
dent and structured output spaces. InProc. 21st Interna-
tional Conference on Machine Learning.
Vapnik, V. N. 1998. Statistical Learning Theory. John
Wiley & Sons.

