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Physical Human Interactive Guidance: Identifying
Grasping Principles From Human-Planned Grasps

Ravi Balasubramanian, Ling Xu, Peter D. Brook, Joshua R. Smith, and Yoky Matsuoka

Abstract—We present a novel and simple experimental method
called physical human interactive guidance to study human-
planned grasping. Instead of studying how the human uses his/her
own biological hand or how a human teleoperates a robot hand in a
grasping task, the method involves a human interacting physically
with a robot arm and hand, carefully moving and guiding the robot
into the grasping pose, while the robot’s configuration is recorded.
Analysis of the grasps from this simple method has produced two
interesting results. First, the grasps produced by this method per-
form better than grasps generated through a state-of-the-art au-
tomated grasp planner. Second, this method when combined with
a detailed statistical analysis using a variety of grasp measures
(physics-based heuristics considered critical for a good grasp) of-
fered insights into how the human grasping method is similar or dif-
ferent from automated grasping synthesis techniques. Specifically,
data from the physical human interactive guidance method showed
that the human-planned grasping method provides grasps that are
similar to grasps from a state-of-the-art automated grasp planner,
but differed in one key aspect. The robot wrists were aligned with
the object’s principal axes in the human-planned grasps (termed
low skewness in this paper), while the automated grasps used ar-
bitrary wrist orientation. Preliminary tests show that grasps with
low skewness were significantly more robust than grasps with high
skewness (77–93%). We conclude with a detailed discussion of how
the physical human interactive guidance method relates to existing
methods to extract the human principles for physical interaction.

Index Terms—Grasping, haptic interfaces, human robot inter-
action, manipulators, telerobotics.

I. INTRODUCTION

FOR a roboticist, the way a human grasps or manipulates
an object is of great interest for at least two reasons. First,

automated grasp planning is still not robust enough when im-
plemented on a physical robot, in stark contrast with human
grasps which rarely fail. Second, a personal robotic assistant
that uses human-like grasps may perform better in situations
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when the human and the robot comanipulate an object. For ex-
ample, when a robot is handing an object to a human, it would
be better if the robot grasped the object proximally rather than
distally so that the person can grasp it. However, there is still
much to learn about the heuristics that make human grasping
or even human-planned grasping (a grasp that is planned by a
human, say, for a robot) so robust. This paper presents a novel
experimental method that enables a direct comparison of human-
planned grasping with the performance of a state-of-the-art au-
tomated grasp planning algorithm and simultaneously identify
the heuristics humans use in performing grasps. In particular,
this paper presents a previously unnoticed grasping heuristic
called skewness, which significantly improves robotic grasping
performance as well.

Apart from direct observation of humans using their hands
[12], two primary approaches have been popular in the literature
to identify how humans perform grasps: 1) Performing motion
capture of the human hand itself when performing grasps using
vicon cameras [30], [34], data gloves [16], [27], [39], force
sensors [48], or video footage [4], [11]; 2) studying the grasps
that humans plan for the robot using teleoperation either through
direct sight [10], [37], using real-time video [14], [26], [29], or
using a virtual environment [24].

However, there are significant challenges with these ap-
proaches. First, the human hand’s complex geometry makes
a direct study of its posture in grasping experiments very chal-
lenging. While the exact numbers are debated, the human hand
has over 21 degrees of freedom (DOF), including joints in the
fingers, thumb, palm, and wrist [22]. In addition, the joints’s ro-
tational axes are, typically, nonorthogonal and nonintersecting
and, usually, differ between human subjects [5], [6], [17], [44].
Finally, the high compliance of the palm and skin and feedback
control loops [20], [45] in the human body make grasp con-
tact analysis difficult. Consequently, the large parameter space
and the approximations made in describing hand kinematics and
contact complicate the identification of the heuristics behind fin-
ger and wrist posture in a human grasp [11], [30]. Furthermore,
if we want to use the human grasping heuristics to improve the
performance of robotic grasping, then the difference in kine-
matics between the human hand and the robotic hand poses a
further challenge. For example, the popular BarrettHand1 [43]
has only four joints compared with the many joints in the human
hand. There is no straightforward procedure to map the human
hand posture to the robot hand, and consequently, human hand
grasps to robotic grasps (see [19] for an example).

Similarly, there are challenges in extracting the principles
of human grasping from the human-planned grasps obtained

1http://www.barrett.com/robot/index.htm
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Fig. 1. Physical human interactive grasping environment. The human physi-
cally guides the robot wrist and fingers into a grasping posture.

through teleoperation. The artificial (and usually) 2-D visual
or haptic feedback that the human is provided may limit the
human subject’s choice of grasps. Thus, the human may provide
suboptimal grasps arising from poor access. In addition, the
more physically removed the human is from the task, the role
of practice and training becomes more significant to achieve
optimal performance. Thus, there may be strong variability in
the grasps that the human subjects provide, depending on the
variability in experience operating the device. As a result of
these challenges, these works have primarily yielded qualitative
information about human grasping, such as a grasp taxonomy
[12] and the postural synergies in hand grasping movements
[39], from which it is difficult to infer which aspects of human
grasping lead to its high robustness.

To achieve our goal of identifying human grasping principles,
we wanted a data collection process that allowed the human to
express their grasping intentions naturally with minimal train-
ing. Simultaneously, we wanted an easy and straightforward
method to interpret the kinematics of the human grasp.

Our approach, in contrast with existing techniques, allowed
the human subjects to plan a grasp for the robot by physically
guiding the robot hand (wrist and fingers) into a grasping posture
for a given task (see Fig. 1). This procedure, which is called
physical human interactive guidance, allowed the human subject
to be, intimately, involved in the task—arguably as involved and
simple as placing a pair of tongs on an object for grasping. The
advantage of the human subject using the robot hand rather
than his/her own hand is that the geometry of robot wrist and
finger placement is straightforward to measure through the joint
encoders in the robot. Another unique aspect of our method is
that instead of a standalone analysis of human-planned grasping,
since the human plans grasps for a robotic hand, we can compare
the human-planned grasps with grasps generated for the same
robot by an automated grasp planner [42].

We first verified that the grasps collected using the physi-
cal human interactive guidance method performed better than
grasps generated for the robot by a state-of-the-art automated
grasp planning software, even though both the human and the
automated planner provided the same information to the robot,
namely, wrist orientation and finger posture (and no dynamic

information such as contact force). Second, we showed that even
though the subjects were not using their biological hands to per-
form grasps, we could still identify critical heuristics that hu-
mans use in grasping by comparing the human-planned grasps
with the grasps from the automated planner, including a new
human grasping principle that to our knowledge has not been
noticed earlier and that significantly improves grasping perfor-
mance on a robot when used to filter automated grasp planning
results.

After describing our method for collecting human-planned
grasping data in Section II and the method for testing the grasps
in Section III, we, then, present a method to analyze the human-
planned grasps in Section IV. Section V provides the results of
the experiments conducted, in terms of the success rate of the
human-planned grasps and the key parameters optimized by the
human-planned grasps. We also show how the physical human
interactive guidance method identified a new grasp measure. In
Section VI, we discuss how this novel method for grasp acquisi-
tion relates to previous methods in the context of human–robot
interaction. Portions of this study were, briefly, reported ear-
lier in [1], but that paper did not focus on the novelty of the
data collection method. In addition, this paper provides addi-
tional insights into human-planned grasping heuristics and the
effectiveness of human involvement in teaching robots.

II. PHYSICAL HUMAN INTERACTIVE GUIDANCE

Our approach to acquire grasping examples from humans
allowed a human subject to teach a robot different grasps by
being in the robot’s workspace and physically interacting with
the robot. This interaction method required the person to guide
the robot to specific wrist configurations and finger postures.
This experimental setup was called the physical human interac-
tive guidance environment (see Fig. 1) and the grasps collected
“human-planned grasps.”

Through the physical human interactive guidance method,
the human subject had an opportunity to understand the motion
capabilities of the robot arm and hand, the object’s inertial and
geometrical properties, and how the robot and object would in-
teract during the grasp (including the type of contact). These
aspects of the grasping process are critical since grasping is
a physically interactive task where the “last few centimeters”
could make the difference between a successful and unsuccess-
ful grasp. That is, however carefully the hand’s path was planned
to reach the grasping posture, the grasp could still fail if the fin-
ger placement was not good. Note also that the human subject
could move freely around the robot to use different views of
the object-hand interaction to decide on the best grasp posture
(in contrast with other work that has explored how limited vi-
sual feedback can affect human grasping [8] and reaching [47]
strategies). The physical human interactive guidance method
was possibly the most intimate way for human subjects to build
an internal model of the grasping process using a robot hand.

Such interactive robotic grasping with a human in the loop
has been explored before by the GraspIt! group [9], but their
goal and approach was different from the study in this paper.
Their goal was to demonstrate how GraspIt! goes through search
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iterations to generate a grasp for a given wrist position. In addi-
tion, only wrist posture was controlled by the human and finger
posture was controlled by GraspIt!. The purpose of our exper-
iment was to identify what was unique about human-planned
grasping strategies, which might not be expressed properly in
other methods. In addition, in our method, the human had full
control over the wrist and finger posture, both of which are
critical to grasp quality.

A. Robotic Equipment

The physical human interactive guidance environment used
a robotic platform consisting of a 7-DOF Barrett whole arm
manipulator robotic arm and a three-fingered 4-DOF Barrett-
Hand2 [43]. The robotic system was run on Willow Garage’s
ROS software,3 and the robotic hand was equipped with electric
field sensors [46] which enabled the fingers to detect their prox-
imity to objects. The electric field sensors were used, primarily,
to close the fingers on the object simultaneously. Note that the
choice of robotic equipment used in this paper is only incidental
to available resources, and other robotic arms and hands could
be used to recreate the experimental setup.

B. Grasp Guidance and Acquisition

Grasp data acquisition was kept as simple as possible. The
object to be grasped was placed by the experimenter at a known
location and orientation in the robot’s workspace. The robot
arm was placed in a “gravity compensation” mode, where the
robot arm had negligible weight and could be easily moved by a
human subject. The robot arm was reset to a neutral position in
the workspace and the robot hand’s fingers were kept open. The
grasp guidance procedure included the following four steps.

Step 1: The human subject physically guided the robot arm
to an initial wrist pose at which the object could be grasped [see
Fig. 2(a) and 2(b)]. The human subject was free to move around
the robot and use as many views as necessary to position the
robot wrist with or without an offset with respect to the object
axes.

Step 2: Using electric field sensing, the finger motors were
commanded to close on the object so that each fingerpad was
approximately 5 mm from object surface. At this point, the
BarettHand motors were turned OFF to allow the human subject
to physically adjust the spread angle of the fingers, depending
on whether a parallel gripper-like grasp or a three-finger trian-
gular grasp was desired. Additionally, the subject could adjust
wrist pose again to better align the fingers with the object [see
Fig. 2(c)]. Importantly, the human subject was again given am-
ple freedom, time, and space to move around the robot in order
to choose what he/she believed was the best grasp for that task.

Step 3: When the subject was satisfied with this grasp pose,
the robotic fingers were commanded to close on the object, com-
pleting the grasp guidance procedure. The final closure step was
guided by the electric field sensors so that all fingers contacted
at the same time as to not perturb the object [see Fig. 2(d)].

2http://www.barrett.com/robot/index.htm
3http://www.ros.org/

Fig. 2. Experimental procedure of a human subject guiding the robot to grasp
an object: (a) and (b) Approach the object, (c) adjust wrist orientation and finger
spread, (d) fingers close in on the object, and (e) lift object. Note that the subject
was free to move around the workspace to view the physical interaction from
multiple angles.

Step 4: Subjects were, then, allowed to lift and shake the
robotic arm to determine if they liked the grasp. Note that this
light shaking performed by the subject is different from the
vigorous programmed shaking that was performed during the
grasp testing phase (see Section III). If the subject did not like
the grasp or if the object slipped out, the grasp was disregarded
[see Fig. 2(e)]. We eliminated such grasps because the goal was
to collect the best grasps that humans could provide.

Since the subjects had less than 5 min of practice with the sys-
tem before experiment data were collected, the grasp guidance
procedure provided an opportunity for the subjects to review
the grasps. This allowed the subjects to understand the grasping
process with the robotic hand and build an internal model based
on their grasping experiences with their own hands. It turned
out in the experiment described in the next section that less than
5% of all the human guidance grasps were eliminated because
the subject was not satisfied with the grasp. Therefore, the grasp
review process did not, significantly, affect the set of grasps
collected.

Each grasp was represented simply as the kinematic configu-
ration of the robot arm and hand relative to the object reference
frame. Thus, a grasp was an 11-D vector containing the 7-DOF
robot arm joint angles and the 4-DOF hand joint angles (one
spread and three flexion) relative to the object’s reference frame.

C. Human-Subject Experiment Paradigm

Seven human subjects participated in a study approved by
the University of Washington Human Subjects Division. Each
subject was given f5 min of practice with the robot, and a total
of 210 grasps were collected with the robot. Nine everyday
objects were used in the experiment: Three small objects, three
medium-sized objects, and three large objects (see Fig. 3).

Since these everyday objects had straightforward geometry,
the experimenter used the objects’s edge features to, carefully,
position the objects at the required location and orientation with
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Fig. 3. Objects used in the experiment fall into three size categories: Small,
medium, and large.

TABLE I
FUNCTIONAL TASKS

respect to a known world coordinate frame marked on the table.4

Since the experiment was to study the details of human-planned
grasping of everyday objects in natural configurations, the ob-
jects were placed in the vertical orientation only (as shown in
Fig. 3). Since the robot base’s position and location was also
known accurately with respect to the world coordinate frame
and the robot’s forward kinematics available from the manufac-
turer, the robot hand’s pose could be computed in the object’s
frame of reference.5

Each subject was asked to perform three different tasks for
an object, namely, lifting the object, handing the object over,
and performing a function with the object. For the handing over
task, the subject was asked to grasp the object such that there
was space left for someone else to grasp it. The functional tasks
depended on the object. For example, the functional task for the
wine glass was pouring and for the phone, the task was picking
up to make a phone call (see Table I for complete list).

For each object-task pair, the subject was asked to provide
two grasps, providing a total of six grasps per object. The sub-
jects were asked to vary the grasps if they could so as to obtain
some variety in the grasps collected. Each subject was randomly
assigned to five objects, while ensuring an even distribution of
grasps for each of the objects (each object was selected four
times except for the soda can that was selected three times).

4In this particular experiment (see Fig. 2), a white rectangular box on which
the objects were placed was used to align the object. This was only incidental
to this experimental setup, and any means of repeated accurate positioning of
the object will suffice.

5We also placed the objects, randomly, in three different locations on the
table (left, right, and center with respect to the robot base) to ensure that the
human-planned grasps were not unduly influenced by the specificity of the arm
posture required for a particular location. Since we did not find any significant
differences between the grasps from different locations in terms of the robot
wrist and finger posture relative to the object, we combined all the human-
planned grasps from the different locations into one set to be tested by the
stationary robot.

After each human-planned grasp, the object was again placed
carefully by the experimenter in the required position and ori-
entation and the experiment was repeated.

The human subjects also responded to a questionnaire to help
identify the heuristics they believed they used to perform the
grasping task. Specifically, we wanted to find out what geometric
and force-related aspects of the grasp the subjects thought they
used to perform the grasp. For example, one specific question
was asked if the subjects paid attention to wrist orientation and
finger posture (geometric) and wrist position relative to object
center of mass (force-related). More details are presented in
Section V.

III. GRASP TESTING ON PHYSICAL ROBOT

After collecting the human-planned grasps, we wanted to
test how well each grasp performed on average on those same
objects. Several past works have tried to infer grasp quality
simply from simulation models [3], [15], [25], [28], [32], [33],
[36], [42] with mixed results (see Section V). In this paper, the
human-planned grasps were validated on a physical robot rather
than in simulation. From the eight human-planned grasps for
each object-task pair (six for the soda can), our protocol was to
choose three grasps, randomly, for testing on a physical robot.
Thus, we expected to test a total of 27 grasps for each task
(three candidate grasps × nine objects). However, it turned out
that some human-planned grasps for the lifting and functional
task, which were performed when the objects were placed to the
left and right of the robot, could not be tested on the stationary
robot when the grasps were mapped to the center location (in
particular, grasps from the object’s front) due to the lack of an
inverse kinematics solution. Thus, all the human-planned grasps
for the lifting and functional tasks, which could be tested (25
grasps), were tested.

The testing procedure was, intentionally, kept simple. The
object was placed by the experimenter in a known position and
orientation (similar to the procedure outlined in Section II-C).
Since each grasp was represented as an 11-D vector of robot
arm and hand joint angles relative to the object, the robot was
simply commanded to the grasp posture as follows. The robot
arm was commanded to the recorded arm joint angles with the
fingers fully opened. The robot hand was, then, commanded to
the required spread angle. Finally, the fingers were commanded
to close in quickly on the object, and the robot lifted the object
and, then, executed a shaking procedure, where the object was
shaken by the robot four times in a continuous circular motion
(see Table II for peak and mean velocities and accelerations).
Note that this automated shaking by the robot was different
and significantly more vigorous than the light shaking that the
users performed after they planned the grasp (see Step 4 in
Section II-B). In addition, the users did not know that the grasp
would be tested in this manner.

If the object stayed in the hand after the shaking, it was con-
sidered a success (scored 1). All other situations (object pushed
away during acquisition or object falls down during shaking)
were considered a failure (scored 0). This testing process was
repeated for each grasp five times.
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TABLE II
SHAKING TRAJECTORY DETAILS

Note that this simple grasp testing procedure helps maintain
the focus of our research on grasp generation rather than elab-
orate grasp testing methods that include, say, feedback control.
The success rate was computed for each grasp by averaging
over the five trials. Hypothesis testing was performed with a
significance level of 0.05, and standard errors were reported for
all mean values.

IV. GRASP ANALYSIS

A. Analysis Using a Grasp Measure Set

Given our goal of identifying the principles behind human-
planned grasping, we needed a grasp measure space that iden-
tified the properties of a grasp. Specifically, the 11-D finger
and wrist posture of the grasp alone does not provide insights
into grasp quality, since the way the fingers are placed relative
to the object is critical for the grasp. Several grasp measures
have been proposed in prior literature to infer grasp quality [2],
[7], [15], [31], [35], [38], [40]. After a detailed survey, we chose
a set of 11 grasp measures from the literature (see Table III;
the citations correspond to all the features in each section of
the table). The “grasp volume” measure is a 3-D version of the
“grasp area” suggested for planar grasps in [7].

Each grasp measure is associated with a heuristic. For ex-
ample, the epsilon metric in row 1 of Table III measures the
minimum disturbance force and moments that a grasp can resist
in all directions, and results from simulation show that a grasp
is better if it has a larger epsilon score [15]. But few grasp mea-
sures have been, rigorously, evaluated using experiments on a
physical robot.

The last row in Table III also proposes a new grasp mea-
sure that was suggested by the data during the human-subject
experiments and that we hypothesize may be broadly useful.
The new measure, which is called skewness, measures the robot
wrist orientation relative to the object’s principal axis. Suppose
the object’s principal axis (axis of longest dimension) is repre-
sented by unit vector u, and the axis pointing out of the palm
of the BarrettHand by unit vector v (see Fig. 4). The angle δ
between u and v may be computed as δ = arccos(u · v). Then,
the skewness measure α is defined as

α =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ, if δ < π/4

π/2 − δ, if π/4 < δ < π/2

δ − π/2, if π/2 < δ < 3π/4

π − δ, if δ > 3π/4.

(1)

In the human-planned lifting grasp for the bottle in Fig. 5,
robot’s wrist orientation in the bottle-lifting task is approxi-
mately parallel to the bottle’s principal axis (vertical), and the

Fig. 4. Relative orientation of the object and robot hand: The object’s principal
axis is u. In pose v, the robot hand has skewness of zero, while in pose v ′, the
robot hand has skewness close to 30◦.

Fig. 5. Example grasp postures generated by human subjects (for a lifting
task) and GraspIt! for three objects. Note that the human subjects, manually,
specified the grasps on the physical Barrett robotic hand, which were then
visualized using the OpenRAVE program [13].

grasp’s skewness measure α is near zero. In contrast, the com-
puter generated GraspIt! grasp for the bottle would have a skew-
ness measure α close to 30◦.

Note that it was easy to notice the peculiarity of wrist place-
ment in the human-planned grasps only because we used the
physical human interactive guidance method. This is because
the robot hand geometry is simple and known explicitly, and
the subjects were comfortable with the guidance process. Thus,
the subjects were able to use their natural grasping heuristics,
and we could identify the new skewness measure. In contrast, if
we were studying the human hand directly, it would have been
significantly more difficult to identify a grasp measure, such as
skewness, due to the complexity of the human hand geometry.

We computed values for all the grasp measures for each
human-planned grasp, and thus, the grasp could now be
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TABLE III
GRASP MEASURE SET

evaluated in the chosen 12-D grasp-measure space. This will
help understand the parameters that humans optimize for when
performing grasps. Note that this is in addition to testing on a
physical robot, which provides a true measure of grasp quality.

B. Comparison With Automated Grasping Methods

Instead of a stand-alone analysis of human-planned grasping,
we wanted to compare the human-planned grasping technique
with existing grasp synthesis methods both in terms of average
success rate as well as the heuristics optimized for during grasp
generation. The most common and standardized procedure in
the robotics community is automated grasp synthesis for robots
using a set of grasp measures. We used an open-source state-
of-the-art grasp planning software called GraspIt! developed by
Columbia University [32] for grasp generation.6 Note that we
could have used other software such as OpenRAVE [13] as well
for grasp generation. However, many of these programs use the
same standard force-closure metrics developed by the robotics
community to evaluate grasp quality [15]. We chose GraspIt!
since it had been well tested for several years and their team
helped us understand the code.

Given an object’s 3-D model, GraspIt! finds grasps for an
object by searching the high-dimensional hand-configuration
space and, then, focuses the search on the best grasps by using
a variety of grasp measures. Combined with a compliant con-
tact (soft-contact) simulation, GraspIt! uses the following grasp
measures that are popular in the robotics community: 1) Wrench
space computations (epsilon and volume [15]) that estimate a
grasp’s ability to provide force closure based on the minimum
disturbance that the grasp can resist in all directions (first and
second rows in Table III); and 2) the shortest distance between
the object and predefined grasp points on the hand (defined as
grasp energy in the third row of Table III).

Using the same procedure that was used to generate grasps
for the Columbia Grasp Database [18], we ran GraspIt! for

6http://grasping.cs.columbia.edu/

30 min with the intention of generating multiple top grasps
for each object according to its grasp heuristics. In 30 min,
GraspIt! explored a large set (135 000) of varied wrist and
finger configurations to generate six top grasps for most of the
objects, but for three objects, GraspIt! generated only four or
five grasps (wine glass: 4, coil of wire: 5, 1-L bottle: 4). This
was, partly, due to search complexity as well as the lack of
an inverse kinematics solution when implemented on the robot
(since the robot was stationary relative to the table and object
in the setup). Thus, the automated grasp search provided a total
of 49 grasps across the nine objects after exploring 1.2 million
wrist and finger configurations. Since we collected a sufficient
number of automated grasps from GraspIt! , we did not feel the
few grasps that we lost to the search complexity were significant
in our results. Note again that each grasp is represented as the
11-D vector containing robot arm and hand joint angles.

Note that GraspIt! cannot provide task-specific grasps, and
its grasps are intended for lifting tasks only. Therefore, the per-
formance of only the human-planned lifting grasps and GraspIt!
grasps will be directly compared. The GraspIt! grasps also were
validated using the same process as the human-planned grasps
(see Section III).

V. RESULTS

A. Human-Planned Grasps Versus Automated Grasps

Fig. 5 shows a sample of grasps generated by GraspIt! and
through the physical human interactive guidance method for the
different tasks. All the fingers were used in every grasp, whether
human planned or from GraspIt!.

Table IV presents the success rates for each object (aver-
aged over five trials) for the human-planned grasps and for the
GraspIt! grasps (a total of (25 + 27 + 25 + 49) × 5 = 630 test-
ing trials). Across objects, the human-planned lifting strategy
yielded a 91(3)% success rate, while GraspIt! yielded 77(3)%.
An outlier for the human lifting grasps was the 1-L bottle. If
these grasps were removed, the success rate for human-planned
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TABLE IV
MEAN SUCCESS RATES FOR HUMAN-PLANNED GRASPING AND GRASPIT!

TABLE V
GRASP MEASURE VALUES FOR HUMAN-PLANNED GRASPING AND GRASPIT!

lifting grasps would be 97(1)%. Interestingly, while the human-
planned grasps for the handing over task and the functional task
did not perform as well as the human-planned grasps for lifting,
they still outperformed, on average, the GraspIt! grasps which
are meant for lifting only.

Table V shows the range of values for the grasp measures for
human-planned grasps and the GraspIt! grasps. Looking first
at the human-planned lifting grasps and the GraspIt! grasps,
we notice that only four grasp measures, namely, epsilon, grasp
wrench-space volume, hand flexion, and skewness, were signifi-
cantly different between the two grasp sets. The energy measure
showed a borderline significant difference (p = 0.05) between
human-planned lifting and GraspIt!, but that was due to outliers.

While larger epsilon and volume indicated better grasp quality
theoretically, we noticed from the experiment that epsilon and
volume were lower for the human-planned grasps when com-
pared with the GraspIt! grasps, even though the human guided
grasps had a higher success rate than the GraspIt! grasps. The
hand-flexion measure indicated that humans used lifting grasps
which had significantly different finger flexion values when
compared with the GraspIt! grasps. The hand-spread values
for the human-planned grasps indicated that the humans used
largely pinch grasps with low spread. This also led to small
volumes of the object enclosed by a grasp.

The stand-out grasp measure, however, was skewness. The
skewness measure for the human lifting grasps was significantly
smaller than for the GraspIt! grasps, indicating that wrist ori-
entation in the human-planned lifting grasps are much closer
to the object’s principal axis or its perpendiculars (see Fig. 5;

Fig. 6. Scatter plot of the skewness measure of the human-planned lifting
grasps (red dots) and the GraspIt! grasps (blue circles)

the principal axis for the bottle and wine glass was vertical and
phone horizontal). Fig. 6 shows a scatter plot of the skewness
measure for human-planned lifting grasps (mean 5.2 (1.3)◦)
and the GraspIt! grasps (mean 23.2 (2)◦), indicating that the
human-planned grasps used wrist orientation that deviated very
little from the objects’s principal axes, whereas the automated
grasps’ wrist orientations were scattered all over.

Focusing on the task-dependent human-planned grasps, Fig. 5
shows some examples of variation in grasping strategy for dif-
ferent task requirements. Grasps used by the handing over and
functional tasks were not statistically different from the lifting-
task grasps as measured by these grasp measures except for
the hand-flexion measure (p < 0.05). The hand-flexion mea-
sure showed differences between the functional human-planned
grasps and the lifting and handing-over human-planned grasps.
This indicated that the functional task caused the human subjects
to change the hand flexion significantly.

There were near-significant differences (0.05 < p < 0.1) be-
tween the handing-over and functional human-planned grasps
for the finger spread, parallel symmetry, and energy grasp mea-
sures, and near-significant differences between the lifting and
functional human-planned grasps for the finger-spread grasp
measure. Interestingly, the skewness measure was low for the
human-planned handing over (6.3 (1.8)◦), as well as for func-
tional tasks (4.8 (1.0)◦).

B. GraspIt! Performance Improvement With Low Skewness

Each grasp, whether from GraspIt! or planned by a human,
was stored as an 11-D vector containing the seven robot arm an-
gles and four hand joint angles. All the grasps were divided into
two groups: Group 1 was the set of grasps obtained by merging
the set of human-planned lifting grasps and the set of grasps
from GraspIt!. Group 2 consisted of GraspIt! grasps only. Fig. 7
shows the variation in success rates for the two groups of grasps,
each split by a skewness threshold of 13◦. This result showed
that the success rate of low-skewness grasps from GraspIt! was
significantly higher than high-skewness grasps from GraspIt!
(93(5)% compared with 77(3)%; p-value = 0.01). In contrast,
when investigating the significance of the hand-flexion measure
for grasping, we did not see a significant difference in grasp
success for grasps with small hand-flexion measures when com-
pared with grasps with large hand-flexion measures. This indi-
cated that a low hand-flexion measure was, likely, not a reason
for a better grasp.
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Fig. 7. Success rates for low-skewness (< 13◦) and high-skewness grasps
from two groups. (a) Human lifting grasps combined with GraspIt! grasps (low-
skewness and high-skewness grasps n = 37 each; p-value = 0.01). (b) GraspIt!
grasps only (low-skewness grasps n = 14, high-skewness grasps n = 35; p-
value = 0.01).

TABLE VI
HUMAN SUBJECT QUESTIONNAIRE RESULTS

C. Questionnaire

Table VI provides the results of the short questionnaire pro-
vided to the human subjects, the rows ordered in decreasing
importance of the heuristic (according to the subject’s belief) in
generating a grasp. The results indicate that the human subjects,
consciously, tried to use finger spread, the object’s curves, and
location of the robot hand relative to the object center of gravity
to generate a good grasp. The effect of object weight, the robot
wrist orientation being vertical or horizontal, and the ridges on
the object surface in determining the grasp were also strong, but
the subjects were not unanimous in using those heuristics. The
subjects did not feel that they used the robot hand’s palm heavily
in generating the grasp. Finally, the subjects felt that their grasp
strategy did not change during the experiment with practice.

VI. DISCUSSION

The methods proposed by this paper (physical human in-
teractive guidance, analysis using grasp measures, comparison
with automated techniques) provide an exciting integration of
the human physical experience and the human ability to ex-
trapolate that experience to understand physical interaction in
new scenarios along with the exhaustiveness of computer-based
logic and simulation speed. Given the goals mentioned in Sec-
tion I, our study has provided interesting results. It was, clearly,
shown that the human-planned grasps performed well with a
high success rate (91%). While not near perfect like the human
hand’s grasping performance, the human-planned grasps were
significantly better than the success rate of the state-of-the-art
automated grasp planners (77%, see Table IV).

Simultaneously, the physical interaction method showed that
the human grasping method was similar in most aspects to
a state-of-the-art automated grasp planner that, exhaustively,
searched the entire configuration space for the best grasps. While

the automated planner required hours across all objects to com-
pute (suboptimal) grasps, the human subjects required only 5
min of practice to find the best grasps. This showed that humans
excel at using their internal models to prune away large regions
of the search space to, exponentially, speed up the search pro-
cess. More work is also required in identifying why the existing
grasping heuristics in the robotics community do not perform
well when implemented on a physical robot as well as develop
better heuristics for automated grasping.

This experiment also showed that the human subjects used
grasp measures different from those used by automated grasp
planners. The strong preference of humans to exploit an ob-
ject’s principal axes to perform a grasp even with a robotic
hand prompted us to create a new grasp measure called skew-
ness, which to our knowledge has not been mentioned previ-
ously in the literature. Our robot experiments showed that when
skewness was used to filter the grasps from automated grasp
planning, low-skewness GraspIt! grasps performed significantly
better than high-skewness GraspIt! grasps.

Note that while we used the physical human interactive guid-
ance method in a specific experimental setting with a chosen
robot arm and hand combination and with objects placed in
their natural configurations without clutter, our approach can
easily be extended to other scenarios, such as using a different
robot arm and hand, using cluttered environments where a direct
approach to the object is unavailable, and using objects placed
in non-natural orientations. It would interesting to see how the
human-planned grasps and their performance would vary under
other conditions.

A. Robustness of Human-Planned Grasps

Humans have a strong sense of causal physicality, or how
objects in the physical world interact. Humans use this sense
everyday when they interact with the world, specifically when
they use tools to perform various tasks. Indeed, the human sub-
jects may have considered the robotic hands that they used in the
experiment as tools to perform the required task. The models of
physical interaction that the subjects have internalized through
their daily interactions would, certainly, have been used in con-
ceiving the grasps to perform the various tasks [21], which
would explain the higher quality of the human-planned grasps.

Even though the humans did not have the opportunity in this
experiment to dynamically control grasp forces or finger lo-
cation during the disturbance, which they typically do when
performing grasps with their own hands [20], [45], just the ge-
ometry of low skewness provided significant performance ben-
efits over automated grasp planning. The low skewness of wrist
orientation in the human-planned grasps might seem obvious in
hindsight, considering how a majority of everyday objects are
designed with Cartesian coordinate frames. A grasp with low
skewness provides two advantages with such “Cartesian” ob-
jects: 1) With Cartesian objects, palm contact and finger place-
ment might be improved when the wrist orientation is parallel to
or perpendicular to the object’s principal axis. Since the Barret-
tHand had a flat palm, grasp with low skewness would, likely,
generate more palm contact which created a more robust grasp.
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2) The contacts used in low-skewness grasps are more robust to
small variations in contact location. For example, a grasp where
the palm approached the soap bottle perpendicularly from the
side is robust to small perturbations in position in the approach
direction—all fingers will still have contact. In contrast, a grasp
with high skewness that approached from the same side may
lose contact at one finger due to a positioning error in the ap-
proach direction. This would cause the grasp to change from a
three-finger contact to a weaker two-finger contact.

Indeed, humans might have a natural preference for grasps
with low skewness, since human motor control literature has
shown that many motor neurons encode human movements in
extrinsic Cartesian coordinate frames rather than in intrinsic
(muscle or joint) coordinate frames [23]. A deeper analysis
of how skewness influence grasping performance, particularly,
in different environment contexts (uncommon objects placed
nonvertically in the presence of obstacles and clutter), will offer
interesting insights into its effectiveness.

B. Implications for Automated Grasp Synthesis

While GraspIt! likely produced some of the best automated
grasps, the mismatch between simulation models and the real
world (in terms of, say, contact friction coefficients, unmodeled
movement of the target object, and inaccurate soft-contact mod-
els) may have produced uncertainty in the grasping process and
hurt the success rate of automated grasps. In addition, it could
be that the automated grasp planners did not have the optimal
grasp measures to narrow down on the best grasps.

One of the goals of this study is to use human skill to identify
key grasp measures that can speed up automated grasp synthesis
and improve real-world grasp quality. Table V shows that the
skewness feature has significantly different values for human-
planned grasps and GraspIt! grasps. Furthermore, Fig. 7 shows
that low-skewness grasps have significantly higher success rate
than high-skewness grasps. These results indicate that an auto-
mated search process can focus on grasps with low skewness
values before exploring grasps with higher skewness values.
This will, likely, result in better grasps faster for GraspIt! and
other automated grasp synthesis methods.

This paper did not further analyze the grasp measures that
produced similar results between human-guided grasps and
GraspIt!. This is because our data only contained highly suc-
cessful grasps, and thus, it could not be used to identify good and
bad grasp measures, unless significant differences were found
between human-guided and GraspIt! grasps. In addition, the lack
of correlation between epsilon and grasp wrench space volume
with the high human-planned grasp success rates is worth in-
vestigating further to validate the grasp measures used by the
grasping research community. In particular, a more rigorous
experimental testing of these grasping heuristics is necessary.

C. Task Dependence of Grasps

An advantage of physical human interactive guidance is the
simplicity with which the grasps that the human subjects spec-
ified for various tasks can be mapped into the robotic hand
space. Previous studies have shown through human-subject ex-

periments with datagloves, such as the Cyberglove7, that hu-
mans varied finger position carefully based on the task [16].
Indeed, it was also shown how finger posture influenced grasp
force capability and stiffness. However, it is difficult to map the
human-planned grasps to robot grasps.

In our study, the human subjects had an opportunity to control
only finger and wrist placement (and not force and stiffness),
and indeed, we saw some variability between tasks in finger
posture (hand-flexion measure; see Table V). Specifically, for
the coil of wire, the functional task was to “lift the object to
remove a wire.” It was noticed that the human subjects held
the coil of wire by the rim, rather along its length as was the
case in the lifting or handing over task. Similarly, for the CD
pouch, the functional task was to hold the object so that it may
be opened. These differences in grasps have been captured by
the hand-flexion measure. However, we did expect to see more
differences between the grasps for different tasks. We possibly
need more appropriate grasp measures (than those measures
listed in Table III) and object-task pairs that are suitable for
differentiating task-specific human-planned grasping strategies.
In addition, the large size of the robot hand relative to the object
size could have influenced the human subjects to use similar
grasps for the different tasks.

Interestingly, the human subjects chose grasps with low skew-
ness independent of the task, indicating that humans valued a
wrist configuration aligned with the object’s principal axes sig-
nificantly for grasping tasks. More work is required to under-
stand wrist usage in grasping using the human hand.

D. Human Grasping Heuristics

Table VI presents a summary of the responses of the human
subjects after performing the experiment. These responses pro-
vide insight into how the human subjects perceived their own
actions and then enable us to compare the human subject’s per-
ception with a ground-truth measurement of their actions. It
is clear that the subjects believed that object curves and using
a spread-out finger configuration were critical aspects of the
grasp. However, from Table V, we noticed that the human sub-
jects tended to use reasonably small hand-spread values (20◦

compared with 60◦ for a equilateral-triangle grasp), indicating
that they used the fingers closer to a parallel gripper form rather
than a equilateral triangular grip.

Interestingly, even though low skewness was an important
characteristic of the human-planned grasps, line 5 in Table VI
showed that only 71% of the human subjects were conscious
that the grasps that they performed had low skewness (we had
expected a higher percentage). However, a more detailed study
of the human-planned grasps with more subjects, more grasp
measures, and machine learning techniques is necessary to de-
rive insight into how humans plan grasps and manipulate objects
in everyday life.

7http://www.cyberglovesystems.com/
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Fig. 8. Trade-offs in the procedure used to transfer human skills to robots.

E. Improving Human-Subject Experiment Protocol

When we were designing this experiment, we expected the
human-planned grasps to have a success rate near 100%; how-
ever, the human-planned grasps had a success rate of only 91%.
Why did the human-planned grasps have a success rate of only
91%?

There might have been at least a few reasons related to the
experiment protocol why the human-planned grasps had a lower
success rate. First, we collected data from subjects who had
never seen or interacted with a robotic arm/hand before. It is
possible that with more practice with the robot, a subject would
provide better grasping strategies.

Second, we asked human subjects to vary the grasping strat-
egy every trial, if they could. In retrospect, we should not have
forced the subjects to devise different grasping strategies as we
do not believe that there are always multiple optimal solutions.
Note, however, that there was one outlier in the human-planned
lifting grasps success rates—the success rate for the 1-L bot-
tle (only 40(13)%, see Table IV). If this outlier is removed,
the human grasping success rate is 97(1)%, even with vigorous
shaking. As seen in Fig. 2, subjects chose to grasp the bottle
from the top, when most humans with their own hand would
not grasp a filled bottle this way. This strategy was chosen when
we instructed subjects to vary the grasps when they could. This
technique did not work well on the bottle’s slippery surface and
large mass.

Third, the subjects were not informed of the vigorous shaking
used in the robustness test, and they only specified grasps for
the various tasks. If the subjects had known about the shaking,
they might have optimized their grasps for the shaking proce-
dure. In contrast, the epsilon metric that GraspIt! uses actually
optimizes the grasps for disturbances in all directions, similar
to the disturbances in the shaking procedure. Thus, given that
the human subjects did not know about the testing procedure,
the human subjects were at a disadvantage compared with the
GraspIt! grasps. However, the years of real-world experience
still enabled the human subjects to perform better overall.

F. Extent of Human Involvement

In this experiment, the human subjects were involved heavily,
guiding the robot hand, as though it was a child learning to
perform a grasp. The human subject was provided to the robotic
system information on where the wrist and fingers must be

placed to perform a successful grasp. Surely, this information
can be “taught” to a robotic system by other means as well, such
as teleoperation or through interaction in virtual representation.
Indeed, there are some advantages as the experiment moves
toward using virtual representation—the experiment becomes
increasingly scalable (see Fig. 8), since the experiment can be
setup on a computer allowing the human subject to simply click
where the robot should grasp the object instead of requiring
a robotic arm and physical human involvement. Indeed, such
supervised learning has been explored before [41].

However, these methods of using virtual representations to
transfer human skill in physical interaction have only met with
moderate success (60–80% for multifingered grasping; see [41])
compared with the 91% success rate using physical human in-
teractive guidance. In addition, the identification of new and
powerful grasp measures (such as skewness) and human grasp-
ing principles has been rare through prior virtual methods.

The main challenge when using virtual experimental setups
was that the task for the human became increasingly less in-
tuitive as he/she moved away from physical interaction (see
Fig. 8). Thus, the human-planned grasps might not be as effec-
tive the farther the human was removed from the task physically,
since the specifics of the method (such as the view provided to
the human) may interfere with his/her grasping method. More
important than just the grasps the human provided, it might be-
come harder to identify key grasping principles (such as skew-
ness) when more virtualized experiment procedures are used.
Thus, data fidelity might suffer with more virtualized experi-
ment procedures despite their scalability. More work is required
to identify the trade-off in scalability and data fidelity as the
experiment procedure changes.

VII. CONCLUSION

In this paper, we have shown that a novel experimental method
called physical human interactive guidance can be used to obtain
high-quality grasps planned by humans. The human-planned
grasps were shown to be significantly better than grasps gen-
erated by state-of-the-art grasp planning algorithms (included
in a program called GraspIt!). An elaborate grasp-measure set
was also used to show that the human-planned grasps with the
GraspIt! grasps were similar; however, a key contribution of this
paper was to find a new grasp measure called skewness which
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explained why the GraspIt! grasps performed poorer than the
human-planned grasps.

Finally, it was difficult to compare the performance of the
physical interactive guidance method directly with other human-
planned grasping methods, because of the lack of available data
in the literature. In this paper, we performed extensive experi-
ments with a physical robot arm and hand to evaluate the grasp
performance of the human-planned grasps as well as compared
it with the state-of-the-art automated grasp planner. We look
forward to comparing our results with results from other groups
using different human-subject experiments for grasping.
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[14] C. Fernández, M. A. Vicente, C. Pérez, O. Reinoso, and R. Aracil, “Learn-
ing to grasp from examples in telerobotics,” in Proc. IASTED Int. Conf.
Artif. Intell. Appl., 2003, pp. 445–450.

[15] C. Ferrari and J. Canny., “Planning optimal grasps,” in Proc. IEEE Int.
Conf. Robot. Autom., 1992, pp. 2290–2295.

[16] J. Friedman and T. Flash, “Task-dependent selection of grasp kinematics
and stiffness in human object manipulation,” Cortex, vol. 43, pp. 444–460,
2007.

[17] S. S. H. U. Gamage and J. Lasenby. (2002, Jan.). “New least squares
solutions for estimating the average centre of rotation and the axis
of rotation,” J. Biomech. [Online]. 35(1), pp. 87–93. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0021929001001609?showall
=t rue

[18] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen, “The Columbia grasp
database,” in Proc. Int. Conf. Robot. Autom., 2009, pp. 1710–1716.

[19] W. B. Griffin, R. P. Findley, M. L. Turner, and M. R. Cutkosky, “Cali-
bration and mapping of a human hand for dexterous telemanipulation,”
in Proc. ASME IMECE Conf. Hapt. Interfaces Virt. Environ. Teleoperat.
Syst. Symp., 2000.

[20] R. S. Johansson and G. Westling, “Roles of glabrous skin receptors and
sensorimotor memory in automatic control of precision grip when lifting
rougher or more slippery objects,” Exp. Brain Res., vol. 56, no. 3, pp. 550–
64, 1984.

[21] S. H. Johnson-Frey, “What’s so special about human tool use?,” Neuron,
vol. 39, pp. 201–204, 2003.

[22] L. A. Jones and S. J. Lederman, Human Hand Function. Oxford, U.K.:
Oxford Univ. Press, 2006.

[23] S. Kakei, D. S. Hoffman, and P. L. Strick, “Muscle and movement rep-
resentations in the primary motor cortex,” Science, vol. 285, no. 5436,
pp. 2136–2139, 1999.

[24] U. Kartoun, H. Stern, and Y. Edan, “Virtual reality telerobotic system,” in
Advances in E-Engineering and Digital Enterprise Technology-1. New
York: Wiley, 2004.

[25] D. Kirkpatrick, B. Mishra, and C. K. Yap, “Quantitative Steinitz’s theo-
rems with applications to multifingered grasping,” in Proc. ACM Symp.
Theory Comput., 1990, pp. 341–351.

[26] C. Lee, “Learning reduced-dimension models of human actions,” Ph.D.
dissertation, The Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA, 2000.

[27] C. Lee and Y. Xu, “Reduced-dimension representations of human perfor-
mance data for human-to-robot skill transfer,” in Proc. IEEE Int. Conf.
Robot. Autom., 1998, pp. 84–90.

[28] Z. Li and S. S. Sastry, “Task-oriented optimal grasping by multifingered
robot hands,” IEEE J. Robot. Autom., vol. 4, no. 1, pp. 32–44, Feb. 1988.

[29] J. Lloyd, J. Beis, D. Pai, and D. Lowe, “Model-based telerobotics with
vision,” in Proc. IEEE Conf. Robot. Autom., Apr. 1997, vol. 2, pp. 1297–
1304.

[30] J. Lukos, C. Ansuini, and M. Santello, “Choice of contact points dur-
ing multidigit grasping: Effect of predictability of object center of mass
location,” J. Neurosci., vol. 27, no. 4, pp. 3894–3903, 2007.

[31] A. Miller and P. K. Allen, “Graspit!: A versatile simulator for robotic
grasping,” in IEEE Robot. Autom. Mag., 2004.

[32] A. T. Miller and P. K. Allen, “Examples of 3D grasp quality computations,”
in Proc. IEEE Int. Conf. Robot. Autom., 1999, pp. 1240–1246.

[33] B. Mirtich and J. Canny, “Easily computable optimum grasps in 2-D and
3-D,” in Proc. IEEE Int. Conf. Robot. Autom., 1994, pp. 739–747.

[34] N. Miyata, M. Kouchi, T. Kurihara, and M. Mochimaru, “Modeling of
human hand link structure from optical motion capture data,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2004, pp. 2129–2135.

[35] A. Morales, E. Chinellato, A. Fagg, and A. del Pobil, “An active learning
approach for assessing robot grasp reliability,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Sep. 28–Oct. 2, 2004, vol. 1, pp. 485–490.

[36] J. Ponce and B. Faveqon, “On computing three-finger force-closure grasps
of polygonal objects,” IEEE Trans. Robot. Autom., vol. 11, no. 6, pp. 868–
881, Dec. 1995.

[37] M. Ralph and M. Moussa, “An integrated system for user-adaptive robotic
grasping,” IEEE Trans. Robot., vol. 26, no. 4, pp. 698–709, Aug. 2010.

[38] J. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. Kuchenbecker,
“Human-inspired robotic grasp control with tactile sensing,” IEEE Trans.
Robot., vol. 27, no. 6, pp. 1067–1079, Dec. 2011.

[39] M. Santello, M. Flanders, and J. F. Soechting, “Postural hand synergies
for tool use,” J. Neurosci, vol. 18, no. 23, pp. 10105–10115, 1998.

[40] A. Saxena, L. L. S. Wong, and A. Ng, “Learning grasp strategies with
partial shape information,” in Proc. 23rd Nat. Conf. Artif. intell. (AAAI’08),
Chicago, Illinois, 2008, pp. 1491–1494.

[41] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects
using vision,” Int. J. Robot. Res., vol. 27, no. 2, pp. 157–173, 2008.

[42] K. B. Shimoga, “Robot grasp synthesis algorithms: A survey,” Int. J.
Robot. Res., vol. 15, pp. 230–266, 1996.

[43] W. T. Townsend, “The BarrettHand grasper—programmably flexible part
handling and assembly,” Ind. Robot: Int. J., vol. 27, no. 3, pp. 181–188,
2000.



910 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 4, AUGUST 2012

[44] M. Veber and T. Bajd, “Assessment of human hand kinematics,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2006, pp. 2966–2971.

[45] G. Westling and R. Johansson, “Factors influencing the force control
during precision grip,” Exp. Brain Res., vol. 53, pp. 277–284, 1984.

[46] R. Wistort and J. R. Smith, “Electric field servoing for robotic manipula-
tion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2008, pp. 494–499.

[47] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan, “Perceptual distortion
contributes to the curvature of human reaching movements,” Exp. Brain
Res., vol. 98, pp. 153–156, 1994.

[48] V. M. Zatsiorsky and M. L. Latash, “Multifinger prehension: An
overview,” J. Motor Behav., vol. 40, no. 5, pp. 446–475, 2008.

Ravi Balasubramanian received the B.Eng. and
M.Eng. degrees in mechanical engineering from
the National University of Singapore, Singapore, in
1999 and 2000, respectively, and the Ph.D. degree
in robotics from Carnegie Mellon University, Pitts-
burgh, PA, in 2006.

He completed a Postdoctoral Fellowship in neu-
robotics with the University of Washington, Seattle,
in 2009, and was a Research Scientist in mechanical
engineering with Yale University until 2011. He is
currently an Assistant Professor in mechanical, in-

dustrial, and manufacturing engineering with Oregon State University, Corval-
lis, where he directs the Robotics and Human Control Systems Laboratory.
His research interests focus on manipulation and mobility and computational
biomechanics and neuroscience.

Dr. Balasubramanian received the Best Student Paper Finalist Award at the
IEEE International Conference on Robotics and Automation in 2004 for his
doctoral research on a novel locomotion technique called legless locomotion.

Ling Xu received the Bachelor’s degree in com-
puter science and the Ph.D. degree in robotics from
Carnegie Mellon University, Pittsburgh, PA, in 2004
and 2011, respectively.

She worked for a year in industry before joining
the Robotics Institute, Carnegie Mellon University, as
a National Science Foundation Graduate Fellowship
recipient. During her graduate career, her research
was in the area of path planning for environmental
coverage. More specifically, her thesis explored the
application of ideas from graph theory and operations

research toward a real-time path planner for optimal coverage of a space.

Peter D. Brook is currently working toward the B.S.
degree in computer science from the University of
Washington, Seattle.

During his graduate study, his research focused on
human-inspired and probabilistic methods for robotic
grasp planning. He is currently a Software Engineer
with Facebook, Menlo Park, CA, where he applies
machine learning to tackle spam on the social graph.

Joshua R. Smith received the B.A. degrees in com-
puter science and in philosophy from Williams Col-
lege, Williamstown, MA, in 1991, the M.A. degree
in physics from Cambridge University, Cambridge,
U.K., in 1997, and the S.M. and Ph.D. degrees from
the MIT Media Lab, Cambridge, in 1995 and 1999,
respectively.

He is currently an Associate Professor of electri-
cal engineering and of computer science and engi-
neering with the University of Washington (U.W.),
Seattle, where he leads the Sensor Systems Research

Group. At U.W., he leads the Communications and Interface Thrust, Center for
Sensorimotor Neural Engineering, a National Science Foundation funded Engi-
neering Research Center, and is a co-Principal Investigator of the Intel Science
and Technology Center on Pervasive Computing. From 2004 to 2010, he was
a Principal Engineer with Intel Labs, Seattle, where he founded and led the
Personal Robotics project, as well as the Wireless Resonant Energy Link and
Wireless Identification and Sensing Platform projects. He was the coinventor
of an electric field sensing system for suppressing unsafe airbag firing that is
included in every Honda car. His research interests include all aspects of sensor
systems, including creating novel sensor systems, powering them wirelessly,
and using them in applications such as robotics, ubiquitous computing, and
human–computer interaction.

Yoky Matsuoka received the B.S. degree in electri-
cal engineering and computer science (EECS) from
the University of California, Berkeley, in 1993 and
the M.S. and Ph.D. degrees in EECS from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1995 and 1998, respectively.

She was a Postdoctoral Fellow with the Brain and
Cognitive Sciences Department, MIT, and in mechan-
ical engineering with Harvard University. She is cur-
rently an Associate Professor with the Department
of Computer Science and Engineering, University of

Washington.
Dr. Matsuoka received the Presidential Early Career Award for Scientists and

Engineers in 2004, the IEEE Robotics and Automation Society Early Academic
Career Award in 2005, and the MacArthur Fellowship in 2007.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


