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Abstract— With the goal of developing human-like

dextrous manipulation, we investigate how the central

nervous system uses the redundant control space of

the human hand to perform tasks with force-stiffness

requirements. Specifically, while the human hand is

actuated by several muscles with varying mechanical

advantage (called the moment arm), it is unclear how

each muscle is used. Using the Anatomically Correct

Testbed (ACT) robotic hand to compute the control solu-

tion space and human-subject experiments with surface

electromyography to measure biological control strategy,

we identified that there is significant redundancy in the

control spaces of both muscles with large moment arms

and muscles with small moment arms. However, the cen-

tral nervous system was selective about the solution for

muscles with large moment arms, while it chose to span

large regions of the available control space for muscles

with small moment arms. Furthermore, the biological

solution used low-moment-arm muscles at relatively high

actuation levels. We summarize by making inferences on

why the central nervous system chooses such a strategy

and how this can help robotic manipulation.

I. INTRODUCTION

Several hand mechanisms have been designed over

the years, but it has been difficult to replicate the human

hand’s dexterity. The human hand is equipped with

intricate biomechanics and neural control which make

possible a variety of end-effector grasps and dynamic

movements. We believe that understanding the features

of the human hand and how the central nervous system

exploits them can contribute significantly to improving

robotic manipulation. Toward this goal, this paper ex-

plores the redundant control space of the human hand

using an anatomically correct robotic hand and human-

subject experiments.

Inspired by the human hand, our group has developed

the Anatomically Correct Testbed (ACT) hand [26], [5],

which carefully mimics the human hand’s actuation,

tendon structure, and bone shapes (see Fig 1). The

goals of building the ACT hand are several: the ACT
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Fig. 1. The Anatomically Correct Testbed (ACT) robotic hand

has five fingers (three are fully actuated) and preserves the human

musculotendon structure.

hand is a vehicle for 1) physiologists to study the

passive and active biomechanics of the human hand,

2) neuroscientists to investigate the neural signal coding

to enable functional hand movement, 3) surgeons to

test reconstruction techniques for impaired hands, and

4) roboticists to build better telemanipulation tools

including a prosthetic hand.

Our system identification of the ACT hand [9] has

identified that the complex tendon routing and bone

shapes play a significant role in producing critical pos-

tures or forces. What has not been investigated so far

is the role of redundant muscle arrangement in the hu-

man hand. Redundancy allows stiffness modulation for

maintaining stability, and the importance of this ability

has been identified both in the robotics community [13],

[19] and in the neuroscience community [1], [25],

[15], [16], [6]. However, such stiffness control could

be achieved through simpler redundant arrangements,

for example, by having two opposing muscles per

joint. Understanding the specific role the human hand’s

redundant muscle arrangement plays in manipulation

will help us build future robotic and prosthetic devices.

The human hand is controlled by many muscles,

some in the forearm (called extrinsic muscles) and

some in the hand itself (called intrinsic muscles). For

example, the index finger has seven muscles, four ex-

trinsic and three intrinsic. These seven muscles control

the finger’s four degrees of freedom through a complex



web of tendons creating a redundant control space.

Dictated by the effective moment arms, each muscle’s

influence on hand motion varies with the movement and

posture. For example, intrinsic muscles have smaller

moment arms for finger flexion (curling) motion than

the extrinsic muscles, or when extrinsic muscles are

used for abduction and adduction (side-to-side) motion.

However, it is not clear how moment arms influence the

control solution spaces. As we build an anatomically

correct robotic system for biological investigation or as

a prosthetic device, it would be critical to understand

how the central nervous system (or the controller)

utilizes intrinsic and extrinsic muscles differently for

fine dextrous control.

It has been noticed that the intrinsic muscles con-

tribute to maintaining grasp stability and fingertip force

direction, and that the extrinsics provide actuation for

free motion [18]. Also, the role of intrinsic muscles in

free motion, power grips, and precision grips have also

been identified [14]. To date, the level of investigation

of intrinsic and extrinsic muscle utilization presented

in this paper has not been done utilizing a robotics

framework. With the robotics framework, we can vi-

sualize the complete redundant control solution space

to produce specific end-effector force, stiffness, and

posture. Once the redundant space is explicitly mapped,

the structure of the space and the optimization strategies

can be discussed. This paper studies an index finger

at a specific common posture as an example, and the

control strategy found is generalizable to other postures

and fingers.

The structure of this paper is as follows: first, we

present the framework we use to study the manipulation

problem; second, we present experimental results from

human-subject experiments; and finally, we discuss

the implication of human strategies in the robotic

framework to understand the role of redundancy toward

manipulation dexterity.

II. FRAMEWORK FOR MANIPULATION ANALYSIS

This section presents a framework for finding the

control solution space for a manipulation task specify-

ing a force-stiffness combination in a posture. As an

example, we selected a scenario where the left index

finger is producing flexion (pushing down) forces at

two stiffness levels (low and high), and we will use the

ACT index finger to model the human finger. The ACT

index finger is built with six muscles, three extrinsic

and three intrinsic muscles. In contrast, humans have

seven muscles where two of the extrinsic muscles act

exactly in the same way to the index finger. The only

difference is that one of them also controls other fingers

at the same time. Thus for our analysis where we are

studying the index finger in isolation, it is sufficiently

anatomical to study six muscles. Three components

of the framework are: A) the finger’s moment arm

structure, B) muscle force and stiffness parameters, C) a

method to understand the finger’s control spaces.

A. Biomechanical Structure: Moment Arms

The relationship between muscle actuation and joint

motion may be expressed in kinematic space as

l̇ = Rθ̇, (1)

where l ∈ R
6 represents the muscle lengths, θ ∈ R

4 the

finger’s four degrees of freedom (side-to-side and three

curling joints), and R the moment arm matrix. We use

the following angle convention: curling and toward-

the-pinky movements are positive. The influence of the

moment arm matrix extends to the dynamic space also,

expressed as

τ = RT fm, (2)

where τ represents the joint torques and fm ≥ 0 the

muscle forces (pulling defined positive).

The moment arm parameters cannot be directly mea-

sured from the human subjects, and there is limited data

available from cadavers [2]. Our ACT hand moment

arm information [9] is the first full data (all joints

and muscles) available, and thus we choose to use

the ACT moment arms for our analysis. Since we

restrict our analysis to only one posture (joint angles

from knuckle to tip: 45, 45, and 10 degrees), the

moment arm matrix is fixed (see values in Table I).

We note that the extrinsic muscles (top three rows)

play a greater role in flexion and extension of the

finger (second, third, and fourth columns), while the

intrinsic muscles (bottom three rows) play a greater

role in side-to-side movements (first column).

B. Muscle Activation and Muscle Stiffness

For each muscle, muscle activation α is defined as

the fraction of the maximum muscle force fm,max used

under static and non-fatigued conditions [11]:

α = fm/fm,max. (3)

Muscle activation provides a way to measure the use

of each muscle in a normalized manner, and permits a

comparison of the neural signals each muscle receives

from the central nervous system. Note that each muscle

has a different maximum force and estimates vary (see



TABLE I

ACT HAND MOMENT-ARM MATRIX FOR CURLED POSTURE AND MAXIMUM MUSCLE FORCES

Moment arm (mm/rad)

Joints Maximum

Side-to-side Curling muscle

Muscles Knuckle Middle Tip force (N)

EI -0.04 11.11 1.86 -0.99 48.2

Extrinsic FDP -0.84 -10.68 -7.03 -3.03 65.1

FDS -0.14 -10.83 -6.87 0.12 48.2

PI -8.23 -0.79 -0.22 0.73 31.3

Intrinsic LUM 9.47 -2.00 0.18 0.01 4.8

RI 6.78 -9.32 -1.44 3.76 77.1

Mean moment arm sd = 0.68 mm/rad. Appendix A has the muscle names.

Table I, [10], [20]). All solution spaces in this paper

are interpreted in muscle activation space.

We model muscle stiffness km as a non-linear func-

tion of muscle activation α:

km(α) = kmax(1 − e−λα), (4)

where kmax = 72000 N/m and λ = 4 are constants [4],

[22], [7], [12]. We also assume muscle stiffnesses are

independent of each other (similar to [22]), although

this is an open question.

C. Iso-Torque, Iso-Stiffness, and Iso-effector Spaces

In order to describe the redundant space available

for the neural signals or controller, we view the control

solutions in muscle activation space for tasks defined

by end-effector force and stiffness. We view the muscle

solution space in three ways: the iso-torque space, the

iso-stiffness space, and the iso-effector space. These

spaces have been defined before in [1] and are de-

scribed below.

The iso-torque space Γt is the set of muscle activa-

tion solutions that produce a specific end-effector force

and may be defined as follows:

Γt = {α : ‖R−T fm − JT fe‖
2 < ǫ}, (5)

where J is the finger Jacobian [8], fe ∈ R
3 the

end-effector force, and ǫ a measure of the allowed

error (ǫ was set as 5% of target force in this paper).

Due to its mathematical structure, the iso-torque space

is a two-dimensional surface (six muscles forces and

four joint torque specifications). However, factoring

task performance noise, the iso-torque space may be

represented as a convex hull. Fig. 2a shows four iso-

torque spaces viewed in extrinsic muscle space. We

note that the solution space decreases in size as end-

effector force increases.

The iso-stiffness space Γk is the set of muscle

activation solutions that produce a specific end-effector

stiffness and may be defined as follows:

Γk = {α : ‖RT Km(fm)R − JT KeJ‖
2 < ǫ}, (6)

where Km(fm) ∈ R
6×6 is the muscle stiffness matrix

function and Ke ∈ R
3×3 the desired end-effector

stiffness. The iso-stiffness space is a non-linear space,

because of the exponential relationship between muscle

force and stiffness. Fig. 2b shows two iso-stiffness

surfaces for specific end-effector stiffness perpendicular

to the fingerpad. Note that the end-effector stiffness

varies as the square of moment arm.

The iso-effector space Γe is the set of muscle ac-

tivation solutions that produce a specific end-effector

force and stiffness combination and is defined as the

intersection of the iso-torque and iso-stiffness spaces:

Γe = Γt

⋂
Γk. (7)

Fig. 2c shows an iso-effector surface. The key point

with this section is that even when end-effector force,

stiffness, and posture are specified, the control space

still has redundancy.

III. PROBLEM STATEMENT

With several muscles actuating the index finger, the

central nervous system needs to choose solutions from

a redundant control space to satisfy tasks with force-

stiffness requirements (see section II-C). Given the

structure of the redundant space and the biomechanical

structure, we address the following questions.

First, we want to evaluate the redundant space

available for intrinsic and extrinsic muscles separately.

Given their differences in the moment arms and max-

imum forces, we want to identify the space available

for the controller to use. Second, given such a structure,

we evaluate the biological solutions used and how much

of the available control space is actually being used. If

the entire space is utilized, the central nervous system

may be treating the control space as an uncontrolled

manifold [21] or as a control knob with low gains.

But if the biological solution is using a small range

of available space, then there may be additional op-

timization criteria used to narrow down to a specific

solution. Finally, we are interested in understanding the



Fig. 2. (a) Four iso-torque planes with end-effector forces 2 N (T1), 6 N (T2), 10 N (T3), and 14 N (T4). (b) Two iso-stiffness surfaces

with end-effector stiffness in the range 528 to 672 N/m (P1) and 1372 to 1428 N/m (P2) . (c) The iso-effector space formed by intersecting

the T1 with P2.

implication of biological usage of extrinsic and intrinsic

muscles toward robotic design and controls.

IV. ANALYSIS

A. Comparison of Extrinsic and Intrinsic Muscle Con-

trol Spaces

Fig. 3 shows the iso-torque spaces for two different

end-effector forces computed using the ACT hand

model. An important aspect of the iso-torque space

is that end-effector stiffness varies across the plane.

For example, end-effector stiffness (perpendicular to

the fingerpad) across iso-torque space in Fig. 3a varies

between 238 and 1265 N/m, and the range matches

well with human fingertip stiffness reported in [18] (the

target fingertip forces are larger in [18] though). For the

purpose of visualization, we split each iso-torque space

into two regions (using the midpoint of the stiffness

range as threshold), a low stiffness region (blue) and a

high stiffness region (red). While the solution space

is cleanly divided into two stiffness regions in the

extrinsic muscle space, the low and high stiffness

solution spaces overlap in the intrinsic muscle space.

Furthermore, for a specified end-effector force accuracy

requirement, the allowable variability for intrinsic mus-

cle forces for a flexion task is greater than the allowable

variability for extrinsic muscle forces. For example,

with a permitted error of 5% on end-effector force, the

variability for extrinsic forces is less than 15% of the

available range, while the variability for intrinsic forces

is greater than 60%.

B. Human Experimental Procedure

To assess the biological strategy, human subject

experiments were conducted. Four subjects were asked

Fig. 3. The iso-torque planes for two end-effector forces: (a) 2 N,

and (b) 10 N. The blue region represents a low-stiffness solution

space and the red region a high-stiffness solution space.

to maintain a specific right index finger posture (45,

45, 10 degrees at the knuckle, middle, and tip joints)

while a force sensor was placed between their finger

pad and a hard surface. In each trial, they were in-

structed to press against the force sensor at 30% of

their comfortable maximum voluntary force (which was

typically between 2 and 3 N) with visual feedback for

about three seconds. Simultaneously, the subjects were

instructed to also hold a specific low or high stiffness

value according to their stiffness calibration proce-

dure (where they defined their own comfortable low and

high stiffness levels). Surface electromyographic data

was collected from one intrinsic muscle (RI) and three

extrinsic muscles (EI, FDS, and FDP). We note that



other muscles are more challenging to access through

surface electromyography. The experiment protocol

was approved by the University of Washington Human

Subjects Division.

C. Biological Extrinsic and Intrinsic Muscle Solutions

Table II presents mean and variability of RI muscle

activation, expressed as a ratio of the extrinsic flexor

and extensor muscle activation, for low and high stiff-

ness levels. We notice that RI’s muscle activation mean

and variation are significantly larger than the mean

and variation of extrinsic muscle activation. Also, the

fingertip stiffness maintained by the subjects, estimated

using the ACT hand model, is included in Table II

and compares well with the fingertip stiffness reported

in [18] (the target fingertip forces are larger in [18]

though).

D. Mapping Biological Solutions to Theoretical Space

Fig. 4 overlays human subject data onto the ex-

trinsic muscle-activation convex hull of the iso-torque

space T1 in Fig 2. The red blobs indicate the high-

stiffness solutions (with their standard deviation as the

radius) and the green blobs indicate the low-stiffness

solutions. As expected, the high-stiffness solution has

a greater muscle activation when compared with the

low-stiffness solution. We notice that the biological

solutions lie in the region of the convex hull.

Fig. 5 shows human subject data overlaid on to

two iso-effector spaces (computed using the ACT hand

model) viewed in the extrinsic muscle activation space.

While the force sensor was used to verify that end-

effector force was 2 N, stiffness on the other hand had

to be inferred from the biological solution. Specifically,

we used the mean activation of the extrinsic muscle

solution to compute end-effector stiffness. The first iso-

effector space’s (blue region) stiffness varied between

528 N/m and 672 N/m and the second iso-effector

space’s (red region) stiffness varied between 880 N/m

and 1120 N/m. The high-stiffness biological solution

volume was about 9% of the red iso-effector space

volume, and low-stiffness biological solution about 8%

relative of the blue iso-effector space volume.

Fig. 6 is equivalent to Fig. 5 for the intrinsic mus-

cle RI. The light color region indicates the iso-effector

space available for this specific task, and the dark color

indicates the biological solution used with its standard

deviation as its width. For our experiment, we only

recorded from RI, so we can make the comparison

only in a single dimensional space. We notice that the

Fig. 4. Extrinsic muscle activation data from three subjects overlaid

on the iso-torque space T1 in Fig 2. The target end-effector force

was 2 N. The green blobs represent the low-stiffness biological

solution and the red region the high-stiffness biological solution.

Fig. 5. Extrinsic muscle activation data from three subjects overlaid

on two iso-effector surfaces generated using the ACT hand model.

The target end-effector force was 2 N. The blue region represents

a low-stiffness (528 to 672 N/m) solution space and the red region

a high-stiffness solution space (880 to 1120 N/m). The green blobs

represent the low-stiffness biological solution and the red region

the high-stiffness biological solution.

biological solution is at the upper end of the available

solution space, and variability is large. It was noticed

that the RI muscle activation spanned about 36% of the

available control space at low stiffness and 94% of the

available control space at high stiffness.

V. DISCUSSION

A. Difference in Extrinsic and Intrinsic control space

From the ACT hand model, we notice a marked

difference in the control solution spaces for intrinsic



TABLE II

INTRINSIC MUSCLE ACTIVATION COMPARED WITH EXTRINSIC MUSCLE ACTIVATION

Fingertip Stiffness (N/m) Mean Variation

Intrinsic/Flexor Ratio Intrinsic/Extensor Ratio Intrinsic/Flexor Ratio Intrinsic/Extensor Ratio

Low [237, 804] 1.55 (0.48) 2.41 (0.36) 2.14 (0.75) 2.79 (0.90)

High [969, 1069] 1.20 (0.11) 1.72 (0.16) 1.39 (0.09) 2.16 (0.25)

Numbers in brackets represent standard error.

Fig. 6. Biological intrinsic muscle activation data (dark color)

overlaid on the available RI solution space (light color) generated

using the ACT hand model for a 2-3 N end-effector force. The

upper rectangles represent the solution space for low stiffness, and

lower rectangles the solution space for high stiffness.

and extrinsic muscles. For example, within an iso-

torque space, we notice that a range of intrinsic forces

is available to vary end-effector stiffness, whereas there

is a clear mapping between extrinsic muscle forces and

end-effector stiffness—end-effector stiffness increases

as extrinsic muscle force increases. Also, in a sen-

sitivity analysis of the muscle forces for a flexion

force-stiffness task, the extrinsic muscles have greater

sensitivity (less allowed variability) due to their large

moment arms.

B. Biological Strategies

Combining biological data and the ACT hand model,

we notice that RI muscle activation (an intrinsic mus-

cle) is high even though low-activation solutions are

available. Furthermore, we notice that RI’s muscle

activation is not controlled closely, since its spread

is much larger than the extrinsic muscle activation

spread and is large compared to the available solution

space (particularly at high-stiffness level).

C. Contribution of Intrinsic Muscles in Precision Con-

trol

Both extrinsic and intrinsic muscles have large so-

lution spaces (as can be inferred from Fig. 5’s scatter

and Fig. 6’s light shadow) which permit the central

nervous system choice in muscle strategies. However,

while the central nervous system was selective about

the control solution in extrinsic muscle space, it chose

to use a significant portion of the intrinsic solution

space. This interesting difference between the intrinsic

and extrinsic muscle usage could have resulted from

different factors. First, the intrinsic muscle space is an

uncontrolled manifold and holding a specific solution

is not a critical goal for the central nervous system. An-

other possibility is that the intrinsic muscle is actually

heavily used to make fine adjustment of the force and

stiffness magnitude and force for the fingertip. There

is also a possibility that the intrinsic muscles cannot

be controlled as precisely as the extrinsic muscles due

to the physiologic/neural structure. We now briefly

investigate each possibility.

From biological literature, the last option is not

true as it is possible to control intrinsic muscles even

more precisely with less motor noise than extrinsic

muscles [14]. The intrinsic muscle space has also been

shown to be well controlled by our group [1] and

others [17], so it is also likely not an uncontrolled

manifold. Therefore, we hypothesize that the intrinsic

muscle is actually heavily used to make fine adjust-

ment of the force and stiffness magnitude and force

for the fingertip. It is similar to having knobs with

different gains: If it is important to make fast and

large changes in force or stiffness, it is easier to do

so using a knob with high gain. And if it is important

to make potentially slow but precise quantity change

of force/stiffness, it is easier to do so using a knob

with smaller gain. Because of the intrinsic muscle’s

control space structure (see Fig 3), they are able to

act as the knobs with smaller gains for precise control.

In contrast, the extrinsic muscles which have large mo-

ment arms behave as actuators with large control gains.

Note that our results are based on the data for only one

intrinsic muscle and a more comprehensive validation

across multiple intrinsic muscles is required. Finally,

we note that increased biological solution variability

as actuation increases is expected, since motor noise

increases as actuation increases [23], [24].

D. Implication to Robotics

First, by studying biological solutions in parallel with

robotics models, we infer that redundant actuators with



low mechanical advantage in a task can still be utilized

to improve task stability in addition to providing a

choice in solutions. Second, the ACT hand has played a

significant role in this work helping estimate the human

hand’s moment arms. Many biomechanics studies have

to approximate human body kinematic parameters, be-

cause it is difficult to measure them. Now, the ACT

hand offers an alternative for hand research. Since the

ACT hand has been built to mimic the details of the

human hand, it provides a way to directly estimate var-

ious biomechanical parameters. Finally, as future work,

while we have previously explored some strategies the

central nervous system uses for transitioning between

tasks [3], it will be interesting to study path planning in

muscle-force space for dynamic movements using the

ACT hand framework.
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APPENDIX A

The extrinsic muscles are Extensor Indicis (EI),

Flexor Digitorum Profundus (FDP), and Flexor Dig-

itorum Superficialis (FDS), and the intrinsic muscles

are Palmar Interosseous (PI), Lumbrical (LUM), and

Radial Interosseous (RI).
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