
Shortcut Mining: Exploiting Cross-layer Shortcut Reuse in DCNN Accelerators

Arash Azizimazreah, and Lizhong Chen
School of Electrical Engineering and Computer Science

Oregon State University, USA
{azizimaa, chenliz}@oregonstate.edu

ABSTRACT

Off-chip memory traffic has been a major performance bot-
tleneck in deep learning accelerators. While reusing on-chip
data is a promising way to reduce off-chip traffic, the oppor-
tunity on reusing shortcut connection data in deep networks
(e.g., residual networks) have been largely neglected. Those
shortcut data accounts for nearly 40% of the total feature map
data. In this paper, we propose Shortcut Mining, a novel ap-
proach that “mines” the unexploited opportunity of on-chip
data reusing. We introduce the abstraction of logical buffers
to address the lack of flexibility in existing buffer architec-
ture, and then propose a sequence of procedures which, col-
lectively, can effectively reuse both shortcut and non-shortcut
feature maps. The proposed procedures are also able to reuse
shortcut data across any number of intermediate layers with-
out using additional buffer resources. Experiment results
from prototyping on FPGAs show that, the proposed Shortcut
Mining achieves 53.3%, 58%, and 43% reduction in off-chip
feature map traffic for SqueezeNet, ResNet-34, and ResNet-
152, respectively and a 1.93X increase in throughput com-
pared with a state-of-the-art accelerator.

1. INTRODUCTION

 State-of-the-art deep learning models, especially deep con-
volutional neural networks (DCNNs), can achieve a surpris-
ingly high accuracy in a wide range of tasks, thus are being
deployed in many conventional and emerging fields. Due to
the special computation and memory behaviors of DCNNs,
hardware accelerators have become increasingly important to
achieve the speedup and power efficiency that are not possi-
ble in today’s general-purpose platforms. However, because
of the memory intensive nature of DCNNs, a considerable
amount of off-chip memory traffic can be generated by the
accelerators to access feature maps and weights. These off-
chip accesses are extremely costly in terms of both latency
and energy [35]. Unfortunately, the situation is only getting
worse as deep learning models have started to employ a large
number of convolutional neural network (CNN) layers for
higher accuracy, with some exceeding a thousand layers [9].
 A very promising approach to mitigate this issue directly is
to increase on-chip data reuse. While limited prior work has
investigated some reuse scenarios (e.g., [2][4][20]), recent
advancement in DCNNs and hardware platforms have led to
changed behaviors and properties of the network models,
which results in new opportunities for data reusing. First, the
percentage of off-chip data from feature maps increases rap-
idly (e.g., up 72% in SqeezeNet; more detail in Section 2).
This is mainly because of deeper networks and an outburst of
optimizations in reducing weight data. Hence, there is a
pressing need to reduce off-chip feature map traffic. Second,

shortcut connections are being introduced to address the gra-
dient “wash out” problem in deep structures, which is critical
in developing highly accurate CNNs [9][13][34][38]. Fig. 1
shows the building blocks of a plain network (Squeeze-Net
[14]) and two residual networks including ResNet-34 and
ResNet-152 [9]. The ResNet-152, for example, includes 50
shortcut connections that account for nearly 40% of the fea-
ture map data. This presents a significant, unexplored oppor-
tunity for reusing the shortcut data. Third, data reusing is
made more viable by the continuing advancement in manu-
facturing technology. A number of FPGA and other acceler-
ator platforms (e.g., [36][41][15][40][11]) have on-chip buff-
ers that can fit a considerable portion or even all of the data
for a CNN layer. Therefore, a substantial amount of shortcut
and non-shortcut feature map data remains on-chip at the end
of a layer processing, which can and should be exploited for
reuse. To-date, little work has been conducted to exploit the
new opportunities discussed above.
 In this work, we propose Shortcut Mining (SCM), a novel
approach that “mines” the largely unexplored opportunity of
reusing shortcut and feature map data to reduce off-chip traf-
fic. To achieve this objective, several major challenges must
be addressed: (1) the lack of flexibility in existing buffer ar-
chitecture prevents on-chip buffers from being allocated and
utilized at the needed granularity; (2) reusing shortcut data
requires the data to be somehow preserved across multiple
layers, which is difficulty without incurring extra buffer over-
head; and (3) it is challenging to provide a unified solution
that works for different networks, as the building block could
contain an arbitrary number of layers. Thus, the shortcut data
needs to be preserved for any number of layers.
 In this paper, we address the first challenge by introducing
the use of logical buffers that are formed dynamically from a
pool of physical buffer banks. This allows buffer operations

Fig. 1: Plain networks (a) and networks with shortcut (b)(c).

X ShortcutPlain Networks

Block with Two CNN Layers and
Shortcut Connection

X

Layer i

Layer i

Layer i+1

+

X Shortcut

Layer i

Layer i+1

+

Layer i+2

e.g. SqueezeNet

e.g. ResNet-34
e.g. ResNet-152

Y

Y

Y

Y’’

Y’

Y’’

Y’’’

Y’

Block with Three CNN Layers and
Shortcut Connection

(a)

(b)

(c)

to be done at individual bank level, without physically mov-
ing the data. Enabled by this, we develop three procedures,
namely Prolog, Kernel and Epilog, that work collaboratively
to allow shortcut data to be reused across any number of lay-
ers in the building block of DCNNs. On the high level, the
basic idea is for the Prolog procedure to save the shortcut data
of a CNN layer in a certain region of the on-chip buffer called
the invariant buffer space. Later after several layers, the Epi-
log procedure can restore the shortcut data from the invariant
buffer space for the shortcut to be reused. In the meantime,
the Kernel procedure is executed multiple times, one for each
layer in a building block. At each layer, the Kernel reuses the
non-shortcut feature maps of the previous layer as the input
of the current layer and, at the same time, keep the invariant
buffer space untouched, regardless of how many times the
Kernel is executed. The collective result of the three proce-
dures is that shortcut feature maps are preserved across layers
while non-shortcut feature maps are reused immediately after
each layer. All these operations are achieved without using
additional buffer resources. Experiment results from proto-
typing on FPGAs show that, the proposed Shortcut Mining is
able to achieve 53.3%, 58%, and 43% reduction in off-chip
feature map traffic for SqueezeNet, ResNet-34, and ResNet-
152, respectively and a 1.93X increase in performance (infer-
ence operation throughput) compared with a state-of-the-art
DCNN accelerator. The main contributions of this paper are
the following:
• Identifying new opportunities in reusing on-chip feature

map and shortcut data in DCNN accelerators
• Developing a novel scheme to solve the difficult problem

of reusing shortcut data across any number of layers
• Demonstrating the effectiveness of the proposed scheme

by implementing on FPGAs
 The rest of this paper is organized as follows. Section 2 pro-
vides more background and motivation on the reusing oppor-
tunity of on-chip data in DCNN accelerators. Section 3 illus-
trates the associated challenges. In Section 4, we describe the
proposed scheme and architecture in detail. The accelerator
implementation is explained in Section 5, and evaluation re-
sults and analysis are presented in Section 6. Finally, related
work is summarized in Section 7, and Section 8 concludes
this paper.

2. BACKGROUND AND MOTIVATION

2.1 DCNN Accelerator Architecture
 Current state-of-the-art DCNN accelerators use a convolu-
tion layer processor (CLP) to evaluate each CNN layer se-
quentially [15]. A general CLP has an array of processing el-
ements (PEs) and various on-chip buffers. As shown in Fig.
2, the processing element (PE) array fetches input feature
maps (IFMs) from the input buffer, weights from the weight

buffer, shortcut connection data from the shortcut buffer, and
then calculates output feature maps (OFMs) that are put into
the output buffer. If multiple iterations are needed to generate
the OFMs, the PE array also loads the partial sum (PSUM)
that contains the partial OFMs accumulated so far, and then
outputs the updated PSUM or the final OFMs to the output
buffer. The granularity of a PE cell can vary from a simple
multiplier-and-adder (fine-grained) such as in Google TPUs
[15] where PE cells are arranged in a two-dimensional sys-
tolic array, to a vector-dot-product engine (coarse-grained)
such as in Microsoft’s BrainWave DPUs [12]. In either case,
a critical design consideration is to reduce off-chip memory
accesses that have long latency and large power consumption.
Consequently, several techniques are commonly adopted in
designing the on-chip buffers in DCNN accelerators, as de-
scribed below.
 Banked On-chip Buffer Designs: Recent DCNN acceler-
ators, both on ASIC and FPGA based platforms, have started
to provide large on-chip buffers (e.g., [22][36][40][41], and
TPU has 28MB of on-chip buffer capacity [15]). Like off-
chip memory designs, a large on-chip buffer can be parti-
tioned into smaller banks in order to avoid long word-lines
and bit-lines that have high capacitance [8]. Moreover,
banked buffers provide more read and write ports, allowing
multiple simultaneous accesses to IFMs, weights, shortcut
connections, and OFMs. Therefore, the banked organization
is essential for low-latency, energy-efficient, and high-band-
width data transfer between the PE array and on-chip buffers
[4][5].
 Tiling Techniques: As feature maps can be larger than the
on-chip input and output buffers, tiling techniques are often
used to reduce the requirement of on-chip buffer sizes
[23][27]. As depicted in Fig. 3, IFMs (N×R×C) and OFMs
(M×R×C) are organized in three dimensional structures. With
tiling factors of Tin, Tr and Tc for IFMs, the IFMs can be di-
vided into ቒ ே்ቓ ൈ ቒோ்ೝቓ ൈ ቒ ்ቓ tiles; in each iteration, Tin IFM tiles
are loaded into the input buffer. Similarly, the OFMs are di-
vided into ቒ ெ்ೠቓ ൈ ቒோ்ೝቓ ൈ ቒ ்ቓ tiles. As the Tin IFM tiles may not

Fig. 5: Feature map data in various ResNets.

Fig. 2: Convolution layer processor (CLP) datapath.

PE
Cell

PE
Cell

inter-PE
network

Off-chip Data Transfer Module

Weight Buffers

PSUM/OFMs

Off-Chip
Memory

Off-Chip
Bus

PE
Cell

PE
Cell

Control Unit

IFM Buffer

OFM Buffer

Buffer Bank

PSUM

Shortcut Buffer

ShortcutsIFMs

Weights

Fig. 3: Tiling and ping-pong buffers in a CLP.

Off-Chip Memory
Active

Inactive

PE array

R

N

Input Feature Maps
C

M

Output Feature Maps

IFMsWeights PSUM PSUM /OFMs
Input Buffer Output Buffer

On-Chip Memory BanksBanks

shortcuts

N=#IFMs, M=#OFMs, R= #Rows, C= #Columns

include all the IFM tiles that are required to calculate an OFM
tile, multiple iterations of input loading and calculation may
be needed, and partial sum is generated and accumulated in
each iteration1.
 Ping-Pong Buffers: Due to large off-chip latency, many
DCNN accelerators (e.g., [29][30][23][42][2][15][17][35])
use the decoupled access/execute architecture [31] to overlap
communication latency with computation time. This is re-
ferred to as the ping-pong buffer technique in a CLP. As
shown in Fig. 3, the input and output buffers (blacked rectan-
gles) that are being used by the PEs during the current itera-
tion are called active input and active output buffers, respec-
tively. The other set of input and output buffers are called in-
active input and output buffers. The inactive input buffer is
used to preload the Tin IFM tiles that are needed by the next
iteration; whereas the inactive output buffer temporarily
holds the Tout OFM tiles from the last iteration while those
tiles are being written to the off-chip memory. The ping-pong
buffer hides off-chip memory access latency by overlapping
loading/storing data with computation. The weight and
shortcut buffers work in a similar manner but are omitted in
Fig. 3 for better clarity.

2.2 Need for Reducing Off-chip Feature Map Traffic
 While the above optimizations have helped to improve the
memory system of DCNN accelerators, there remains a sig-
nificant need to reduce off-chip memory traffic, particularly
from loading and storing feature maps. First, it is imperative
and beneficial to minimize all types of off-chip traffic due to
its large delay and energy consumption, e.g., only 1pJ for a
32-bit floating point addition but 640pJ for accessing a 32-bit
word in DRAM under 45nm CMOS technology [7][10]. Sec-
ond, there is an emerging need to reduce off-chip traffic that
is caused by feature maps. This is due to the fact that, as deep
learning models evolve to deeper structures, the percentage
of data from feature maps increases rapidly. For instance, fea-
ture maps account for 25% data in earlier models such as
AlexNet, but become more than 50% in recent models such
as VGG and GoogLeNet [2].
 Moreover, the phenomenon is becoming more and more ev-
ident as existing techniques in reducing data from weights
and from feature maps are not equally effective. A great deal
of effort has been made to reduce the size of weights such as

1 If the size of the input PE array (Tn) is smaller than input buffer size Tin, another level
of tiling can be performed to use the PE array multiple times to consume Tin IFM tiles.

pruning [14][18][7] and re-architecting CNN networks [14],
most of which have been quite effective. For example, by em-
ploying filter (weight) pruning, the parameters of ResNet-101
and VGG-16 are reduced by 32.4% and 64%, respectively
[18], and SqueezeNet is able to reach the accuracy of AlexNet
but with 50X smaller weight data [14]. Also, by using batch
processing, weights can be further reduced as they are reused
for multiple inputs. In comparison, it is more difficult to re-
duce feature map data. Even for well-designed feature map
compression techniques, the effectiveness is still limited and
depends on input data (e.g., less 2X reduction for AlexNet
[4]). In Fig. 4, we have examined the off-chip traffic of a
SqueezeNet with 26 layers (2 CNN layers, plus 8 fire mod-
ules each having 3 layers). As can be seen, feature map traffic
is predominant in 22 out of the 26 layers. On average, feature
maps account for nearly 72% of the total off-chip traffic, ex-
emplifying a pressing need to reduce this type of traffic.

2.3 Opportunity for Reusing Feature Maps
 As the output feature maps of the previous layer are the in-
put feature maps of the next layer, a promising way to reduce
off-chip feature map traffic is to increase on-chip data reuse.
As shown in Fig. 3, when a layer completes the computation
of the last iteration, Tout OFM tiles remain in the on-chip ac-
tive output buffer. With larger on-chip buffers, more OFM
tiles can be kept on-chip and reused without having to fetch
from the off-chip memory. In the ideal case, if the output
buffer is large enough to hold all the OFMs of layer i, no
IFMs of layer i+1 need to be fetched. While this might seem
as a wishful thinking in the past, recent process technologies
have made this a reality for the most part.
 To understand this better, Table 1 lists the available on-chip
buffers and process technology for several modern accelera-
tor platforms including Xilinx UltraScale+ VU37P FPGA,
Google’s TPU chip, Intel Stratix 10 FPGA which is used to
implement Microsoft BrainWave DPU, and Xilinx Virtex-7
690T. These platforms all provide megabytes of on-chip buff-
ers. To put the numbers in Table 1 in perspective, the four
largest CNN layers in ResNet-152 require 9.19MB, 6.95MB,
3.7MB, and 2.27MB of data, respectively, in 32-bit floating
point. These examples demonstrate that modern acceleration
platforms, in theory, have on-chip buffers that are large
enough to hold a considerable portion or even all of the data
for a CNN layer. This offers a new opportunity in reusing
feature map data and should be exploited.

2.4 Opportunity for Reusing Shortcut Connection Data
 Another largely unexplored opportunity that can greatly re-
duce off-chip traffic is to reuse shortcut connection data. For

Fig. 4: Off-chip traffic breakdown for SqueezeNet.

0

1

2

3

4

5

6

7

8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

To
ta

l

O
ff

-c
hi

p
tr

af
fic

 b
et

w
ee

n
ac

ce
le

ra
to

r a
nd

 D
RA

M
 (M

B)

CNN Layer

Weights Feature Maps

72%

28%

Table 1: On-chip buffers in several modern platforms.

Chips
On-Chip
Buffers

Process
Technology

Xilinx Virtex UltraScale+
VU37P [36][41][40]

47.2 MB 16nm

Google’s TPU [15] 28MB 28nm

Intel Stratix 10 TX 2800 [11] 30.5MB 14nm

Xilinx Virtex-7 690T [22] 7.79MB 28nm

plain networks such as the SqueezeNet example in Fig. 4, the
input feature maps of a layer are all from the output feature
maps of the previous layer. However, it has been shown that
it is essential to have shortcut connections for very deep net-
works to achieve high accuracy [9][13]. This results in the so-
called residual networks, such as ResNets [9], Wide Residual
Networks[44], ResNeXt[38]. In these networks, the input
feature maps of a layer may include the feature maps of one
or multiple previous layers. In other words, there are shortcut
connections that forward the IFMs of layer i to subsequent
convolutional layers that are not directly connected (e.g. layer
i+2, layer i+3, etc.). These shortcut connections change the
composition of feature map data. Fig. 5 plots the breakdown
of input feature maps for different residual DCNNs. As can
be seen, 30% to 40% of all the IFMs are shortcut connections.
In particular, ResNet-152 has 50 shortcut connections, which
accounts for around 40% of the IFMs that could be reused.
 Unfortunately, despite the considerable amount of shortcut
connection data, little research has been conducted to explore
this opportunity. While related work is discussed in detail in
Section 7, most existing works (e.g., [42][3][4][24][19]) fo-
cus on optimization within a single CNN layer, such as loop
operations. However, at the end of a layer processing, the
OFMs in the on-chip output buffer still need to be written to
off-chip memory (see Fig. 3), and the IFMs of the next layer
need to be fetched from the memory again. Both shortcut and
non-short IFMs are not reused in this case. Another interest-
ing approach, fused-CNN [2], cascades multiple layers to-
gether to avoid off-chip accesses. All the intermediate tiles
for the fused layers are held on-chip which results in consid-
erable on-chip memory (e.g., 5 layers of VGGNet-E already
consumes 85% of the BRAMs in Xilinx Virtex-7 [2]). Thus,
while the fused-CNN works very well for shallow networks
such as AlexNet and VGGNets, it is less effective for recent
deeper networks (where shortcut connections are prevalent)
due to its relatively large on-chip memory requirement.

3. CHALLENGES FOR CROSS-LAYER REUSING

 With the need for reusing shortcut and non-shortcut feature
maps, and the physical feasibility from large on-chip buffers,
this section analyzes several main limiting factors and chal-
lenges that must be addressed to realize effective cross-layer
data reusing.

3.1 Providing Flexible Buffer Architecture
 The current buffer architecture shown in Fig. 3 is static in
the sense that input buffers are always used for PE input and
output buffers are always used for PE output. This would be
very inefficient for cross-layer data reuse where the role of a
given feature map may be switched dynamically between in-
put and output, as well as between active and inactive.
 Additionally, the granularity of buffer allocation is at the
set level rather than at the bank level. That is, multiple banks
are grouped together as a set (e.g., the inactive output buffer).
As data in this buffer is being written to off-chip memory,
more and more banks in this output buffer become available.
However, the newly available banks remain unused (locked)
until the entire inactive output buffer finishes writing. We
have derived that the best bank utilization at the set-level is
(1/2+1/Tout), which is merely 0.51 for an AlexNet implemen-
tation on Xilinx Virtex-7 485T.

 These limitations call for a more flexible buffer architecture
where buffer banks can be allocated at a finer granularity and
their status can be switched dynamically without physically
moving/copying data.

3.2 Finding Buffer Space for Shortcuts
 By definition, shortcut connection data are not consumed
immediately in the next layer. To reuse them, we need to keep
those data on-chip until multiple layers have been processed.
During this period, some buffer space is needed to hold the
shortcut connections. However, budgeting a separate buffer
just for storing shortcut data may not be the most cost-effec-
tive solution, as the extra buffer resources could likely be uti-
lized better for other purposes. Meanwhile, it is challenging
to find space to hold the shortcut data with only existing buff-
ers, as those buffers are being used continuously as input and
output. Therefore, a clever solution to solve this dilemma is
much needed.

3.3 Devising Unified Solution for Various Networks
 Perhaps the most challenging part is to devise a unified ar-
chitecture that can reuse data for various neural network mod-
els. As depicted in Fig. 1, neural networks come in different
forms. Plain networks have no shortcut at all; whereas resid-
ual networks have shortcut connections that may cross a var-
ying number of layers. A special procedure may be developed
to find extra buffer space and reuse shortcut data for residual
networks with 2-layer building blocks (i.e., depth of 2). Such
procedure may not work for residual networks with building
blocks of depth of 3, since the shortcut data needs to be kept
on-chip for a longer time. To make things worse, given the
trend for deeper neural networks and the pursuit for higher
accuracy, future networks will likely have shortcut connec-
tions that span more layers, or even have building blocks of
different depths in a single network. Therefore, it is important
to develop a unified scheme that can handle different building
blocks and thus have wide applicability. This is a main objec-
tive of the proposed work.

4. PROPOSED APPROACH

4.1 Basic Idea
 In this work, we propose Shortcut Mining (SCM), a novel
yet effective scheme that “mines” the largely unexplored op-
portunity of reusing shortcut and feature map data to reduce
off-chip traffic. To allow flexible and fine-grained allocation
of on-chip buffers, we first introduce the abstraction of logi-
cal buffers. Those logical buffers are dynamically formed
from a pool of individual physical buffer banks, allowing re-
usable data to be switched easily between input and output
and be used at the per bank level. This decoupled physical-
logical buffer structure provides the basis for the main
shortcut mining operations.
 The key part of the proposed scheme is a sequence of oper-
ations that allow shortcut data to be reused across any number
of layers in the building block of DCNNs. To achieve this
ambitious goal, we develop three procedures, namely Prolog,
Kernel and Epilog, that work collectively. The Prolog proce-
dure saves the shortcut data of a CNN layer in certain region
of the on-chip buffer. The shortcut data can be restored by the
Epilog procedure several layers later when the shortcut data

is supposed to be consumed. During this time, the Kernel pro-
cedure is executed multiple times, one for each layer in a
building block. At each Kernel execution, the Kernel reuses
the non-shortcut OFMs of the previous layer as the IFMs of
the current layer and, more importantly, does not touch the
region of the buffer where the shortcut data is saved by the
Prolog. Thus, shortcut feature maps are preserved across lay-
ers while non-shortcut feature maps are reused immediately
after each layer. It is important to note that all these opera-
tions are achieved without using additional buffer resources
other than what are already provided. This requires clever de-
signs and uses of the on-chip buffers, as the existing input and
output buffers have their assigned functionalities.
 Fig. 6 depicts the overall structure of the proposed acceler-
ator. The structure is similar to existing ones by the looks of
it, as the PE array still reads various inputs from the buffer,
computes the output of a layer, and stores the results back to
the buffer. The main differences, however, are the addition of
logical buffers and, more importantly, the procedures to reuse
feature maps as much as possible. The latter is included as
part of the “Layer Unit Operation” box on the left side, so the
procedures are not directly visible in Fig. 6 but are explained
in detail in the following subsections.

4.2 Preliminary: Decoupled Physical-Logical Buffers
 As the basis for enabling various buffer operations of the
proposed three procedures, we first present the flexible buffer
architecture. The main idea is to introduce a level of abstrac-
tion called logical buffers between the PE array and physical
buffer banks. During runtime, the logical buffers are created
and constructed dynamically from a pool of physical banks.
 Fig. 7a demonstrates how this is done. Each physical bank
in the pool is uniquely identified by an index. A logical buffer
is formed by having a tracking array that holds the indices of
the physical banks that currently belong to the logic buffer.
Four logical buffers are formed in this way, namely active
input buffer, inactive input buffer, active output buffer, and
inactive output buffer. For example, the logical inactive input
buffer in Fig. 7a is constructed from physical buffer banks 2
and 3. A logical buffer can be reconstructed dynamically with
a new set of physical banks by updating the tracking array.
 Fig. 7b illustrates how this flexibility can be used for reus-
ing feature maps. Assume that at this clock cycle four OFMs
of a CNN layer i-1 are stored in the logical inactive output

buffer (assuming one OFM in one physical bank for simplic-
ity). Instead of writing the OFMs to off-chip memory, two
banks of the logical inactive output buffer can be exchanged
with the two banks of the logical active input buffer, thereby
reusing the OFMs of layer i-1 as the IFMs of layer i. The bank
exchange is achieved simply by exchanging the indices in the
tracking arrays, rather than copying data across banks physi-
cally.

While the idea of decoupled physical-logical buffer seems
straightforward, it addresses the static bank assignment and
the coarse-grained allocation issue nicely. First, each physi-
cal bank can be used dynamically as input or output, thus no
longer being statically assigned. Second, physical resources
are allocated at the per bank level, thus allowing individual
banks to be utilized as soon as they become free. This greatly
increases the utilization of on-chip buffers.

4.3 Kernel Procedure
 The Kernel procedure has two goals: (1) reusing the avail-
able on-chip OFMs of the previous CNN layer (layer i-1) as
the IFMs of layer i to produce the OFMs of layer i, as indi-
cated by the red arrow in Fig. 8a. That is, instead of writing
those reusable OFM tiles to off-chip and fetching them again,
the Kernel directly reuses those OFM data; (2) keeping a cer-
tain region of the buffer space, referred to as the invariant
buffer space, untouched throughout the operations of the Ker-
nel. The invariant buffer space is used to preserve shortcut
data (saved by the Prolog) that is not meant for layer i. Note
that plain networks do not have shortcut connections, so ap-
plying the Kernel is sufficient for reusing feature maps for
plain networks, without the need for the Prolog and Epilog.
 For easier explanation, we divide the Kernel procedure into
two phrases: Reuse and Preload/Write Back. The Reuse phase
reuses the OFMs of layer i-1 that are still in the active output
buffer at the end of layer i-1 processing. Due to the limited
size of output buffer, the above OFMs may not include all the
OFMs of layer i-1, so additional loading may be needed to
fetch the rest OFMs from the off-chip memory. This is han-
dled by the Preload/Write Back phase, which preloads the re-
maining OFMs of layer i-1 (i.e., the IFMs of layer i) to the
inactive buffer, in parallel with computation. This phase also
writes the computed OFMs back to off-chip when needed.

Fig. 6: Accelerator with the proposed Shortcut Mining.

×

×

×

×

+

+

Weights

Z=#Banks=2×(Tin+Tout)

ࢀ Words

ࢀ Words

ࢀ Words

Weights

Layer Unit
Operations

(Control,
Batch Norm,

Pooling,
ReLU,)

Tree Adder

PE Array

PSUM/
Shrtcut

IFM

OFM/
PSUM

W:Write Port, R:Read Port

In
te

rc
on

ne
ct

Po
ol

 o
f B

an
ks

Lo
gi

ca
l B

uf
fe

r n

R
W

0
1

X-1

X

Y
Y+1

Z-2

Z-1

Lo
gi

ca
l B

uf
fe

r 0

Buffer Banks

Index

Fig. 7: Logical buffers are formed by using tracking arrays.

(a)

(b)

RW

PE array

Active In Inactive In Active Out Inactive Out
Tracking Arrays

0 1 2 3 4 5 6 7 8 9 10 11

Exchange “Active In” with “Inactive Out”

0 1 2 3 4 5 6 7 8 9 10 11

W: Write Port
R: Read Port

Active data
Inactive data

Active In Inactive In Active Out Inactive Out
Tracking Arrays

RW

12 3 4 5 6 7 8 9 011

0 1 2 3 4 5 6 7 8 9 10 11

PE array

10

Logical buffers

Physical pool

Logical buffers

Physical pool

 Fig. 8b demonstrates how the Kernel achieves its two goals
during its execution for layer i with a walk-through example.
In Fig. 8b, each small vertical rectangle is a buffer bank. In
this example, layer i-1 produces 4 OFMs which become the
4 IFMs of layer i. Layer i then produces 8 OFMs. Also as-
sume that the accelerator has Tin =2 and Tout =4 (i.e., 2 banks
in the active input buffer and 4 banks in the active output
buffer). If each buffer bank can store one feature map, this
setting means that, in one iteration, the accelerator can read
in 2 IFMs and computes the convolution results for 4 partial
OFMs. Two iterations are needed, in order to load all the 4
IFMs that are needed to compute the four final OFMs (OFMs
1 to 4) of layer i. Similarly, another two iterations are needed
to produce OFMs 5 to 8.
 Reuse Phase: At the end of layer i-1, two IFMs and four
OFMs of this layer remain on-chip as shown in Fig. 8b-La-
bel❶ by the red rectangles. This is the initial state of the Ker-
nel. In order to reuse the four OFMs, the active output banks
are exchanged with the inactive output banks as shown in La-
bel❷. Again, this is done through updating the tracking ar-
rays, not moving data physically. Then, the inactive output
banks (which now contains the four OFMs) are marked as the
reusable IFMs (striped blue rectangles). Also, the current
IFMs in the active input buffer are discarded because they are
the old IFMs of layer i-1. This makes the active input banks
empty, represented as white rectangles. The reuse process is
started by exchanging the active input banks with two of the

inactive output banks as shown in Label❸, so the active in-
put banks contain the reusable IFMs that can be fed to the PE
array for computation. Label❹ shows the status of the accel-
erator after performing the previous exchange. The active in-
put banks contain two IFMs (blue rectangles). The PE array
is highlighted in yellow to indicate that it has started the com-
putation to produce part of OFMs 1-4 in the active output
buffer (indicated by yellow rectangles). After finishing the
computation, the Kernel can mark the active input banks as
empty banks again. By another round of exchange in La-
bel❺, the rest of the reused IFMs are consumed by the PE
array in Label❻. After ❻, the final OFMs 1-4 are computed.
Note that those OFMs could be all the OFMs that need to be
computed for layer i, if the PE array and the output buffer are
large enough. In this example, however, OFMs have to be
computed in two batches, so additional preloading is needed
for OFMs 5-8, as explained below.
 Preload and Write Back Phase: To compute OFMs 5-8,
two IFMs needed to be fetched from off-chip. This is done as
a preloading operation in Label❻, while the PE array is com-
puting OFMs 1-4. The preloaded IFMs are stored in the inac-
tive output buffer (which has been emptied in ❸), so no ad-
ditional buffer space is needed. Then, the two banks in the
inactive output buffer that contain the preloaded IFMs are ex-
changed with the active input banks, as shown in Label❼.
Note that, at this time, OFMs 1-4 have been computed and

Fig. 8: Illustration of the Kernel procedure for reusing the OFMs of layer i-1 as the IFMs of layer i.

ExchangeExchange

Exchange

PE array computing OFMs 1-4,
overlapped with off-chip preloading

PE array

In Out

`

3 4

5 6
8

9a
7

Off-Chip
Memory

IFMs

OFMs

9b

Off-Chip
Memory OFMs

10

Exchange PE array computing OFMs 1-4

Exchange PE array computing OFMs 5-8

PE array computing OFMs 5-8, overlapped with
off-chip storing of OFMs 1-4 and IFM preloading

PE array computing OFMs 5-8,
overlapped with off-chip preloading

Exchange and Update2

Bank Status
Inactive & Empty Active & Empty

Active & Contain FMs from Layer i-1

Inactive & Contain Reusable IFM Active & Contain PSUM
Active & Contain IFM

Inactive & Contain Pre-loaded IFM
Active & Contain OFM
Inactive & Contain OFM

PE array

In Out

PE array

In Out

PE array

In Out

PE array

In Out

PE array

In Out

PE array

In Out

PE array

In Out

PE array

In Out

PE array

In Out

PE array

In Out

OFMs (a)

(b)

11

Initial State1

Final State12

PE array

In Out

Layer i-1 Layer i

IFMs

Off-Chip
Memory

IFMs

IFMs OFMs Start

End

Start

End

End

Start

End

Start
Off-Chip
On-Chip

stored in the active output banks (black rectangles). There-
fore, following the exchange in ❼, all the active output banks
are exchanged with the inactive output banks as shown in La-
bel❽, so OFMs 1-4 can start to be written back to the off-
chip memory2. After ❼	and ❽, Label❾a shows the instan-
taneous state that there is no empty bank on the output side,
since the PE array is producing part of OFMs 5-8 to the active
output buffer; whereas the inactive output banks contain
OFMs 1-4. In order to preload the next two IFMs to complete
the computation OFMs 5-8, three operations are taking place
in Label❾b: (1) the PE array is computing part of OFMs 5-
8, (2) OFMs 1-4 are being stored to off-chip, and (3) as soon
as one of the OFMs 1-4 finishes storing, an IFM can be pre-
loaded to the newly freed bank in the inactive output buffer.
Here, the bank-level granularity of the proposed buffer archi-
tecture is exploited. Once two IFMs are preloaded in the in-
active output banks, they are exchanged with the active input
banks as shown in Label❿. In Label	⓫, the PE array is fin-
ishing up the computation of OFMs 5-8, and the remaining
OFMs 1-4 in the inactive output banks are also finishing up
the writing to off-chip memory. The final state in Label⓬
has the similar “format” as the initial state, containing only
the IFMs and OFMs of layer i in the active input and output

2 In this example, the preloaded two IFMs from Label ❼ are used to compute OFMs
5-8. However, if more IFMs are needed to compute OFMs 1-4, we can simply repeat
Labels ❻ and ❼	until OFMs 1-4 are computed.

buffers, respectively. In this way, if this is a multi-layer build-
ing block, the next Kernel execution can be readily applied
after ⓬. Note that OFMs 5-8 can be written down to off-chip
memory through reusing steps (❸	to	❻)	of next kernel if
they are needed later in the layer processing after reuse.
 Note that, throughout the steps of the above example, we
deliberately avoid using the inactive input buffer. Even if the
Kernel is executed multiple times, this buffer space would
still be untouched. Therefore, without using additional buffer
resources, we have obtained the invariant buffer space that is
needed to preserve the cross-layer shortcut data.

4.4 Prolog and Epilog for Shortcut Reuse
 As mentioned, plain networks can apply the Kernel proce-
dure once to reuse feature maps. For networks with shortcut
connections, Prolog and Epilog are needed, along with mul-
tiple executions of Kernel. Without loss of generality, we use
a residual network with 3-layer building blocks as an exam-
ple to explain the operations. As shown in Fig. 9a, reusing
shortcut data means to save the IFMs of layer i, preserve the
data while layer i, layer i+1 and layer i+2 are processed, and
then restores the data and add to the OFMs of layer i+2.
 We first describe the Prolog procedure, which is simply to

Fig. 9: Prolog and Epilog procedures.

X Shortcut

Layer i

Layer i+1

+

Layer i+2

(a)

Y

Y’

Y’’

Y’’’

1

(c) Epilog (E) sub-procedure
Shortcut Preloading overleaped
with last PE array computation

In Out

Off-Chip
Memory

Shortcut

PE array

Final State

In Out

PE array

Exchange2

In Out

PE array

OutIn

PE array

OutIn

PE array

Exchange & Update

(b) Prolog (P) sub-procedure

Final State

Inactive & Empty

Active & Empty

Active & Contain IFM

Bank Status

Active & Contain PSUM

5 Inactive & Contain Pre-loaded shortcut
Inactive & Contain Reusable shortcut

Active & Contain OFM

Fig. 10: Illustration of Shortcut Mining for a residual building block with three CNN layers.

Layer i Layer i+1 Layer i+2

1st	KernelProlog

IFMs OFMs IFMs OFMs IFMs OFMs

+2nd Kernel 3rd	KernelEpilog
Off-Chip
On-Chip

Shortcut	connection

exchange the active input banks that contains the IFMs with
the inactive input banks, and mark it as the reusable shortcut
data, as shown in Fig. 9b. Although the procedure is simple,
care needs to be taken on when the Prolog is applied. Recall
that in Fig. 8 Label❶, the IFMs in the active input buffer are
actually the IFMs of layer i-1. Therefore, at the beginning of
the first Kernel in Fig. 10, the IFMs in the input buffer are not
the intended shortcut in Fig. 9a, and the Prolog should not be
applied at that step. Instead, Fig. 8 shows that the actual IFMs
of layer i are available at Label❹ at the earliest time, and will
no longer be used after Label❺. Based on this, the Prolog is
executed at the end of Label❹, to exchange and then save
the shortcut data in the inactive input buffer (i.e., the invariant
buffer).
 Fig. 9c shows the Epilog procedure. A direct objective is to
restore the saved shortcut data, which is achieved by the ex-
change in Label❷. While we can define the Epilog just like
that, it is possible that the output buffer size Tout is larger than
the input buffer size Tin, so additional empty banks are avail-
able in the inactive output buffer. To make full use of the
buffer space, we add a preloading step to the Epilog, as shown
in Label ❶, to preload (Tout – Tin) shortcut data from off-chip.
This step is done prior to the above exchange step, so as to
overlap the preloading with PE array computation. The final
state of the Epilog has Tout shortcut data ready to be used.
 Similar to the Prolog which is executed in parallel with the
first Kernel, the Epilog is executed in parallel with the third
Kernel, as shown in Fig. 10. Specially, the Epilog can be ap-
plied at Labels ⓫ and ⓬ in Fig. 8 (imagine that the figure
now represents the Kernel for layer i+2) to preload and as-
semble Tout shortcut data in the inactive output buffer. How-
ever, additional time is needed to add the shortcut in the in-
active output buffer with the data in the active output buffer
(OFMs of layer i+2), because the summation is what is actu-
ally needed to the next building block, as shown in Fig. 9a.
Alternatively, to avoid the additional time, the Epilog can be
applied in parallel with Label❶ of the third Kernel, so the
Tout shortcut data is preloaded into the inactive output buffer
at Label❶ (the preloading itself is overlapped with the PE
array computation of the previous Kernel). This shortcut data
is exchanged to the active output buffer in Label❷ and accu-
mulated with the PSUM of OFMs 1-4 in Label❹ automati-
cally, thanks to existing steps in the third Kernel. In either
way of applying Epilog, the shortcut data is correctly added
with the normal OFMs of layer i+2, thereby generating the
input data that is needed by the next building block.
 To summarize, in the three-layer building block example,
the Prolog is executed in parallel with the first Kernel to save
the shortcut data. This is followed by the second Kernel. Then
the Epilog is executed in parallel with the third Kernel to re-
store and reuse the shortcut data. During this time, the three
Kernel executions reuse the OFMs of layer i-1, layer i and
layer i+1 as the IFMs of layer i, layer i+1 and layer i+2, re-
spectively. In general, assuming Ki is the Kernel for layer i,
for a residual network that is constructed with building blocks
of depth of D, the sequence of operations for reusing both
shortcut and non-shortcut feature maps is: (ܲ&ܭଵ) +ܭିଵ

ଶ + (ܧ&ܭ)

 Following this sequence, the proposed Shortcut Mining can
work for building blocks with any number of layers.

5. ACCELERATOR IMPLEMENTATION

 We demonstrate the effectiveness of the proposed Shortcut
Mining (SCM) scheme by prototyping on a FPGA. Besides
common benefits of FPGA-prototyping, this also enables us
to track all the transactions between the accelerator and the
off-chip memory (DRAM) byte-by-byte at the cycle level.
 To determine the optimal parameters for the configurations
of the accelerators for a baseline (referred to as BL hereafter)
and the proposed SCM, we have developed an optimization
program tool, following previous methodologies in [29][42]
[26]. The tool takes as input a file containing the description
of each CNN layer, the target FPGA resource budget profile,
target frequency, data type format and the maximum memory
bandwidth. The loop orders in [42] are used for both BL and
SCM. The tool then calculates the estimated execution cy-
cles, memory bandwidth requirement, as well as the usage for
DSP slices, BRAMs and URAMs for each set of the parame-
ters. The optimal set of parameters are then selected to imple-
ment BL and SCM on the FPGA.

One of the important parameters is bank size. Large banks
result in more data reuse in earlier layers of a network that
have large grid sizes. On the other hand, later layers have
smaller grid sizes due to down-sampling, thus smaller banks
are more favorable for reusing data and increasing buffer uti-
lization. Additionally, smaller bank size has better flexibility
but longer access latency. To determine the bank size, the tool
generates all possible combinations of Tr and Tc (as defined
in Section 2.1). For each pair, the tool estimates the off-chip
traffic, bank access delay, and memory utilization based on
[29][42][26] and the physical characteristics of the tracking
arrays. The pair that has the lowest traffic and computation
cycles, averaged over all the layers of a given network, is se-
lected. The final bank size is 4,067 for SqueezeNet, 1581 for
ResNet-34 and 1681 ResNet-152, all in the unit of words. It
is worth mentioning that, bank access latency is small (e.g.,
3ns) relative to the latency of PE array (i.e., MAC units,
10ns), so the impact of using smaller and more flexible banks
has very limited negative impact on the overall performance.
 To increase the generality of our implementation, we have
developed a parameterized approach where the values of the
parameters can be set to the optimal ones obtained above, or
other values if needed. We have carefully designed and im-
plemented the control logic that is needed to support the var-
ious operations in Prolog, Kernel and Epilog. The controller
supports an arbitrary number of layers in a building block.
The accelerators are implemented in the high-level-synthesis
(HLS). Xilinx Vivado HLS 2017.4 is used to compile the
HLS code with the selected parameters to synthesizable Ver-
ilog. AXI4 ports are used to access buffer banks, and the AXI
interconnect is used to access the memory interface control-
ler. From the Xilinx tools, we are able to obtain the FPGA
resource utilization, feature map traffic between the acceler-
ator and memory for each inference operation, as well as
other results shown in the evaluation section. While we eval-
uate accelerators with SCM on FPGA in this paper, a similar
implementation flow can be used for ASIC. For ASIC that
communicates with off-chip memory (DRAM), the ASIC has

its own on-chip memory where asynchronous FIFOs are typ-
ically added between the accelerator’s core and DRAM. The
main design of SCM would be the same while a Verilog ver-
sion of SCM can be developed, synthesized and then placed
& routed for ASIC implementation.

6. EVALUATION

6.1 Off-chip Feature Map Traffic
 To evaluate the effectiveness of the proposed SCM in re-
ducing off-chip feature map traffic, we compare BL and SCM
for DCNNs constructed with three depths of building blocks:
SqueezeNet as a representative example for plain networks,
ResNet-34 for networks with two-layer building blocks, and
ResNet-152 for networks with a three-layer building blocks.
 Table 2 summarizes the comparison on the provisioned off-
chip memory bandwidth, off-chip feature map traffic, and
FPGA on-chip memory resource utilization for BL and SCM.
Each BRAM is 18Kb and each URAM is 288Kb, and the total
number of BRAMs and URAMs that are utilized for each ac-
celerator are shown in the last two rows of Table 2. The off-
chip feature map traffic is measured as the amount of data
that is transferred between the accelerator and the DRAM for
each inference of the CNN processing. The main difference
between BL and SCM is the buffer architecture and how fea-
ture map data are managed. To have a competitive baseline,
the BL includes all the optimization techniques mentioned in
Section 2.1 that are common to DCNN accelerators. Also, we
implement operations in BL such as pooling and activation
function in a pipeline manner to overlap with PE array com-
putation. Furthermore, shortcut connections are treated as
partial sums and their buffer in BL is implemented as a ping-
pong buffer to overlap the preloading with layer computation.
The buffers in SCM are logical buffers instead, and the fea-
ture map operations follow the procedures described in Sec-
tion 4.
 As shown in Table 2, an inference operation in SqueezeNet
has 30MB of feature map data that needs to be transferred
between the accelerator and the DRAM for the baseline. In
contrast, for the proposed SCM, the off-chip feature map data
is reduced to 14MB, which is a 53.3% reduction from the BL.
Moreover, SCM uses smaller 14% on-chip buffers as part of
the inactive output buffer is saved by using some of the idle
inactive input buffer in SCM.
 For ResNet-34 and ResNet-152, similar trends can be ob-
served with one difference. Compared with SqueezeNet, the
ResNets have considerable numbers of shortcut connections,
so the BL accelerator needs a dedicated buffer to preload the
shortcut connections. Therefore, BL has four buffers includ-
ing the IFM buffer, weight buffer, OFM buffer, and shortcut
buffer. Based on the characteristics of the buffer components
in FPGA, it is more efficient to implement the first three in

BRAMs and the last one in URAMs. The SCM does not need
the shortcut buffer owing to the shortcut reuse procedure, as
well as the reuse of the inactive output buffer for preloading
the remaining shortcuts, as explained in section 4. Overall,
compared with BL, the proposed SCM reduces the off-chip
feature map traffic for an inference operation in ResNet-34
from 56.23MB to 23.58MB, which is a large 58% reduction.
Meanwhile, SCM does not incur the 256 URAMs overhead
for the shortcut buffer in BL. Likewise, for ResNet-152, the
SCM reduces the off-chip feature map traffic by 43% (from
240.3MB to 136.93MB), without using 512 URAMs com-
pared with the BL. There is a slightly increase in the number
of BRAMs for ResNets in SCM (2-3%), which is due to the
internal fragmentation when mapping buffers to BRAMs.

6.2 On-chip Power
 Fig. 11 compares the on-chip power consumption of the BL
and SCM accelerators for the case of ResNet-152. We present
the ResNet-152 results here because SCM has more complex
control flow (and consequently more logic overhead) for this
network compared with the other two networks. This gives
slightly more advantage to the BL. Also, ResNet-152 has a
deeper structure which might reflect future networks better.
All the power consumption in this figure is from Vivado by
using the Xilinx Virtex UltraScale+ FPGA VCU118 evalua-
tion platform. In total, the BL consumes 60.1 Watts and the
SCM design consumes 45.1 Watts.
 The SCM design has a more complex interconnect between
the buffer banks and the PE array’s I/O and also more com-
plex control unit. This overhead leads to larger logic power
consumption as shown in Fig. 11. However, SCM requires
smaller on-chip buffers due to its efficient utilization of vari-
ous buffers. Moreover, a considerable number of buffer read
and write operations are eliminated in SCM due to shortcut
and non-shortcut feature map reuse. These improvements

0

10

20

30

40

50

60

BL SCM

On-Chip Power (Watts)

Others (DSP, Clocks, Signals,
I/O, PLL& MMCM)
Logic

Buffers

Fig. 11: Power breakdown of ResNet-152.

24.8% Reduction

BL:Baseline
SCM: Shortcut Mining

Table 2: Baseline (BL) vs. Shortcut Mining (SCM).
 SqueezeNet ResNet-34 ResNet-152

Approach BL SCM BL SCM BL SCM
B/w (GB/s) 10.4 10.4 20.5 20.5 23 23

Off-chip FMs
traffic (MB)

30 14 56.23 23.58 240.3 136.9

URAMs 0 0 256 0 512 0
BRAM 18K 2,737 2,354 3,078 3,198 3,145 3,210

Fig. 12: Off-chip traffic comparison for scalability.

0
20
40
60
80

100

Sq
ue

ez
N

et
-B

L

Sq
ue

ez
N

et
-S

CM

Re
sN

et
-3

4-
BL

Re
sN

et
-3

4-
SC

M

Re
sN

et
-1

52
-B

L

Re
sN

et
-1

52
-S

CM

Go
og

Le
N

et
-B

L

Go
og

Le
N

et
-S

CM

Sq
ue

ez
N

et
-B

L

Sq
ue

ez
N

et
-S

CM

Re
sN

et
-3

4-
BL

Re
sN

et
-3

4_
SC

M

Re
sN

et
-1

52
-B

L

Re
sN

et
-1

52
-S

CM

Go
og

Le
N

et
-B

L

Go
og

Le
N

et
-S

CM

485T 13VPU

OFM IFM+Shortcut BL: Baseline SCM: Shortcut Mining

Small on-chip memory Large on-chip memory

translate into 24.9% reduction in the total on-chip power for
ResNet-152.

6.3 Performance Comparison with State-of-the-Art
 Besides the baseline, the proposed SCM is also compared
with two state-of-the-art designs. The first one is a residual
CNN accelerator that is proposed recently to optimize opera-
tions within a single layer [20][21]. To our knowledge, that
work reports the best results so far among the existing
schemes that target single-layer dataflow. The design reduces
off-chip accesses and on-chip data movement, and increases
the PE array utilization during each CNN layer processing.
However, no shortcut connection data is exploited for reus-
ing.
 Table 3 lists the comparison. The residual CNN accelerator
is implemented on Altera Arria-10 GX 1150 FPGA. For fair
comparison, we evaluate SCM on an equivalent Xilinx FPGA
in terms of the available number of DSPs and on-chip buffer,
using the same data type and frequency (our timing analysis
shows that the changed interconnect and controller in SCM
has a negligible impact on frequency since the critical path is
mainly determined by the data type and PEs). Compared with
the 315.48 GOPS throughput in the residual CNN accelera-
tor, SCM achieves 608.28 GOPS, which is a 1.93X improve-
ment in performance. The main reason for the large improve-
ment is that the PE array in SCM has more accesses that are
serviced by on-chip buffers, during each CNN layer pro-
cessing as well as during the transition to the next layer due
to feature map reuse.
 We also compare with fused-CNN [2], a recent work on
optimizing cross-layer dataflow. Fused-CNN can reduce the
off-chip feature map traffic for five fused layers of VGGNet-
E by 95%, compared with a single-layer CNN dataflow ac-
celerator[2]. Meanwhile, fused-CNN is also slightly slower
as it needs 6.5% more cycles for each inference operation of
the fused layers[2]. However, as discussed previously, only a
limited number of layers can be fused on a given FPGA. In
our experiments, we found that 32 CNN layers of the ResNet-
152 can be fused on Xilinx Virtex UltraScale+ VU9P with
32-bit floating point format. As a result, fused-CNN reduces
the off-chip the off-chip feature map traffic by 26%. In com-
parison, the proposed SCM can reduce this traffic by 43% for
ResNet-152 on the same platform and precision.

6.4 Scalability
 Fundamentally, the effectiveness of SCM in reducing off-
chip feature map traffic depends on two key factors. First, the
amount of feature map data that remains on-chip at the end
of each layer processing. Second, the amount of OFMs of the
next layer that can be computed by using the above on-chip
feature maps. Both factors greatly relate to the available on-
chip buffer in the accelerator. To investigate the impact of on-
chip buffer on the feature map reduction capability of SCM,
we consider two extreme cases. In the first case, we examine
an FPGA with a small on-chip buffer (Xilinx Virtex 7 485T
with 4.5MB on-chip buffer size [39]), and in the second case
an FPGA with a large on-chip buffer (Virtex UltraScale+
VU13P with 56MB [40]). Due to the lack of physical access
to advance FPGAs, we project the off-chip feature map re-
duction using the estimation tool that we developed following
models in [29][42][26], as discussed in Section 5. The results
are presented in Fig. 12, all based on 32-bit floating point pre-
cision. On the FPGA with a small on-chip buffer, for
SqueezeNet, ResNet-34, ResNet-152 and GoogLeNet, the
off-chip feature map traffic is reduced by 23.9%, 32.8%,
29.5% and 19.6%, respectively. On the FPGA with a large
on-chip buffer, the off-chip feature map traffic is reduced by
71.8%, 66.6%, 71.7%, and 47.8% for SqueezeNet, ResNet-
34, ResNet-152, and GoogLeNet, respectively. It is expected
that the VU13P FPGA, which has a larger on-chip buffer, has
more reduction in feature maps due to more reusable on-chip
data. However, it is worth noting that, even for the 485T
FPGA with a small buffer, the reduction is still quite
substantial.

6.5 Compact Data Type
 There is an increasing trend to use compact data represen-
tations in DCNNs to improve computation efficiency [22].
To investigate the impact of this on the effectiveness of SCM,
we conduct repeat the experiment in the previous subsection
but for 16-bit fixed-point precision. For SqueezeNet, evalua-
tion results show that SCM reduces the off-chip feature map
traffic by 67% on the 485T. This is much larger reduction
compared with the 23.9% in the 32-bit floating point case.
Similarly, with 16-bit fixed-point, SCM achieves 57.3% and
47.6% off-chip feature map reduction for ResNet-34 and Res-
Net-152, respectively, both of which exceed the 32.8% and
29.5% reduction under 32-bit floating point. These results are
expected as with compact data representations, more feature
maps and shortcut connection data can be fit in the same on-
chip buffer. Therefore, the proposed SCM will work well for
future lower precision representations.

6.6 Layer-by-layer Analysis
 We conduct further evaluation to analyze the effectiveness
of the proposed approach in off-chip energy consumption and
latency reduction as a function of CNN layers, available on-
chip memory, and data type. Fig. 13 shows the normalized
off-chip energy consumption and latency for each CNN layer
of VGGNet-E in two cases: first, a small on-chip memory
with 32-bit floating point data type, and second, a large on-
chip memory with 16-bit fixed-point data type. As it can be
seen from Fig. 13(a), the large on-chip memory with compact
data type has more energy reduction as more feature maps

Table 3: Performance comparison with state-of-the-art
single-layer CNN accelerator on equivalent FPGAs.

 Design in [21] SCM
FPGA Arria-10 GX 1150 Virtex-7 485T

Frequency (MHz) 150 150
Network ResNet-152 ResNet-152

#Operations (GOP) 22.62 22.63
DSP Utilization 100% 100%

BRAM Utilization 93% 99%
Logic Utilization 33% 86%

Data Format 16-bit 16-bit
Latency (ms) 71.71 35.24

Throughput (GOPS) 315.48 608.28
Power Not Reported 21.64

Efficiency (GOP/J) Not Reported 28.1
Off-chip FMs (MB) Not Reported 62.93

remain on-chip at the end of each CNN layer for reuse. How-
ever, on average, the off-chip energy consumption is reduced
substantially in both cases, by 25.2% and 50% for the first
and second case, respectively. A similar trend can be ob-
served for the off-chip latency as shown in Fig. 13(b). Over-
all, off-chip latency is reduced by 23% and 45.7% for the first
and second case, respectively. For residual networks (not
shown), we have observed more aggressive savings in off-
chip energy consumption and latency due to shortcut reuse in
addition to feature maps. For example on the FPGA with a
large memory and 16-bit fixed point (second case), the off-
chip energy consumption and latency for ResNet-152 are re-
duced by 81% and 79%, respectively.

7. RELATED WORK

 There is an increasing number of works focusing on the de-
sign of hardware accelerators for DCNNs, and it has been an
active research topic in the computer architecture community
in recent years. Below, we discuss the most relevant works to
ours in terms of single-layer and cross-layer CNN dataflow.
This is followed by a brief discussion on other related work.
 In the past few years, many schemes based on single-layer
dataflow are proposed (e.g., [23][42][32][4][5][20][19][35]
[33][15]). These works focus on the efficient processing of a
single CNN layer mostly through the optimized loop opera-
tions and the computation order to reduce off-chip and on-
chip data movement and increase PE array utilization. Fea-
ture map reuse, particularly shortcut data reuse, has not been
explored well. Feature maps can be compressed to reduce off-
chip traffic. Its effectiveness is limited as it depends on the
number of zeros and their distribution. Even under ReLU,
which is a benign activation function for compression, only
1.2X to 1.9X reduction is achieved [4]. Compression is or-
thogonal to data reuse. When compression is used, the pro-
posed SCM would achieve similar reduction percentage for
off-chip traffic that is caused by feature maps. However, the
overall reduction percentage may be lower as the relative off-
chip traffic from feature maps (vs. weights) is smaller due to
compression.
 On the cross-layer dataflow side, fused-layer CNN [2] cas-
cades multiple CNN layers in a pyramid structure and reuses
intermediate OFM tiles. Off-chip accesses are greatly re-
duced, although on-chip data copying between the output
buffer and input buffer is still needed. This cross-layer
dataflow is also supported by other recent works
[17][28][37]. A main limitation of fusing layers is the need
for large on-chip buffers to hold all the intermediate data be-
tween layers. This makes it less effective to process deeper
networks. In comparison, the proposed Shortcut Mining in

this paper can reuse shortcut data and feature maps very ef-
fectively for deep networks. The proposed scheme also works
well for various types of networks, constructed with building
blocks of different depths.
 In addition to the above, one work is presented to minimize
the bandwidth requirement for loading data into local buffers
during each CNN layer processing [25], but not during the
transition between layers. CirCNN is introduced to reduce the
cost of weights in deep neural networks [6], which further
increases the percentage of feature map data and makes our
proposed SCM more important. Another accelerator [1] is de-
signed based on the observation that majority of the compu-
tations performed by DNNs contain multiplications where
one of the operands is zero. Thus, these computations can be
eliminated for less energy consumption. Also, an accelerator
based on a “bit-serial” PE array is designed to provide an en-
ergy efficient DNNs processing at the cost of increased area
overhead [16]. The above two papers have very different ap-
proaches to our work. A very recent work [43] observes that,
even by eliminating computation for zero inputs in neurons,
many neurons still cannot be passed to the next layer. Thus,
a two-stage DNN accelerator is proposed to first predict and
then skip the computation for those ineffectual neurons. The
input and filter sharing proposed in that work are among PEs
in a single layer, which is different from the opportunity ex-
plored in this work that moves and reuses data across layers.
Other earlier works such as [3][24] focus on 2D convolution
engine, including the order of data fetching and data caching.
These schemes are not for 3D convolution structures in deep
networks.

8. CONCLUSION

 Current and future deep learning networks employ deep
structures for a higher accuracy in different machine learning
tasks. However, off-chip memory accesses become a major
issue in energy-efficient and high-performance processing. In
this paper, we analyze the composition of off-chip accesses
and different feature maps reuse opportunities in the modern
DCNNs. We propose a novel approach to exploit the reuse of
the shortcut connections and feature maps in different net-
works in order to reduce the off-chip traffic. Experiment re-
sults demonstrate that the proposed approach offers signifi-
cant advantage in reducing up to 71.8% off-chip feature map
traffic and increasing performance by 1.93X on modern ac-
celerator platforms.

Acknowledgments
This research was supported, in part, by the National Science
Foundation grants #1566637, #1619456 and #1750047.

Fig. 13: VGGNet-E off-chip energy consumption (a) and latency (b).

0
20
40
60
80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CNN Layer Number

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CNN Layer Number

O
ff

-C
hi

p
En

er
gy

 C
on

su
m

pt
io

n
(N

or
m

al
ize

d
to

 B
L)

O
ff

-C
hi

p
La

te
nc

y
(N

or
m

al
ize

d
to

 B
L)

FP32: 32-bit Floating Point FP16: 16 –bit Fixed Point BL: Baseline
485T: Small on-chip memory VU13P: Large on-chip memory SCM: Shortcut Mining

BL-FP32-485T

SCM-FP32-485T

BL-FP16-VU13P

SCM-FP16-VU13P

(a) (b)

REFERENCES

[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, A. Mo-
shovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep Neural Net-
work Computing. In Proceedings of the 44th International Symposium
on Computer Architecture (ISCA ’16).

[2] M. Alwani, H. Chen, M. Ferdman, and P. Milder. 2016. Fused-layer
CNN accelerators. In Proceedings of the 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’16).

[3] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. 2010. A
Dynamically Configurable Coprocessor for Convolutional Neural Net-
works. In Proceedings of the 37th Annual International Symposium on
Computer Architecture (ISCA ’10).

[4] Y. Chen, T. Krishna, J. Emer, and V. Sze. 2017. Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1.

[5] Y. Chen, J. Emer and V. Sze. 2016. Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks. In
Proceedings of 43rd Annual International Symposium on Computer
Architecture (ISCA’16).

[6] C. Ding, S. Liao, Y. Wang, Z. Li1, N. Liu1, Y. Zhuo, C. Wang, X.
Qian, Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and
B. Yuan. 2017. CirCNN: Accelerating and Compressing Deep Neural
Networks Using Block-Circulant Weight Matrices. In the Proceedings
of the 49th Annual IEEE/ACM International Symposium on Microar-
chitecture. (MICRO ’17).

[7] S. Han, J. Pool, J. Tran, and W. J. Dally. 2015. Learning both Weights
and Connections for Efficient Neural Networks. In Proceedings of the
28th International Conference on Neural Information Processing Sys-
tems (NIPS'15). 2015.

[8] D. Harris and N. Weste, CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson/Addison-Wesley, 2005.

[9] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for
Image Recognition. In the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[10] M. Horowitz. Energy table for 45nm process, Stanford VLSI wiki
[11] https://www.intel.com/content/dam/www/programma-

ble/us/en/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf
[12] https://www.microsoft.com/en-us/research/blog/microsoft-unveils-

project-brainwave/
[13] G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger. 2017. Densely

Connected Convolutional Networks. . In the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[14] F. N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR abs/1602.07360.

[15] N. P. Jouppi, , C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
et al. 2017. In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit. In Proceedings of the 44th International Symposium on
Computer Architecture (ISCA ’17).

[16] P. Judd, J. Albericio, T. Hetheringtony, T. M. Aamodty, A. Moshovos.
2016. Stripes: Bit-Serial Deep Neural Network Computing. In Pro-
ceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’16).

[17] H. Kwon, A. Samajdar, T. Krishna. 2018. MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable Inter-
connects. In Proceeding of the 23rd ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems. (ASPLOS’18)

[18] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Peter Graf. 2016.
Pruning filters for efficient convnets. CoRR abs/ 1608.08710.

[19] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li. 2017. Flexflow: A
flexible dataflow accelerator architecture for convolutional neural net-
works. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA’17).

[20] Y. Ma, Y. Cao, S. Vrudhula, J. Seo. 2017. Optimizing Loop Operation
and Dataflow in FPGA Acceleration of Deep Convolutional Neural
Networks. In Proceedings of the 25rd ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA ’17).

[21] Y. Ma, M. Kim, Yu Cao, S. Vrudhula, J. Seo. 2017. End-to-End Scal-
able FPGA Accelerator for Deep Residual Networks. 2017. IEEE In-
ternational Symposium on Circuits and Systems (ISCAS’17).

[22] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Gee Hock
Ong, Y. Tat Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G.

Boudoukh. 2017. Can FPGAs Beat GPUs in Accelerating Next-Gen-
eration Deep Neural Networks?. In Proceedings of the 25th
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’17).

[23] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang. 2016. Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proceedings of
the 24th ACM/SIGDA International Symposium on Field- Programma-
ble Gate Arrays (FPGA ’16).

[24] M. Peemen, A. AA Setio, B. Mesman, and H. Corporaal. 2013.
Memory-centric accelerator design for Convolutional Neural Net-
works. In Proceedings of the 31st IEEE International Conference on
Computer Design (ICCD ’13).

[25] M. Peemen, B. Mesman, and H. Corporaal. 2015. Inter-Tile Reuse Op-
timization Applied to Bandwidth Constrained Embedded Accelerators.
In Proceedings of the 2015 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE '15).

[26] A. Rahman, S. Oh, J. Lee, and K. Choi. 2017. Design Space Explora-
tion of FPGA Accelerators for Convolutional Neural Networks. In Pro-
ceedings of Design, Automation & Test in Europe Conference & Exhi-
bition (DATE’17).

[27] J. Ross, N. Jouppi, A. Phelps, C. Young, T. Norrie, G. Thorson, D. Luu,
2015. Neural Network Processor, Patent Application No. 62/164,931.

[28] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A.
Mishra, and H. Esmaeilzadeh. 2016. From High-Level Deep Neural
Models to FPGAs. In the Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture. (MICRO ’16).

[29] Y. Shen, M. Ferdman, and P. Milder. 2017. Maximizing CNN Accel-
erator Efficiency Through Resource Partitioning. In Proceedings of the
44th International Symposium on Computer Architecture (ISCA ’17).

[30] Y. Shen, M. Ferdman, and P. Milder. 2017. Escher: A CNN Accelera-
tor with Flexible Buffering to Minimize Off-Chip Transfer. In Pro-
ceedings of the 25th IEEE International Symposium on Field-Pro-
grammable Custom Computing Machines (FCCM ’17).

[31] J. E. Smith, 1982, April. Decoupled access/execute computer architec-
tures. Proc. Int’l Symp. on Computer Architecture.

[32] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li. 2016. C-brain:
A Deep Learning Accelerator That Tames the Diversity of CNNs
Through Adaptive Data-level Parallelization. In Proceedings of the
53rd Annual Design Automation Conference (DAC ’16).

[33] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.
Seo, Y. Cao. 2016. Throughput-Optimized OpenCL-based FPGA Ac-
celerator for Large-Scale Convolutional Neural Networks. In Proceed-
ings of the 24rd ACM/SIGDA International Symposium on Field-Pro-
grammable Gate Arrays (FPGA ’16).

[34] C. Szegedy, S. Ioffe, and V. Vanhoucke. 2016. Inception-v4, Incep-
tion-ResNet and the Impact of Residual Connections on Learning.
CoRR abs/1602.07261.

[35] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei. 2017. Deep
Convolutional Neural Network Architecture with Reconfigurable
Computation Patterns. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 25, no. 8.

[36] UltraScale Architecture and Product Data Sheet: Overview, DS890
(v2.11) Februarys 15, 2017.

[37] Q. Xiao, Y. Liang, L. Lu, S. Yan and Y. Tai. 2017. Exploring Hetero-
geneous Algorithms for Accelerating Deep Convolutional Neural Net-
works on FPGAs. In Proceedings of the 53rd Annual Design Automa-
tion Conference (DAC ’17).

[38] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. 2017. Aggregated
Residual Transformations for Deep Neural Networks. CoRR
abs/1611.05431.

[39] Xilinx. 2017. 7 Series FPGAs Data Sheet: Overview.
[40] Xilinx. 2017. UltraScale FPGA Product Tables and Product Selection

Guide.
[41] Xilinx. 2017. UltraScale Architecture Memory Resources.
[42] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. 2015. Opti-

mizing FPGA-based Accelerator Design for Deep Convolutional Neu-
ral Networks. In Proceedings of the 23rd ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’15).

[43] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li. 2018. Prediction Based
Execution on Deep Neural Networks. In Proceedings of the 45th Inter-
national Symposium on Computer Architecture (ISCA ’18).

[44] S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC,
2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

