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ABSTRACT 

Off-chip memory traffic has been a major performance bot-
tleneck in deep learning accelerators. While reusing on-chip 
data is a promising way to reduce off-chip traffic, the oppor-
tunity on reusing shortcut connection data in deep networks 
(e.g., residual networks) have been largely neglected. Those 
shortcut data accounts for nearly 40% of the total feature map 
data. In this paper, we propose Shortcut Mining, a novel ap-
proach that “mines” the unexploited opportunity of on-chip 
data reusing. We introduce the abstraction of logical buffers 
to address the lack of flexibility in existing buffer architec-
ture, and then propose a sequence of procedures which, col-
lectively, can effectively reuse both shortcut and non-shortcut 
feature maps. The proposed procedures are also able to reuse 
shortcut data across any number of intermediate layers with-
out using additional buffer resources. Experiment results 
from prototyping on FPGAs show that, the proposed Shortcut 
Mining achieves 53.3%, 58%, and 43% reduction in off-chip 
feature map traffic for SqueezeNet, ResNet-34, and ResNet-
152, respectively and a 1.93X increase in throughput com-
pared with a state-of-the-art accelerator.  

1. INTRODUCTION 

   State-of-the-art deep learning models, especially deep con-
volutional neural networks (DCNNs), can achieve a surpris-
ingly high accuracy in a wide range of tasks, thus are being 
deployed in many conventional and emerging fields. Due to 
the special computation and memory behaviors of DCNNs, 
hardware accelerators have become increasingly important to 
achieve the speedup and power efficiency that are not possi-
ble in today’s general-purpose platforms. However, because 
of the memory intensive nature of DCNNs, a considerable 
amount of off-chip memory traffic can be generated by the 
accelerators to access feature maps and weights. These off-
chip accesses are extremely costly in terms of both latency 
and energy [35]. Unfortunately, the situation is only getting 
worse as deep learning models have started to employ a large 
number of convolutional neural network (CNN) layers for 
higher accuracy, with some exceeding a thousand layers [9]. 
   A very promising approach to mitigate this issue directly is 
to increase on-chip data reuse. While limited prior work has 
investigated some reuse scenarios (e.g., [2][4][20]), recent 
advancement in DCNNs and hardware platforms have led to 
changed behaviors and properties of the network models, 
which results in new opportunities for data reusing. First, the 
percentage of off-chip data from feature maps increases rap-
idly (e.g., up 72% in SqeezeNet; more detail in Section 2). 
This is mainly because of deeper networks and an outburst of 
optimizations in reducing weight data. Hence, there is a 
pressing need to reduce off-chip feature map traffic. Second, 

shortcut connections are being introduced to address the gra-
dient “wash out” problem in deep structures, which is critical 
in developing highly accurate CNNs [9][13][34][38]. Fig. 1 
shows the building blocks of a plain network (Squeeze-Net 
[14]) and two residual networks including ResNet-34 and 
ResNet-152 [9]. The ResNet-152, for example, includes 50 
shortcut connections that account for nearly 40% of the fea-
ture map data. This presents a significant, unexplored oppor-
tunity for reusing the shortcut data. Third, data reusing is 
made more viable by the continuing advancement in manu-
facturing technology. A number of FPGA and other acceler-
ator platforms (e.g., [36][41][15][40][11]) have on-chip buff-
ers that can fit a considerable portion or even all of the data 
for a CNN layer. Therefore, a substantial amount of shortcut 
and non-shortcut feature map data remains on-chip at the end 
of a layer processing, which can and should be exploited for 
reuse. To-date, little work has been conducted to exploit the 
new opportunities discussed above. 
   In this work, we propose Shortcut Mining (SCM), a novel 
approach that “mines” the largely unexplored opportunity of 
reusing shortcut and feature map data to reduce off-chip traf-
fic. To achieve this objective, several major challenges must 
be addressed: (1) the lack of flexibility in existing buffer ar-
chitecture prevents on-chip buffers from being allocated and 
utilized at the needed granularity; (2) reusing shortcut data 
requires the data to be somehow preserved across multiple 
layers, which is difficulty without incurring extra buffer over-
head; and (3) it is challenging to provide a unified solution 
that works for different networks, as the building block could 
contain an arbitrary number of layers. Thus, the shortcut data 
needs to be preserved for any number of layers. 
   In this paper, we address the first challenge by introducing 
the use of logical buffers that are formed dynamically from a 
pool of physical buffer banks. This allows buffer operations 

Fig. 1: Plain networks (a) and networks with shortcut (b)(c). 
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to be done at individual bank level, without physically mov-
ing the data. Enabled by this, we develop three procedures, 
namely Prolog, Kernel and Epilog, that work collaboratively 
to allow shortcut data to be reused across any number of lay-
ers in the building block of DCNNs. On the high level, the 
basic idea is for the Prolog procedure to save the shortcut data 
of a CNN layer in a certain region of the on-chip buffer called 
the invariant buffer space. Later after several layers, the Epi-
log procedure can restore the shortcut data from the invariant 
buffer space for the shortcut to be reused. In the meantime, 
the Kernel procedure is executed multiple times, one for each 
layer in a building block. At each layer, the Kernel reuses the 
non-shortcut feature maps of the previous layer as the input 
of the current layer and, at the same time, keep the invariant 
buffer space untouched, regardless of how many times the 
Kernel is executed. The collective result of the three proce-
dures is that shortcut feature maps are preserved across layers 
while non-shortcut feature maps are reused immediately after 
each layer. All these operations are achieved without using 
additional buffer resources. Experiment results from proto-
typing on FPGAs show that, the proposed Shortcut Mining is 
able to achieve 53.3%, 58%, and 43% reduction in off-chip 
feature map traffic for SqueezeNet, ResNet-34, and ResNet-
152, respectively and a 1.93X increase in performance (infer-
ence operation throughput) compared with a state-of-the-art 
DCNN accelerator. The main contributions of this paper are 
the following: 
• Identifying new opportunities in reusing on-chip feature 

map and shortcut data in DCNN accelerators 
• Developing a novel scheme to solve the difficult problem 

of reusing shortcut data across any number of layers 
• Demonstrating the effectiveness of the proposed scheme 

by implementing on FPGAs 
   The rest of this paper is organized as follows. Section 2 pro-
vides more background and motivation on the reusing oppor-
tunity of on-chip data in DCNN accelerators. Section 3 illus-
trates the associated challenges. In Section 4, we describe the 
proposed scheme and architecture in detail. The accelerator 
implementation is explained in Section 5, and evaluation re-
sults and analysis are presented in Section 6. Finally, related 
work is summarized in Section 7, and Section 8 concludes 
this paper.   

2. BACKGROUND AND MOTIVATION 

2.1 DCNN Accelerator Architecture 
   Current state-of-the-art DCNN accelerators use a convolu-
tion layer processor (CLP) to evaluate each CNN layer se-
quentially [15]. A general CLP has an array of processing el-
ements (PEs) and various on-chip buffers. As shown in Fig. 
2, the processing element (PE) array fetches input feature 
maps (IFMs) from the input buffer, weights from the weight 

buffer, shortcut connection data from the shortcut buffer, and 
then calculates output feature maps (OFMs) that are put into 
the output buffer. If multiple iterations are needed to generate 
the OFMs, the PE array also loads the partial sum (PSUM) 
that contains the partial OFMs accumulated so far, and then 
outputs the updated PSUM or the final OFMs to the output 
buffer. The granularity of a PE cell can vary from a simple 
multiplier-and-adder (fine-grained) such as in Google TPUs 
[15] where PE cells are arranged in a two-dimensional sys-
tolic array, to a vector-dot-product engine (coarse-grained) 
such as in Microsoft’s BrainWave DPUs [12]. In either case, 
a critical design consideration is to reduce off-chip memory 
accesses that have long latency and large power consumption. 
Consequently, several techniques are commonly adopted in 
designing the on-chip buffers in DCNN accelerators, as de-
scribed below.  
   Banked On-chip Buffer Designs: Recent DCNN acceler-
ators, both on ASIC and FPGA based platforms, have started 
to provide large on-chip buffers (e.g., [22][36][40][41], and 
TPU has 28MB of on-chip buffer capacity [15]). Like off-
chip memory designs, a large on-chip buffer can be parti-
tioned into smaller banks in order to avoid long word-lines 
and bit-lines that have high capacitance [8]. Moreover, 
banked buffers provide more read and write ports, allowing 
multiple simultaneous accesses to IFMs, weights, shortcut 
connections, and OFMs. Therefore, the banked organization 
is essential for low-latency, energy-efficient, and high-band-
width data transfer between the PE array and on-chip buffers 
[4][5].            
   Tiling Techniques: As feature maps can be larger than the 
on-chip input and output buffers, tiling techniques are often 
used to reduce the requirement of on-chip buffer sizes 
[23][27]. As depicted in Fig. 3, IFMs (N×R×C) and OFMs 
(M×R×C) are organized in three dimensional structures. With 
tiling factors of Tin, Tr and Tc for IFMs, the IFMs can be di-
vided into ቒ ே்ቓ ൈ ቒோ்ೝቓ ൈ ቒ ்ቓ tiles; in each iteration, Tin IFM tiles 
are loaded into the input buffer. Similarly, the OFMs are di-
vided into ቒ ெ்ೠቓ ൈ ቒோ்ೝቓ ൈ ቒ ்ቓ tiles. As the Tin IFM tiles may not 

Fig. 5: Feature map data in various ResNets.

Fig. 2: Convolution layer processor (CLP) datapath. 

PE 
Cell

PE 
Cell

inter-PE 
network

Off-chip Data Transfer Module

Weight Buffers

PSUM/OFMs

Off-Chip 
Memory

Off-Chip 
Bus

PE 
Cell

PE 
Cell

Control Unit

IFM Buffer

OFM Buffer

Buffer Bank

PSUM

Shortcut Buffer

ShortcutsIFMs

Weights

Fig. 3: Tiling and ping-pong buffers in a CLP.

Off-Chip Memory
Active

Inactive

PE array

R

N

Input Feature Maps
C

M

Output Feature Maps

IFMsWeights PSUM PSUM /OFMs
Input Buffer Output Buffer

On-Chip Memory BanksBanks

shortcuts

N=#IFMs, M=#OFMs, R= #Rows, C= #Columns



include all the IFM tiles that are required to calculate an OFM 
tile, multiple iterations of input loading and calculation may 
be needed, and partial sum is generated and accumulated in 
each iteration1. 
   Ping-Pong Buffers: Due to large off-chip latency, many 
DCNN accelerators (e.g., [29][30][23][42][2][15][17][35]) 
use the decoupled access/execute architecture [31] to overlap 
communication latency with computation time. This is re-
ferred to as the ping-pong buffer technique in a CLP. As 
shown in Fig. 3, the input and output buffers (blacked rectan-
gles) that are being used by the PEs during the current itera-
tion are called active input and active output buffers, respec-
tively. The other set of input and output buffers are called in-
active input and output buffers. The inactive input buffer is 
used to preload the Tin IFM tiles that are needed by the next 
iteration; whereas the inactive output buffer temporarily 
holds the Tout OFM tiles from the last iteration while those 
tiles are being written to the off-chip memory. The ping-pong 
buffer hides off-chip memory access latency by overlapping 
loading/storing data with computation. The weight and 
shortcut buffers work in a similar manner but are omitted in 
Fig. 3 for better clarity. 

2.2 Need for Reducing Off-chip Feature Map Traffic 
   While the above optimizations have helped to improve the 
memory system of DCNN accelerators, there remains a sig-
nificant need to reduce off-chip memory traffic, particularly 
from loading and storing feature maps. First, it is imperative 
and beneficial to minimize all types of off-chip traffic due to 
its large delay and energy consumption, e.g., only 1pJ for a 
32-bit floating point addition but 640pJ for accessing a 32-bit 
word in DRAM under 45nm CMOS technology [7][10]. Sec-
ond, there is an emerging need to reduce off-chip traffic that 
is caused by feature maps. This is due to the fact that, as deep 
learning models evolve to deeper structures, the percentage 
of data from feature maps increases rapidly. For instance, fea-
ture maps account for 25% data in earlier models such as 
AlexNet, but become more than 50% in recent models such 
as VGG and GoogLeNet [2].  
   Moreover, the phenomenon is becoming more and more ev-
ident as existing techniques in reducing data from weights 
and from feature maps are not equally effective. A great deal 
of effort has been made to reduce the size of weights such as 
                                                                 
1 If the size of the input PE array (Tn) is smaller than input buffer size Tin, another level 
of tiling can be performed to use the PE array multiple times to consume Tin IFM tiles. 

pruning [14][18][7] and re-architecting CNN networks [14], 
most of which have been quite effective. For example, by em-
ploying filter (weight) pruning, the parameters of ResNet-101 
and VGG-16 are reduced by 32.4% and 64%, respectively 
[18], and SqueezeNet is able to reach the accuracy of AlexNet 
but with 50X smaller weight data [14]. Also, by using batch 
processing, weights can be further reduced as they are reused 
for multiple inputs. In comparison, it is more difficult to re-
duce feature map data. Even for well-designed feature map 
compression techniques, the effectiveness is still limited and 
depends on input data (e.g., less 2X reduction for AlexNet 
[4]). In Fig. 4, we have examined the off-chip traffic of a 
SqueezeNet with 26 layers (2 CNN layers, plus 8 fire mod-
ules each having 3 layers). As can be seen, feature map traffic 
is predominant in 22 out of the 26 layers. On average, feature 
maps account for nearly 72% of the total off-chip traffic, ex-
emplifying a pressing need to reduce this type of traffic.  

2.3 Opportunity for Reusing Feature Maps 
   As the output feature maps of the previous layer are the in-
put feature maps of the next layer, a promising way to reduce 
off-chip feature map traffic is to increase on-chip data reuse. 
As shown in Fig. 3, when a layer completes the computation 
of the last iteration, Tout OFM tiles remain in the on-chip ac-
tive output buffer. With larger on-chip buffers, more OFM 
tiles can be kept on-chip and reused without having to fetch 
from the off-chip memory. In the ideal case, if the output 
buffer is large enough to hold all the OFMs of layer i, no 
IFMs of layer i+1 need to be fetched. While this might seem 
as a wishful thinking in the past, recent process technologies 
have made this a reality for the most part.  
   To understand this better, Table 1 lists the available on-chip 
buffers and process technology for several modern accelera-
tor platforms including Xilinx UltraScale+ VU37P FPGA, 
Google’s TPU chip, Intel Stratix 10 FPGA which is used to 
implement Microsoft BrainWave DPU, and Xilinx Virtex-7 
690T. These platforms all provide megabytes of on-chip buff-
ers. To put the numbers in Table 1 in perspective, the four 
largest CNN layers in ResNet-152 require 9.19MB, 6.95MB, 
3.7MB, and 2.27MB of data, respectively, in 32-bit floating 
point. These examples demonstrate that modern acceleration 
platforms, in theory, have on-chip buffers that are large 
enough to hold a considerable portion or even all of the data 
for a CNN layer. This offers a new opportunity in reusing 
feature map data and should be exploited. 

2.4 Opportunity for Reusing Shortcut Connection Data  
   Another largely unexplored opportunity that can greatly re-
duce off-chip traffic is to reuse shortcut connection data. For 

Fig. 4: Off-chip traffic breakdown for SqueezeNet. 
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Chips 
On-Chip 
Buffers 

Process  
Technology 

Xilinx Virtex UltraScale+ 
VU37P [36][41][40] 

47.2 MB 16nm 

Google’s TPU [15] 28MB 28nm 

Intel Stratix 10 TX 2800 [11] 30.5MB 14nm 

Xilinx Virtex-7 690T [22] 7.79MB 28nm 



plain networks such as the SqueezeNet example in Fig. 4, the 
input feature maps of a layer are all from the output feature 
maps of the previous layer. However, it has been shown that 
it is essential to have shortcut connections for very deep net-
works to achieve high accuracy [9][13]. This results in the so-
called residual networks, such as ResNets [9], Wide Residual 
Networks[44], ResNeXt[38]. In these networks, the input 
feature maps of a layer may include the feature maps of one 
or multiple previous layers. In other words, there are shortcut 
connections that forward the IFMs of layer i to subsequent 
convolutional layers that are not directly connected (e.g. layer 
i+2, layer i+3, etc.). These shortcut connections change the 
composition of feature map data. Fig. 5 plots the breakdown 
of input feature maps for different residual DCNNs. As can 
be seen, 30% to 40% of all the IFMs are shortcut connections. 
In particular, ResNet-152 has 50 shortcut connections, which 
accounts for around 40% of the IFMs that could be reused. 
   Unfortunately, despite the considerable amount of shortcut 
connection data, little research has been conducted to explore 
this opportunity. While related work is discussed in detail in 
Section 7, most existing works (e.g., [42][3][4][24][19]) fo-
cus on optimization within a single CNN layer, such as loop 
operations. However, at the end of a layer processing, the 
OFMs in the on-chip output buffer still need to be written to 
off-chip memory (see Fig. 3), and the IFMs of the next layer 
need to be fetched from the memory again. Both shortcut and 
non-short IFMs are not reused in this case. Another interest-
ing approach, fused-CNN [2], cascades multiple layers to-
gether to avoid off-chip accesses. All the intermediate tiles 
for the fused layers are held on-chip which results in consid-
erable on-chip memory (e.g., 5 layers of VGGNet-E already 
consumes 85% of the BRAMs in Xilinx Virtex-7 [2]). Thus, 
while the fused-CNN works very well for shallow networks 
such as AlexNet and VGGNets, it is less effective for recent 
deeper networks (where shortcut connections are prevalent) 
due to its relatively large on-chip memory requirement.  

3. CHALLENGES FOR CROSS-LAYER REUSING 

   With the need for reusing shortcut and non-shortcut feature 
maps, and the physical feasibility from large on-chip buffers, 
this section analyzes several main limiting factors and chal-
lenges that must be addressed to realize effective cross-layer 
data reusing. 

3.1 Providing Flexible Buffer Architecture 
   The current buffer architecture shown in Fig. 3 is static in 
the sense that input buffers are always used for PE input and 
output buffers are always used for PE output. This would be 
very inefficient for cross-layer data reuse where the role of a 
given feature map may be switched dynamically between in-
put and output, as well as between active and inactive.  
   Additionally, the granularity of buffer allocation is at the 
set level rather than at the bank level. That is, multiple banks 
are grouped together as a set (e.g., the inactive output buffer). 
As data in this buffer is being written to off-chip memory, 
more and more banks in this output buffer become available. 
However, the newly available banks remain unused (locked) 
until the entire inactive output buffer finishes writing. We 
have derived that the best bank utilization at the set-level is 
(1/2+1/Tout), which is merely 0.51 for an AlexNet implemen-
tation on Xilinx Virtex-7 485T. 

   These limitations call for a more flexible buffer architecture 
where buffer banks can be allocated at a finer granularity and 
their status can be switched dynamically without physically 
moving/copying data. 

3.2 Finding Buffer Space for Shortcuts 
   By definition, shortcut connection data are not consumed 
immediately in the next layer. To reuse them, we need to keep 
those data on-chip until multiple layers have been processed. 
During this period, some buffer space is needed to hold the 
shortcut connections. However, budgeting a separate buffer 
just for storing shortcut data may not be the most cost-effec-
tive solution, as the extra buffer resources could likely be uti-
lized better for other purposes. Meanwhile, it is challenging 
to find space to hold the shortcut data with only existing buff-
ers, as those buffers are being used continuously as input and 
output. Therefore, a clever solution to solve this dilemma is 
much needed. 

3.3 Devising Unified Solution for Various Networks 
   Perhaps the most challenging part is to devise a unified ar-
chitecture that can reuse data for various neural network mod-
els. As depicted in Fig. 1, neural networks come in different 
forms. Plain networks have no shortcut at all; whereas resid-
ual networks have shortcut connections that may cross a var-
ying number of layers. A special procedure may be developed 
to find extra buffer space and reuse shortcut data for residual 
networks with 2-layer building blocks (i.e., depth of 2). Such 
procedure may not work for residual networks with building 
blocks of depth of 3, since the shortcut data needs to be kept 
on-chip for a longer time. To make things worse, given the 
trend for deeper neural networks and the pursuit for higher 
accuracy, future networks will likely have shortcut connec-
tions that span more layers, or even have building blocks of 
different depths in a single network. Therefore, it is important 
to develop a unified scheme that can handle different building 
blocks and thus have wide applicability. This is a main objec-
tive of the proposed work.  

4. PROPOSED APPROACH 

4.1 Basic Idea  
   In this work, we propose Shortcut Mining (SCM), a novel 
yet effective scheme that “mines” the largely unexplored op-
portunity of reusing shortcut and feature map data to reduce 
off-chip traffic. To allow flexible and fine-grained allocation 
of on-chip buffers, we first introduce the abstraction of logi-
cal buffers. Those logical buffers are dynamically formed 
from a pool of individual physical buffer banks, allowing re-
usable data to be switched easily between input and output 
and be used at the per bank level. This decoupled physical-
logical buffer structure provides the basis for the main 
shortcut mining operations. 
   The key part of the proposed scheme is a sequence of oper-
ations that allow shortcut data to be reused across any number 
of layers in the building block of DCNNs. To achieve this 
ambitious goal, we develop three procedures, namely Prolog, 
Kernel and Epilog, that work collectively. The Prolog proce-
dure saves the shortcut data of a CNN layer in certain region 
of the on-chip buffer. The shortcut data can be restored by the 
Epilog procedure several layers later when the shortcut data 



is supposed to be consumed. During this time, the Kernel pro-
cedure is executed multiple times, one for each layer in a 
building block. At each Kernel execution, the Kernel reuses 
the non-shortcut OFMs of the previous layer as the IFMs of 
the current layer and, more importantly, does not touch the 
region of the buffer where the shortcut data is saved by the 
Prolog. Thus, shortcut feature maps are preserved across lay-
ers while non-shortcut feature maps are reused immediately 
after each layer. It is important to note that all these opera-
tions are achieved without using additional buffer resources 
other than what are already provided. This requires clever de-
signs and uses of the on-chip buffers, as the existing input and 
output buffers have their assigned functionalities.  
   Fig. 6 depicts the overall structure of the proposed acceler-
ator. The structure is similar to existing ones by the looks of 
it, as the PE array still reads various inputs from the buffer, 
computes the output of a layer, and stores the results back to 
the buffer. The main differences, however, are the addition of 
logical buffers and, more importantly, the procedures to reuse 
feature maps as much as possible. The latter is included as 
part of the “Layer Unit Operation” box on the left side, so the 
procedures are not directly visible in Fig. 6 but are explained 
in detail in the following subsections. 

4.2 Preliminary: Decoupled Physical-Logical Buffers 
   As the basis for enabling various buffer operations of the 
proposed three procedures, we first present the flexible buffer 
architecture. The main idea is to introduce a level of abstrac-
tion called logical buffers between the PE array and physical 
buffer banks. During runtime, the logical buffers are created 
and constructed dynamically from a pool of physical banks.  
   Fig. 7a demonstrates how this is done. Each physical bank 
in the pool is uniquely identified by an index. A logical buffer 
is formed by having a tracking array that holds the indices of 
the physical banks that currently belong to the logic buffer. 
Four logical buffers are formed in this way, namely active 
input buffer, inactive input buffer, active output buffer, and 
inactive output buffer. For example, the logical inactive input 
buffer in Fig. 7a is constructed from physical buffer banks 2 
and 3. A logical buffer can be reconstructed dynamically with 
a new set of physical banks by updating the tracking array.  
   Fig. 7b illustrates how this flexibility can be used for reus-
ing feature maps. Assume that at this clock cycle four OFMs 
of a CNN layer i-1 are stored in the logical inactive output 

buffer (assuming one OFM in one physical bank for simplic-
ity). Instead of writing the OFMs to off-chip memory, two 
banks of the logical inactive output buffer can be exchanged 
with the two banks of the logical active input buffer, thereby 
reusing the OFMs of layer i-1 as the IFMs of layer i. The bank 
exchange is achieved simply by exchanging the indices in the 
tracking arrays, rather than copying data across banks physi-
cally.  

While the idea of decoupled physical-logical buffer seems 
straightforward, it addresses the static bank assignment and 
the coarse-grained allocation issue nicely. First, each physi-
cal bank can be used dynamically as input or output, thus no 
longer being statically assigned. Second, physical resources 
are allocated at the per bank level, thus allowing individual 
banks to be utilized as soon as they become free. This greatly 
increases the utilization of on-chip buffers. 

4.3 Kernel Procedure 
   The Kernel procedure has two goals: (1) reusing the avail-
able on-chip OFMs of the previous CNN layer (layer i-1) as 
the IFMs of layer i to produce the OFMs of layer i, as indi-
cated by the red arrow in Fig. 8a. That is, instead of writing 
those reusable OFM tiles to off-chip and fetching them again, 
the Kernel directly reuses those OFM data; (2) keeping a cer-
tain region of the buffer space, referred to as the invariant 
buffer space, untouched throughout the operations of the Ker-
nel. The invariant buffer space is used to preserve shortcut 
data (saved by the Prolog) that is not meant for layer i. Note 
that plain networks do not have shortcut connections, so ap-
plying the Kernel is sufficient for reusing feature maps for 
plain networks, without the need for the Prolog and Epilog.  
   For easier explanation, we divide the Kernel procedure into 
two phrases: Reuse and Preload/Write Back. The Reuse phase 
reuses the OFMs of layer i-1 that are still in the active output 
buffer at the end of layer i-1 processing. Due to the limited 
size of output buffer, the above OFMs may not include all the 
OFMs of layer i-1, so additional loading may be needed to 
fetch the rest OFMs from the off-chip memory. This is han-
dled by the Preload/Write Back phase, which preloads the re-
maining OFMs of layer i-1 (i.e., the IFMs of layer i) to the 
inactive buffer, in parallel with computation. This phase also 
writes the computed OFMs back to off-chip when needed. 

Fig. 6: Accelerator with the proposed Shortcut Mining. 
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   Fig. 8b demonstrates how the Kernel achieves its two goals 
during its execution for layer i with a walk-through example. 
In Fig. 8b, each small vertical rectangle is a buffer bank. In 
this example, layer i-1 produces 4 OFMs which become the 
4 IFMs of layer i. Layer i then produces 8 OFMs. Also as-
sume that the accelerator has Tin =2 and Tout =4 (i.e., 2 banks 
in the active input buffer and 4 banks in the active output 
buffer). If each buffer bank can store one feature map, this 
setting means that, in one iteration, the accelerator can read 
in 2 IFMs and computes the convolution results for 4 partial 
OFMs. Two iterations are needed, in order to load all the 4 
IFMs that are needed to compute the four final OFMs (OFMs 
1 to 4) of layer i. Similarly, another two iterations are needed 
to produce OFMs 5 to 8. 
   Reuse Phase: At the end of layer i-1, two IFMs and four 
OFMs of this layer remain on-chip as shown in Fig. 8b-La-
bel❶ by the red rectangles. This is the initial state of the Ker-
nel. In order to reuse the four OFMs, the active output banks 
are exchanged with the inactive output banks as shown in La-
bel❷. Again, this is done through updating the tracking ar-
rays, not moving data physically. Then, the inactive output 
banks (which now contains the four OFMs) are marked as the 
reusable IFMs (striped blue rectangles). Also, the current 
IFMs in the active input buffer are discarded because they are 
the old IFMs of layer i-1. This makes the active input banks 
empty, represented as white rectangles. The reuse process is 
started by exchanging the active input banks with two of the 

inactive output banks as shown in Label❸, so the active in-
put banks contain the reusable IFMs that can be fed to the PE 
array for computation. Label❹ shows the status of the accel-
erator after performing the previous exchange. The active in-
put banks contain two IFMs (blue rectangles). The PE array 
is highlighted in yellow to indicate that it has started the com-
putation to produce part of OFMs 1-4 in the active output 
buffer (indicated by yellow rectangles). After finishing the 
computation, the Kernel can mark the active input banks as 
empty banks again. By another round of exchange in La-
bel❺, the rest of the reused IFMs are consumed by the PE 
array in Label❻. After ❻, the final OFMs 1-4 are computed. 
Note that those OFMs could be all the OFMs that need to be 
computed for layer i, if the PE array and the output buffer are 
large enough. In this example, however, OFMs have to be 
computed in two batches, so additional preloading is needed 
for OFMs 5-8, as explained below. 
   Preload and Write Back Phase: To compute OFMs 5-8, 
two IFMs needed to be fetched from off-chip. This is done as 
a preloading operation in Label❻, while the PE array is com-
puting OFMs 1-4. The preloaded IFMs are stored in the inac-
tive output buffer (which has been emptied in ❸), so no ad-
ditional buffer space is needed. Then, the two banks in the 
inactive output buffer that contain the preloaded IFMs are ex-
changed with the active input banks, as shown in Label❼. 
Note that, at this time, OFMs 1-4 have been computed and 

Fig. 8: Illustration of the Kernel procedure for reusing the OFMs of layer i-1 as the IFMs of layer i. 
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stored in the active output banks (black rectangles). There-
fore, following the exchange in ❼, all the active output banks 
are exchanged with the inactive output banks as shown in La-
bel❽, so OFMs 1-4 can start to be written back to the off-
chip memory2. After ❼	and ❽, Label❾a shows the instan-
taneous state that there is no empty bank on the output side, 
since the PE array is producing part of OFMs 5-8 to the active 
output buffer; whereas the inactive output banks contain 
OFMs 1-4. In order to preload the next two IFMs to complete 
the computation OFMs 5-8, three operations are taking place 
in Label❾b: (1) the PE array is computing part of OFMs 5-
8, (2) OFMs 1-4 are being stored to off-chip, and (3) as soon 
as one of the OFMs 1-4 finishes storing, an IFM can be pre-
loaded to the newly freed bank in the inactive output buffer. 
Here, the bank-level granularity of the proposed buffer archi-
tecture is exploited. Once two IFMs are preloaded in the in-
active output banks, they are exchanged with the active input 
banks as shown in Label❿. In Label	⓫, the PE array is fin-
ishing up the computation of OFMs 5-8, and the remaining 
OFMs 1-4 in the inactive output banks are also finishing up 
the writing to off-chip memory. The final state in Label⓬ 
has the similar “format” as the initial state, containing only 
the IFMs and OFMs of layer i in the active input and output 
                                                                 
2 In this example, the preloaded two IFMs from Label ❼ are used to compute OFMs 
5-8. However, if more IFMs are needed to compute OFMs 1-4, we can simply repeat 
Labels ❻ and ❼	until OFMs 1-4 are computed. 

buffers, respectively. In this way, if this is a multi-layer build-
ing block, the next Kernel execution can be readily applied 
after ⓬. Note that OFMs 5-8 can be written down to off-chip 
memory through reusing steps (❸	to	❻)	of next kernel if 
they are needed later in the layer processing after reuse.      
   Note that, throughout the steps of the above example, we 
deliberately avoid using the inactive input buffer. Even if the 
Kernel is executed multiple times, this buffer space would 
still be untouched. Therefore, without using additional buffer 
resources, we have obtained the invariant buffer space that is 
needed to preserve the cross-layer shortcut data.        

4.4 Prolog and Epilog for Shortcut Reuse  
   As mentioned, plain networks can apply the Kernel proce-
dure once to reuse feature maps. For networks with shortcut 
connections, Prolog and Epilog are needed, along with mul-
tiple executions of Kernel. Without loss of generality, we use 
a residual network with 3-layer building blocks as an exam-
ple to explain the operations. As shown in Fig. 9a, reusing 
shortcut data means to save the IFMs of layer i, preserve the 
data while layer i, layer i+1 and layer i+2 are processed, and 
then restores the data and add to the OFMs of layer i+2.  
   We first describe the Prolog procedure, which is simply to 

Fig. 9: Prolog and Epilog procedures. 
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exchange the active input banks that contains the IFMs with 
the inactive input banks, and mark it as the reusable shortcut 
data, as shown in Fig. 9b. Although the procedure is simple, 
care needs to be taken on when the Prolog is applied. Recall 
that in Fig. 8 Label❶, the IFMs in the active input buffer are 
actually the IFMs of layer i-1. Therefore, at the beginning of 
the first Kernel in Fig. 10, the IFMs in the input buffer are not 
the intended shortcut in Fig. 9a, and the Prolog should not be 
applied at that step. Instead, Fig. 8 shows that the actual IFMs 
of layer i are available at Label❹ at the earliest time, and will 
no longer be used after Label❺. Based on this, the Prolog is 
executed at the end of Label❹, to exchange and then save 
the shortcut data in the inactive input buffer (i.e., the invariant 
buffer).  
   Fig. 9c shows the Epilog procedure. A direct objective is to 
restore the saved shortcut data, which is achieved by the ex-
change in Label❷. While we can define the Epilog just like 
that, it is possible that the output buffer size Tout is larger than 
the input buffer size Tin, so additional empty banks are avail-
able in the inactive output buffer. To make full use of the 
buffer space, we add a preloading step to the Epilog, as shown 
in Label ❶, to preload (Tout – Tin) shortcut data from off-chip. 
This step is done prior to the above exchange step, so as to 
overlap the preloading with PE array computation. The final 
state of the Epilog has Tout shortcut data ready to be used. 
   Similar to the Prolog which is executed in parallel with the 
first Kernel, the Epilog is executed in parallel with the third 
Kernel, as shown in Fig. 10. Specially, the Epilog can be ap-
plied at Labels ⓫ and ⓬ in Fig. 8 (imagine that the figure 
now represents the Kernel for layer i+2) to preload and as-
semble Tout shortcut data in the inactive output buffer. How-
ever, additional time is needed to add the shortcut in the in-
active output buffer with the data in the active output buffer 
(OFMs of layer i+2), because the summation is what is actu-
ally needed to the next building block, as shown in Fig. 9a. 
Alternatively, to avoid the additional time, the Epilog can be 
applied in parallel with Label❶ of the third Kernel, so the 
Tout shortcut data is preloaded into the inactive output buffer 
at Label❶ (the preloading itself is overlapped with the PE 
array computation of the previous Kernel). This shortcut data 
is exchanged to the active output buffer in Label❷ and accu-
mulated with the PSUM of OFMs 1-4 in Label❹ automati-
cally, thanks to existing steps in the third Kernel. In either 
way of applying Epilog, the shortcut data is correctly added 
with the normal OFMs of layer i+2, thereby generating the 
input data that is needed by the next building block. 
   To summarize, in the three-layer building block example, 
the Prolog is executed in parallel with the first Kernel to save 
the shortcut data. This is followed by the second Kernel. Then 
the Epilog is executed in parallel with the third Kernel to re-
store and reuse the shortcut data. During this time, the three 
Kernel executions reuse the OFMs of layer i-1, layer i and 
layer i+1 as the IFMs of layer i, layer i+1 and layer i+2, re-
spectively. In general, assuming Ki is the Kernel for layer i, 
for a residual network that is constructed with building blocks 
of depth of D, the sequence of operations for reusing both 
shortcut and non-shortcut feature maps is: (ܲ&ܭଵ) +ܭିଵ

ଶ +  (ܧ&ܭ)

   Following this sequence, the proposed Shortcut Mining can 
work for building blocks with any number of layers. 

5. ACCELERATOR IMPLEMENTATION  

   We demonstrate the effectiveness of the proposed Shortcut 
Mining (SCM) scheme by prototyping on a FPGA. Besides 
common benefits of FPGA-prototyping, this also enables us 
to track all the transactions between the accelerator and the 
off-chip memory (DRAM) byte-by-byte at the cycle level. 
   To determine the optimal parameters for the configurations 
of the accelerators for a baseline (referred to as BL hereafter) 
and the proposed SCM, we have developed an optimization 
program tool, following previous methodologies in [29][42] 
[26]. The tool takes as input a file containing the description 
of each CNN layer, the target FPGA resource budget profile, 
target frequency, data type format and the maximum memory 
bandwidth. The loop orders in [42] are used for both BL and 
SCM. The tool then calculates the estimated execution cy-
cles, memory bandwidth requirement, as well as the usage for 
DSP slices, BRAMs and URAMs for each set of the parame-
ters. The optimal set of parameters are then selected to imple-
ment BL and SCM on the FPGA. 

One of the important parameters is bank size. Large banks 
result in more data reuse in earlier layers of a network that 
have large grid sizes. On the other hand, later layers have 
smaller grid sizes due to down-sampling, thus smaller banks 
are more favorable for reusing data and increasing buffer uti-
lization. Additionally, smaller bank size has better flexibility 
but longer access latency. To determine the bank size, the tool 
generates all possible combinations of Tr and Tc (as defined 
in Section 2.1). For each pair, the tool estimates the off-chip 
traffic, bank access delay, and memory utilization based on 
[29][42][26] and the physical characteristics of the tracking 
arrays. The pair that has the lowest traffic and computation 
cycles, averaged over all the layers of a given network, is se-
lected. The final bank size is 4,067 for SqueezeNet, 1581 for 
ResNet-34 and 1681 ResNet-152, all in the unit of words. It 
is worth mentioning that, bank access latency is small (e.g., 
3ns) relative to the latency of PE array (i.e., MAC units, 
10ns), so the impact of using smaller and more flexible banks 
has very limited negative impact on the overall performance.  
   To increase the generality of our implementation, we have 
developed a parameterized approach where the values of the 
parameters can be set to the optimal ones obtained above, or 
other values if needed. We have carefully designed and im-
plemented the control logic that is needed to support the var-
ious operations in Prolog, Kernel and Epilog. The controller 
supports an arbitrary number of layers in a building block. 
The accelerators are implemented in the high-level-synthesis 
(HLS). Xilinx Vivado HLS 2017.4 is used to compile the 
HLS code with the selected parameters to synthesizable Ver-
ilog. AXI4 ports are used to access buffer banks, and the AXI 
interconnect is used to access the memory interface control-
ler. From the Xilinx tools, we are able to obtain the FPGA 
resource utilization, feature map traffic between the acceler-
ator and memory for each inference operation, as well as 
other results shown in the evaluation section. While we eval-
uate accelerators with SCM on FPGA in this paper, a similar 
implementation flow can be used for ASIC. For ASIC that 
communicates with off-chip memory (DRAM), the ASIC has 



its own on-chip memory where asynchronous FIFOs are typ-
ically added between the accelerator’s core and DRAM. The 
main design of SCM would be the same while a Verilog ver-
sion of SCM can be developed, synthesized and then placed 
& routed for ASIC implementation.  

6. EVALUATION   

6.1 Off-chip Feature Map Traffic  
   To evaluate the effectiveness of the proposed SCM in re-
ducing off-chip feature map traffic, we compare BL and SCM 
for DCNNs constructed with three depths of building blocks: 
SqueezeNet as a representative example for plain networks, 
ResNet-34 for networks with two-layer building blocks, and 
ResNet-152 for networks with a three-layer building blocks. 
   Table 2 summarizes the comparison on the provisioned off-
chip memory bandwidth, off-chip feature map traffic, and 
FPGA on-chip memory resource utilization for BL and SCM. 
Each BRAM is 18Kb and each URAM is 288Kb, and the total 
number of BRAMs and URAMs that are utilized for each ac-
celerator are shown in the last two rows of Table 2. The off-
chip feature map traffic is measured as the amount of data 
that is transferred between the accelerator and the DRAM for 
each inference of the CNN processing. The main difference 
between BL and SCM is the buffer architecture and how fea-
ture map data are managed. To have a competitive baseline, 
the BL includes all the optimization techniques mentioned in 
Section 2.1 that are common to DCNN accelerators. Also, we 
implement operations in BL such as pooling and activation 
function in a pipeline manner to overlap with PE array com-
putation. Furthermore, shortcut connections are treated as 
partial sums and their buffer in BL is implemented as a ping-
pong buffer to overlap the preloading with layer computation. 
The buffers in SCM are logical buffers instead, and the fea-
ture map operations follow the procedures described in Sec-
tion 4. 
   As shown in Table 2, an inference operation in SqueezeNet 
has 30MB of feature map data that needs to be transferred 
between the accelerator and the DRAM for the baseline. In 
contrast, for the proposed SCM, the off-chip feature map data 
is reduced to 14MB, which is a 53.3% reduction from the BL. 
Moreover, SCM uses smaller 14% on-chip buffers as part of 
the inactive output buffer is saved by using some of the idle 
inactive input buffer in SCM. 
   For ResNet-34 and ResNet-152, similar trends can be ob-
served with one difference. Compared with SqueezeNet, the 
ResNets have considerable numbers of shortcut connections, 
so the BL accelerator needs a dedicated buffer to preload the 
shortcut connections. Therefore, BL has four buffers includ-
ing the IFM buffer, weight buffer, OFM buffer, and shortcut 
buffer. Based on the characteristics of the buffer components 
in FPGA, it is more efficient to implement the first three in 

BRAMs and the last one in URAMs. The SCM does not need 
the shortcut buffer owing to the shortcut reuse procedure, as 
well as the reuse of the inactive output buffer for preloading 
the remaining shortcuts, as explained in section 4. Overall, 
compared with BL, the proposed SCM reduces the off-chip 
feature map traffic for an inference operation in ResNet-34 
from 56.23MB to 23.58MB, which is a large 58% reduction. 
Meanwhile, SCM does not incur the 256 URAMs overhead 
for the shortcut buffer in BL. Likewise, for ResNet-152, the 
SCM reduces the off-chip feature map traffic by 43% (from 
240.3MB to 136.93MB), without using 512 URAMs com-
pared with the BL. There is a slightly increase in the number 
of BRAMs for ResNets in SCM (2-3%), which is due to the 
internal fragmentation when mapping buffers to BRAMs.  

6.2 On-chip Power  
   Fig. 11 compares the on-chip power consumption of the BL 
and SCM accelerators for the case of ResNet-152. We present 
the ResNet-152 results here because SCM has more complex 
control flow (and consequently more logic overhead) for this 
network compared with the other two networks. This gives 
slightly more advantage to the BL. Also, ResNet-152 has a 
deeper structure which might reflect future networks better. 
All the power consumption in this figure is from Vivado by 
using the Xilinx Virtex UltraScale+ FPGA VCU118 evalua-
tion platform. In total, the BL consumes 60.1 Watts and the 
SCM design consumes 45.1 Watts.  
   The SCM design has a more complex interconnect between 
the buffer banks and the PE array’s I/O and also more com-
plex control unit. This overhead leads to larger logic power 
consumption as shown in Fig. 11. However, SCM requires 
smaller on-chip buffers due to its efficient utilization of vari-
ous buffers. Moreover, a considerable number of buffer read 
and write operations are eliminated in SCM due to shortcut 
and non-shortcut feature map reuse. These improvements 
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24.8% Reduction

BL:Baseline 
SCM: Shortcut Mining

Table 2: Baseline (BL) vs. Shortcut Mining (SCM). 
 SqueezeNet ResNet-34 ResNet-152

Approach BL SCM BL SCM BL SCM
B/w (GB/s) 10.4 10.4 20.5 20.5 23 23 

Off-chip FMs 
traffic (MB) 

30 14 56.23 23.58 240.3 136.9 

URAMs 0 0 256 0 512 0 
BRAM 18K 2,737 2,354 3,078 3,198 3,145 3,210 

Fig. 12: Off-chip traffic comparison for scalability. 
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translate into 24.9% reduction in the total on-chip power for 
ResNet-152.  

6.3 Performance Comparison with State-of-the-Art  
   Besides the baseline, the proposed SCM is also compared 
with two state-of-the-art designs. The first one is a residual 
CNN accelerator that is proposed recently to optimize opera-
tions within a single layer [20][21]. To our knowledge, that 
work reports the best results so far among the existing 
schemes that target single-layer dataflow. The design reduces 
off-chip accesses and on-chip data movement, and increases 
the PE array utilization during each CNN layer processing. 
However, no shortcut connection data is exploited for reus-
ing. 
   Table 3 lists the comparison. The residual CNN accelerator 
is implemented on Altera Arria-10 GX 1150 FPGA. For fair 
comparison, we evaluate SCM on an equivalent Xilinx FPGA 
in terms of the available number of DSPs and on-chip buffer, 
using the same data type and frequency (our timing analysis 
shows that the changed interconnect and controller in SCM 
has a negligible impact on frequency since the critical path is 
mainly determined by the data type and PEs). Compared with 
the 315.48 GOPS throughput in the residual CNN accelera-
tor, SCM achieves 608.28 GOPS, which is a 1.93X improve-
ment in performance. The main reason for the large improve-
ment is that the PE array in SCM has more accesses that are 
serviced by on-chip buffers, during each CNN layer pro-
cessing as well as during the transition to the next layer due 
to feature map reuse.  
   We also compare with fused-CNN [2], a recent work on 
optimizing cross-layer dataflow. Fused-CNN can reduce the 
off-chip feature map traffic for five fused layers of VGGNet-
E by 95%, compared with a single-layer CNN dataflow ac-
celerator[2]. Meanwhile, fused-CNN is also slightly slower 
as it needs 6.5% more cycles for each inference operation of 
the fused layers[2]. However, as discussed previously, only a 
limited number of layers can be fused on a given FPGA. In 
our experiments, we found that 32 CNN layers of the ResNet-
152 can be fused on Xilinx Virtex UltraScale+ VU9P with 
32-bit floating point format. As a result, fused-CNN reduces 
the off-chip the off-chip feature map traffic by 26%. In com-
parison, the proposed SCM can reduce this traffic by 43% for 
ResNet-152 on the same platform and precision. 

6.4 Scalability  
   Fundamentally, the effectiveness of SCM in reducing off-
chip feature map traffic depends on two key factors. First, the 
amount of feature map data that remains on-chip at the end 
of each layer processing. Second, the amount of OFMs of the 
next layer that can be computed by using the above on-chip 
feature maps. Both factors greatly relate to the available on-
chip buffer in the accelerator. To investigate the impact of on-
chip buffer on the feature map reduction capability of SCM, 
we consider two extreme cases. In the first case, we examine 
an FPGA with a small on-chip buffer (Xilinx Virtex 7 485T 
with 4.5MB on-chip buffer size [39]), and in the second case 
an FPGA with a large on-chip buffer (Virtex UltraScale+ 
VU13P with 56MB [40]). Due to the lack of physical access 
to advance FPGAs, we project the off-chip feature map re-
duction using the estimation tool that we developed following 
models in [29][42][26], as discussed in Section 5. The results 
are presented in Fig. 12, all based on 32-bit floating point pre-
cision. On the FPGA with a small on-chip buffer, for 
SqueezeNet, ResNet-34, ResNet-152 and GoogLeNet, the 
off-chip feature map traffic is reduced by 23.9%, 32.8%, 
29.5% and 19.6%, respectively. On the FPGA with a large 
on-chip buffer, the off-chip feature map traffic is reduced by 
71.8%, 66.6%, 71.7%, and 47.8% for SqueezeNet, ResNet-
34, ResNet-152, and GoogLeNet, respectively. It is expected 
that the VU13P FPGA, which has a larger on-chip buffer, has 
more reduction in feature maps due to more reusable on-chip 
data. However, it is worth noting that, even for the 485T 
FPGA with a small buffer, the reduction is still quite 
substantial. 

6.5 Compact Data Type  
   There is an increasing trend to use compact data represen-
tations in DCNNs to improve computation efficiency [22]. 
To investigate the impact of this on the effectiveness of SCM, 
we conduct repeat the experiment in the previous subsection 
but for 16-bit fixed-point precision. For SqueezeNet, evalua-
tion results show that SCM reduces the off-chip feature map 
traffic by 67% on the 485T. This is much larger reduction 
compared with the 23.9% in the 32-bit floating point case. 
Similarly, with 16-bit fixed-point, SCM achieves 57.3% and 
47.6% off-chip feature map reduction for ResNet-34 and Res-
Net-152, respectively, both of which exceed the 32.8% and 
29.5% reduction under 32-bit floating point. These results are 
expected as with compact data representations, more feature 
maps and shortcut connection data can be fit in the same on-
chip buffer. Therefore, the proposed SCM will work well for 
future lower precision representations.  

6.6 Layer-by-layer Analysis  
   We conduct further evaluation to analyze the effectiveness 
of the proposed approach in off-chip energy consumption and 
latency reduction as a function of CNN layers, available on-
chip memory, and data type. Fig. 13 shows the normalized 
off-chip energy consumption and latency for each CNN layer 
of VGGNet-E in two cases: first, a small on-chip memory 
with 32-bit floating point data type, and second, a large on-
chip memory with 16-bit fixed-point data type. As it can be 
seen from Fig. 13(a), the large on-chip memory with compact 
data type has more energy reduction as more feature maps 

Table 3: Performance comparison with state-of-the-art 
single-layer CNN accelerator on equivalent FPGAs. 

 Design in [21] SCM 
FPGA Arria-10 GX 1150 Virtex-7 485T 

Frequency (MHz) 150 150 
Network ResNet-152 ResNet-152 

#Operations (GOP) 22.62 22.63 
DSP Utilization 100% 100% 

BRAM Utilization 93% 99% 
Logic Utilization 33% 86% 

Data Format 16-bit 16-bit 
Latency (ms) 71.71 35.24 

Throughput (GOPS) 315.48 608.28 
Power Not Reported 21.64 

Efficiency (GOP/J) Not Reported 28.1 
Off-chip FMs (MB) Not Reported 62.93 



remain on-chip at the end of each CNN layer for reuse. How-
ever, on average, the off-chip energy consumption is reduced 
substantially in both cases, by 25.2% and 50% for the first 
and second case, respectively. A similar trend can be ob-
served for the off-chip latency as shown in Fig. 13(b). Over-
all, off-chip latency is reduced by 23% and 45.7% for the first 
and second case, respectively. For residual networks (not 
shown), we have observed more aggressive savings in off-
chip energy consumption and latency due to shortcut reuse in 
addition to feature maps. For example on the FPGA with a 
large memory and 16-bit fixed point (second case), the off-
chip energy consumption and latency for ResNet-152 are re-
duced by 81% and 79%, respectively.           

7. RELATED WORK 

   There is an increasing number of works focusing on the de-
sign of hardware accelerators for DCNNs, and it has been an 
active research topic in the computer architecture community 
in recent years. Below, we discuss the most relevant works to 
ours in terms of single-layer and cross-layer CNN dataflow. 
This is followed by a brief discussion on other related work.  
   In the past few years, many schemes based on single-layer 
dataflow are proposed (e.g., [23][42][32][4][5][20][19][35] 
[33][15]). These works focus on the efficient processing of a 
single CNN layer mostly through the optimized loop opera-
tions and the computation order to reduce off-chip and on-
chip data movement and increase PE array utilization. Fea-
ture map reuse, particularly shortcut data reuse, has not been 
explored well. Feature maps can be compressed to reduce off-
chip traffic. Its effectiveness is limited as it depends on the 
number of zeros and their distribution. Even under ReLU, 
which is a benign activation function for compression, only 
1.2X to 1.9X reduction is achieved [4]. Compression is or-
thogonal to data reuse. When compression is used, the pro-
posed SCM would achieve similar reduction percentage for 
off-chip traffic that is caused by feature maps. However, the 
overall reduction percentage may be lower as the relative off-
chip traffic from feature maps (vs. weights) is smaller due to 
compression. 
   On the cross-layer dataflow side, fused-layer CNN [2] cas-
cades multiple CNN layers in a pyramid structure and reuses 
intermediate OFM tiles. Off-chip accesses are greatly re-
duced, although on-chip data copying between the output 
buffer and input buffer is still needed. This cross-layer 
dataflow is also supported by other recent works 
[17][28][37]. A main limitation of fusing layers is the need 
for large on-chip buffers to hold all the intermediate data be-
tween layers. This makes it less effective to process deeper 
networks. In comparison, the proposed Shortcut Mining in 

this paper can reuse shortcut data and feature maps very ef-
fectively for deep networks. The proposed scheme also works 
well for various types of networks, constructed with building 
blocks of different depths. 
   In addition to the above, one work is presented to minimize 
the bandwidth requirement for loading data into local buffers 
during each CNN layer processing [25], but not during the 
transition between layers. CirCNN is introduced to reduce the 
cost of weights in deep neural networks [6], which further 
increases the percentage of feature map data and makes our 
proposed SCM more important. Another accelerator [1] is de-
signed based on the observation that majority of the compu-
tations performed by DNNs contain multiplications where 
one of the operands is zero. Thus, these computations can be 
eliminated for less energy consumption. Also, an accelerator 
based on a “bit-serial” PE array is designed to provide an en-
ergy efficient DNNs processing at the cost of increased area 
overhead [16]. The above two papers have very different ap-
proaches to our work. A very recent work [43] observes that, 
even by eliminating computation for zero inputs in neurons, 
many neurons still cannot be passed to the next layer. Thus, 
a two-stage DNN accelerator is proposed to first predict and 
then skip the computation for those ineffectual neurons. The 
input and filter sharing proposed in that work are among PEs 
in a single layer, which is different from the opportunity ex-
plored in this work that moves and reuses data across layers. 
Other earlier works such as [3][24] focus on 2D convolution 
engine, including the order of data fetching and data caching. 
These schemes are not for 3D convolution structures in deep 
networks. 

8. CONCLUSION 

   Current and future deep learning networks employ deep 
structures for a higher accuracy in different machine learning 
tasks. However, off-chip memory accesses become a major 
issue in energy-efficient and high-performance processing. In 
this paper, we analyze the composition of off-chip accesses 
and different feature maps reuse opportunities in the modern 
DCNNs. We propose a novel approach to exploit the reuse of 
the shortcut connections and feature maps in different net-
works in order to reduce the off-chip traffic. Experiment re-
sults demonstrate that the proposed approach offers signifi-
cant advantage in reducing up to 71.8% off-chip feature map 
traffic and increasing performance by 1.93X on modern ac-
celerator platforms. 
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Fig. 13: VGGNet-E off-chip energy consumption (a) and latency (b). 
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