
A Deep Reinforcement Learning Framework for
Architectural Exploration: A Routerless NoC Case Study

Ting-Ru Lin1∗, Drew Penney2*, Massoud Pedram1, Lizhong Chen2

1University of Southern California, Los Angeles, California, USA
2Oregon State University, Corvallis, Oregon, USA

1{tingruli, pedram}@usc.edu, 2{penneyd, chenliz}@oregonstate.edu

ABSTRACT
Machine learning applied to architecture design presents
a promising opportunity with broad applications. Recent
deep reinforcement learning (DRL) techniques, in particu-
lar, enable efficient exploration in vast design spaces where
conventional design strategies may be inadequate. This pa-
per proposes a novel deep reinforcement framework, tak-
ing routerless networks-on-chip (NoC) as an evaluation case
study. The new framework successfully resolves problems
with prior design approaches, which are either unreliable due
to random searches or inflexible due to severe design space
restrictions. The framework learns (near-)optimal loop place-
ment for routerless NoCs with various design constraints. A
deep neural network is developed using parallel threads that
efficiently explore the immense routerless NoC design space
with a Monte Carlo search tree. Experimental results show
that, compared with conventional mesh, the proposed deep
reinforcement learning (DRL) routerless design achieves a
3.25x increase in throughput, 1.6x reduction in packet latency,
and 5x reduction in power. Compared with the state-of-the-art
routerless NoC, DRL achieves a 1.47x increase in throughput,
1.18x reduction in packet latency, 1.14x reduction in average
hop count, and 6.3% lower power consumption.

Keywords
machine learning; network-on-chip; routerless

1. INTRODUCTION
Improvements in computational capabilities are increas-

ingly reliant upon advancements in many-core chip designs.
These designs emphasize parallel resource scaling and conse-
quently introduce many considerations beyond those in single
core processors. As a result, traditional design strategies may
not scale efficiently with this increasing parallelism. Early
machine learning approaches, such as simple regression and
neural networks, have been proposed as an alternative design
strategy. More recent machine learning developments lever-
age deep reinforcement learning to provide improved design
space exploration. This capability is particularly promising in
broad design spaces, such as network-on-chip (NoC) designs.

NoCs provide a basis for communication in many-core
chips that is vital for system performance [9]. NoC design
involves many trade-offs between latency, throughput, wiring
resources, and other overhead. Exhaustive design space explo-
ration, however, is often infeasible in NoCs and architecture
in general due to immense design spaces. Thus, intelligent
exploration approaches would greatly improve NoC designs.

Applications include recently proposed routerless NoCs
[2, 29]. Conventional router-based NoCs incur significant
∗Equal contribution.

power and area overhead due to complex router structures.
Routerless NoCs eliminate these costly routers by effectively
using wiring resources while achieving comparable scaling
to router-based NoCs. Prior research has demonstrated up to
9.5x reduction in power and 7x reduction in area compared
with mesh [2], establishing routerless NoCs as a promising
alternative for NoC designs. Like many novel concepts and
approaches in architecture, substantial ongoing research is
needed to explore the full potential of the routerless NoC de-
sign paradigm and help advance the field. Design challenges
for routerless NoCs include efficiently exploring the huge
design space (easily exceeding 1012) while ensuring connec-
tivity and wiring resource constraints. This makes routerless
NoCs an ideal case study for intelligent design exploration.

Prior routerless NoC design has followed two approaches.
The first, isolated multi-ring (IMR) [29], uses an evolutionary
approach (genetic algorithm) for loop design based on ran-
dom mutation/exploration. The second approach (REC) [2]
recursively adds loops strictly based on the NoC size, severely
restricting broad applicability. Briefly, neither approach guar-
antees efficient generation of fully-connected routerless NoC
designs under various constraints.

In this paper, we propose a novel deep reinforcement learn-
ing framework for design space exploration, and demonstrate
a specific implementation using routerless NoC design as our
case study. Efficient design space exploration is realized us-
ing a Monte-Carlo tree search (MCTS) that generates training
data to a deep neural network which, in turn, guides the search
in MCTS. Together, the framework self-learns loop place-
ment strategies obeying design constraints. Evaluation shows
that the proposed deep reinforcement learning design (DRL)
achieves a 3.25x increase in throughput, 1.6x reduction in
packet latency, and 5x reduction in power compared with a
conventional mesh. Compared with REC, the state-of-the-art
routerless NoC, DRL achieves a 1.47x increase in throughput,
1.18x reduction in packet latency, 1.14x reduction in average
hop count, and 6.3% lower power consumption. When scal-
ing from a 4x4 to a 10x10 NoC under synthetic workloads,
the throughput drop is also reduced dramatically from 31.6%
in REC to only 4.7% in DRL.

Key contributions of this paper include:
• Fundamental issues are identified in applying deep re-

inforcement learning to routerless NoC designs;
• An innovative deep reinforcement learning framework

is proposed and implementation is presented for router-
less NoC design with various design constraints;
• Cycle-accurate architecture-level simulations and circuit-

level implementation are conducted to evaluate the de-
sign in detail;
• Broad applicability of the proposed framework with

several possible examples is discussed.

1

The rest of the paper is organized as follows: Section 2
provides background on NoC architecture, reinforcement
learning, and design space complexity; Section 3 describes
issues in prior routerless NoC design approaches and the
need for a better method; Section 4 details the proposed
deep reinforcement learning framework; Section 5 illustrates
our evaluation methodology; Section 6 provides simulation
results; Section 7 reviews related work; Section 8 concludes.

2. BACKGROUND
2.1 NoC Architecture

Single-ring NoCs: Nodes in a single-ring NoC commu-
nicate using one ring connecting all nodes.1 Packets are
injected at a source node and forwarded along the ring to
a destination node. An example single-ring NoC is seen in
Figure 1(a). Single-ring designs are simple, but have low
bandwidth, severely restricting their applicability in large-
scale designs. Specifically, network saturation is rapidly
reached as more nodes are added due to frequent end-to-end
control packets [1]. Consequently, most single-ring designs
only scale to a modest number of processors [22].

Router-based NoCs: NoC routers generally consist of
input buffers, routing and arbitration logic, and a crossbar
connecting input buffers to output links. These routers enable
a decentralized communication system in which routers check
resource availability before packets are sent between nodes
[2]. Mesh (or mesh-based architectures) have become the
de facto choice due to their scalability and relatively high
bandwidth [29]. The basic design, shown in Figure 1(b),
features a grid of nodes with a router at every node. These
routers can incur 11% chip area overhead [13] and, depending
upon frequency and activity, up to 28% chip power [7, 16]
overhead, although some recent work [5,33] has shown much
smaller overhead using narrow links and shallow/few buffers
with high latency cost; this indirectly shows that routers are
the main cost in existing NoCs. Hierarchical-ring, illustrated
in Figure 1(c), instead uses several local rings connected by
the dotted global ring. Routers are only needed for nodes
intersected by the global ring as they are responsible for
packet transfer between ring groups [3]. Extensive research
has explored router-based NoC optimization [7, 17, 44], but
these solutions only slightly reduce power and area overhead
[29].

Routerless NoCs: Significant overhead associated with
router-based topologies has motivated routerless NoC designs.
Early proposals [44] used bus-based networks in a hierarchi-
cal approach by dividing the chip into multiple segments,
each with a local broadcast bus. Segments are connected
by a central bus with low-cost switching elements. These
bus-based networks inevitably experience contention on lo-
cal buses and at connections with the central bus, resulting
in poor performance under heavy traffic. Recently, isolated
multi-ring (IMR) NoCs have been proposed that exploit addi-
tional interconnect wiring resources in modern semiconductor
processes [29]. Nodes are connected via at least one ring and
packets are forwarded from source to destination without
switching rings. IMR improves over mesh-based designs in
terms of power, area, and latency, but requires significant
buffer resources: each node has a dedicated input buffer for
each ring passing through its interface, thus a single node may
require many packet-sized buffers [2, 29]. Recent routerless
NoC design (REC) [2] has mostly eliminated these costly
buffers by adopting shared packet-size buffers among loops.
1Note that rings and loops are used interchangeably in this paper.

(b)(a) (c)

Core/Node Router

Figure 1: NoC Architecture. (a) Single-Ring (b) Mesh (c)
Hierarchical Ring

A B C
Path 1: A K

A P

P

Path 3: K

Path 2: A

Connected Node

Isolated Node

(a)

D

E F G H

I J K L

M N O P

A B C

(b)

D

E F G H

I J K L

M N O P

Clockwise Circulation Counterclockwise Circulation(c)

Figure 2: A 4x4 NoC with rings. (a) A NoC with one
isolated node. (b) A NoC without isolated nodes. (c) A
4x4 routerless NoC with rings.

REC uses just a single flit-sized buffer for each loop, along
with several shared extension buffers to provide effectively
the same functionality as dedicated buffers [2].

Both IMR and REC designs differ from prior approaches
in that no routing is performed during traversal, so packets in
one loop cannot be forwarded to another loop [2, 29]. Both
designs must therefore satisfy two requirements: every pair of
nodes must be connected by at least one loop and all routing
must be done at the source node. Figure 2 delineates these
requirements and highlights differences between router-based
and routerless NoC designs. Figure 2(a) depicts an incom-
plete 4x4 ring-based NoC with three loops. These loops are
unidirectional so arrows indicate the direction of packet trans-
fer for each ring. Node F is isolated and cannot communicate
with other nodes since no ring passes through its interface.
Figure 2(b) depicts the NoC with an additional loop through
node F . If routers are used, such as at node A, this ring would
complete the NoC, as all nodes can communicate with ring
switching. Packets from node K, for example, can be trans-
ferred to node P using path 3, which combines paths1 and
path2. In a routerless design, however, there are still many
nodes that cannot communicate as packets must travel along
a single ring from source to destination. That is, packets from
node K cannot communicate with node P because path1 and
path2 are isolated from each other. Figure 2(c) depicts an
example 4x4 REC routerless NoC [2]. Loop placement for
larger networks is increasingly challenging.

Routerless NoCs can be built with simple hardware inter-
faces by eliminating crossbars and VC allocation logic. As a
result, current state-of-the-art routerless NoCs have achieved
9.5x power reduction, 7.2x area reduction, and 2.5x reduc-
tion in zero-load packet latency compared with conventional
mesh topologies [2]. Packet latency, in particular, is greatly
improved by single-cycle delays per hop, compared with stan-

2

dard mesh, which usually requires two cycles for the router
alone. Hop count in routerless designs can asymptotically
approach the optimal mesh hop count using additional loops
at the cost of power and area. Wiring resources, however,
are finite, meaning that one must restrict the total number
of overlapping rings at each node (referred to as node over-
lapping) to maintain physical realizability. In Figure 2 (b),
node overlapping at node A, for example, is three, whereas
node overlapping at node F is one. Wiring resource restric-
tion is one of the main reasons that make routerless NoC
design substantially more challenging. As discussed in Sec-
tion 3, existing methods either do not satisfy or do not enforce
these potential constraints. We therefore explore potential
applications and advantages of machine learning.

2.2 Reinforcement Learning
Reinforcement Learning Background: Reinforcement

learning is a branch of machine learning that explores actions
in an environment to maximize cumulative returns/rewards.
Fundamental to this exploration is the environment, E , in
which a software agent takes actions. In our paper, this en-
vironment is represented by a routerless NoC design. The
agent attempts to learn an optimal policy π for a sequence of
actions {at} from each state {st}, acquiring returns {rt} at
different times t in E [42]. Figure 3 depicts the exploration
process, in which the agent learns to take an action at (adding
a loop) given a state st (information about an incomplete
routerless NoC) with the goal of maximizing returns (mini-
mizing average hop count). At each state, there is a transition
probability, P(st+1;st ,at), which represents the probability
of transitioning from st to st+1 given at . The learned value
function V π(s) under policy π is represented by

V π(s) = E[∑
t≥0

γ
t ∗ rt ;s0 = s,π] (1)

R = ∑
t≥0

γ
t ∗ rt (2)

where γ is a discount factor (≤ 1) and R is the discounted
cumulative return.

The goal of reinforcement learning is to maximize cumu-
lative returns R and, in case of routerless NoC design, to
minimize average hop count. To this end, the agent attempts
to learn the optimal policy π∗ that satisfies

π
∗ = argmax

π
E[∑

t≥0
γ

t ∗ rt ;s0 = s,π]. (3)

Equation 1 under π∗ thus satisfies the Bellman equation

V ∗(s) = E[r0 + γV ∗(s1);s0 = s,π∗] (4)

= p(s0)∑
a0

π
∗(a0;s0)∑

s1

P(s1;s0,a0)[r(s0,a0)+ γV ∗(s1)]

(5)

where p(s0) is the probability of initial state s0. The general
form of π(a0;s0) is interpreted as the probability of taking
action a0 given state s0 with policy π . Equation 5 suggests
that an agent, after learning the optimal policy function π∗,
can minimize the average hop count of a NoC.

Deep Reinforcement Learning: Breakthroughs in deep
learning have spurred researchers to rethink potential appli-
cations for deep neural networks (DNNs) in diverse domains.
One result is deep reinforcement learning, which synthesizes
DNNs and reinforcement learning concepts to address com-
plex problems [35, 40, 41]. This synthesis mitigates data
reliance without introducing convergence problems via effi-

Environment

Agent

State

(NoC)
Action

(add loop)

Returns

Input

Figure 3: Reinforcement learning framework.

cient data-driven exploration based on DNN output. Recently,
these concepts have been applied to Go, a grid-based strategy
game involving stone placement. In this model, a trained
policy DNN learns optimal actions by searching a Monte
Carlo tree that records actions suggested by the DNN during
training [40, 41]. Deep reinforcement learning can outper-
form typical reinforcement learning by generating a sequence
of actions with better cumulative returns [35, 40, 41].

2.3 Design Space Complexity
Design space complexity in routerless NoCs poses a sig-

nificant challenge requiring efficient exploration. A small
4x4 NoC using 10 loops chosen from all 36 possible rectan-
gular loops has

(36
10

)
≈ 108 total designs. This design space

increases rapidly with NoC size; an 8x8 NoC with 50 loops
chosen from 784 possible rectangular loops has

(784
50

)
≈ 1079

designs. It can be shown that the complexity of routerless
NoC designs exceeds the game of Go. Similar to AlphaGo,
deep reinforcement learning is needed here and can address
this complexity by approximating actions and their benefits,
allowing search to focus on high-performing configurations.

3. MOTIVATION
3.1 Design Space Exploration

Deep reinforcement learning provides a powerful founda-
tion for design space exploration using continuously refined
domain knowledge. This capability is advantageous since
prior methods for routerless NoC designs have limited design
space exploration capabilities. Specifically, the evolutionary
approach [29] evaluates generations of individuals and off-
spring. Selection uses an objective function while evolution
relies on random mutation, leading to an unreliable search
since past experiences are ignored. Consequently, exploration
can be misled and generate configurations with high average
hop count and long loops (48 hops) in an 8x8 NoC [2]. The
recursive layering approach (REC) overcomes these reliabil-
ity problems but strictly limits design flexibility. Latency
improves as the generated loops pass through fewer nodes
on average [2], but hop count still suffers in comparison to
router-based NoCs as it is restricted by the total number of
loops. For an 8x8 NoC, the average hop count is 5.33 in mesh
and 8.32 in the state-of-the-art recursive layering design, a
1.5x increase [2].

Both approaches are also limited by their inability to en-
force design constraints, such as node overlapping. In IMR,
ring selection is based solely on inter-core-distance and ring
lengths [29] so node overlapping may vary significantly based
on random ring mutation. Constraints could be built into the
fitness function, but these constraints are likely to be violated
to achieve better performance. Alternatively, in REC, loop
configuration for each network size is strictly defined. A 4x4
NoC must use exactly the loop structure shown in Figure 2 (c)

3

so node overlapping cannot be changed without modifying
the algorithm itself. These constraints must be considered
during loop placement since an optimal design will approach
these constraints to allow many paths for packet transfer.
3.2 Reinforcement Learning Challenges

Several challenges apply to deep reinforcement learning in
any domain. To be more concrete, we discuss these consider-
ations in the context of routerless NoC designs.

Specification of States and Action: State specification
must include all information for the agent to determine op-
timal loop placement and should be compatible with DNN
input/output structure. An agent that attempts to minimize
average hop count, for example, needs information about
the current hop count. Additionally, information quality can
impact learning efficiency since inadequate information may
require additional inference. Both state representation and
action specification should be a constant size throughout the
design process because the DNN structure is invariable.

Quantification of Returns: Return values heavily influ-
ence NoC performance so they need to encourage beneficial
actions and discourage undesired actions. For example, re-
turns favoring large loops will likely generate a NoC with
large loops. Routerless NoCs, however, benefit from diverse
loop sizes; large loops help ensure high connectivity while
smaller loops may lower hop counts. It is difficult to achieve
this balance since the NoC will remain incomplete (not fully
connected) after most actions. Furthermore, an agent may
violate design constraints if the return values do not appropri-
ately deter these actions. Returns should be conservative to
discourage useless or illegal loop additions.

Functions for Learning: Optimal loop configuration strate-
gies are approximated by learned functions, but these func-
tions are notoriously difficult to learn due to high data re-
quirements. This phenomenon is observed in AlphaGo [40]
where the policy function successfully chooses from 192 pos-
sible moves at each of several hundred steps, but requires
more than 30 million data samples. An effective approach
must consider this difficulty, which can be potentially ad-
dressed with optimized data efficiency and parallelization
across threads, as discussed later in our approach.

Guided Design Space Search: An ideal routerless NoC
would maximize performance while minimizing loop count
based on constraints. Similar hop count improvement can
be achieved using either several loops or a single loop. Intu-
itively, the single loop is preferred to reduce NoC resources,
especially under strict overlapping constraints. This implies
benefits from ignoring/trimming exploration branches that
add loops with suboptimal performance improvement.

4. PROPOSED SCHEME
4.1 Overview

The proposed deep reinforcement learning framework is
depicted in Figure 4. Framework execution begins by initializ-
ing the Monte Carlo Tree Search (MCTS) with an empty tree
and a neural network without a priori training. The whole
process consists of many exploration cycles. Each cycle be-
gins with a blank design (e.g., a completely disconnected
NoC). Actions are continuously taken to modify this design.
The DNN (dashed "DNN" box) selects a good initial action,
which directs the search to a particular region in the design
space; several actions are taken by following MCTS (dashed
"MCTS" box) in that region. The MCTS starts from the cur-
rent design (a MCTS node), and tree traversal selects actions
using either greedy exploration or an "optimal" action until a

DNN

Training

One Exploration

Action

Sequential

Action(s)

Search Tree

Updating

Evaluation

Metrics

More Action?

Design

Simulations

Blank

Design

DNN MCTS

Stop?

No

Yes

No

Yes

Decision-Making

Learning

A Single Cycle

Figure 4: Deep reinforcement learning framework.

leaf (one of many explored designs) is reached. Additional
actions can be taken, if necessary, to complete the design. Fi-
nally, an overall reward is calculated ("Evaluation Metrics")
and combined with information on state, action, and value
estimates to train the neural network and update the search
tree (the dotted "Learning" lines). The exploration cycle re-
peats to optimize the design. Once the search completes, full
system simulations are used to verify and evaluate the design.
In the framework, the DNN generates coarse designs while
MCTS efficiently refines these designs based on prior knowl-
edge to continuously generate more optimal configurations.
Unlike traditional supervised learning, the framework does
not require a training dataset; instead, the DNN and MCTS
gradually train themselves from past exploration cycles.

Framework execution in the specific case of routerless
NoCs is as follows: each cycle begins with a completely dis-
connected routerless NoC; the DNN suggests an initial loop
addition; following this initial action, one or more loops are
added ("Sequential Action") by the MCTS; rewards are pro-
vided for each added loop; the DNN and MCTS continuously
add loops until no more loops can be added without violating
constraints; the completed routerless NoC configuration is
evaluated by comparing average hop count to that of mesh
to generate a cumulative reward; overall rewards, along with
information on state, action, and value estimates, are used to
train the neural network and update the search tree; finally,
these optimized routerless NoC configurations are tested.

The actions, rewards, and state representations in the pro-
posed framework can be generalized for design space ex-
ploration in router-based NoCs and in other NoC-related
research. Several generalized framework examples are dis-
cussed in Section 6.8. The remainder of this section addresses
the application of the framework to routerless NoC design
as a way to present low-level design and implementation de-
tails. Other routerless NoC implementation details including
deadlock, livelock, and starvation are addressed in previous
work [2, 29] so are omitted here.

4.2 Routerless NoCs Representation
Representation of Routerless NoCs (States): State rep-

resentation in our framework uses a hop count matrix to en-
code current NoC state as shown in Figure 5. A 2x2 routerless
NoC with a single clockwise loop is considered for simplicity.
The overall state representation is a 4x4 matrix composed of
four 2x2 submatrices, each representing hop count from a spe-
cific node to every node in the network. For example, in the
upper left submatrix, the zero in the upper left square corre-
sponds to distance from the node to itself. Moving clockwise
with loop direction, the next node is one hop away, then two,
and three hops for nodes further along the loop. All other

4

0 1

3 2

3 0

2 1

1 2

0 3

2 3

1 0
Hop Count Matrix

Submatrix

0 1

3 2

3 0

2 1

1 2

0 3

2 3

1 0
(x1, y1)

(x2, y2)

Figure 5: Hop count matrix of a 2x2 routerless NoC.

submatrices are generated using the same procedure. This
hop count matrix encodes current loop placement information
using a fixed size representation to accommodate fixed DNN
layer sizes. In general, the input state for an N×N NoC is
an N2×N2 hop count matrix. Connectivity is also implicitly
represented in this hop count matrix by using a default value
of 5∗N for unconnected nodes.

Representation of Loop Additions (Actions): Actions
are defined as adding a loop to an N×N NoC. We restrict
loops to rectangles to minimize the longest path. With this
restriction, the longest path will be between diagonal nodes
at the corners of the NoC, as in REC [2]. Actions are en-
coded as (x1,y1,x2,y2,dir) where x1,y1,x2 and y2 represent
coordinates for diagonal nodes (x1,y1) and (x2,y2) and dir
indicates packet flow direction within a loop. Here, dir = 1
represents clockwise circulation for packets and dir = 0 rep-
resents counterclockwise circulation. For example, the loop
in Figure 5 represents the action (0,0,1,1,1). We enforce
rectangular loops by checking that x1 6= x2 and y1 6= y2.

4.3 Returns After Loop Addition
The reward function encourages exploration by rewarding

zero for all valid actions, while penalizing repetitive, invalid,
or illegal actions using a negative reward. A repetitive action
refers to adding a duplicate loop, receiving a −1 penalty. An
invalid action refers to adding a non-rectangular loop, receiv-
ing a −1 penalty. Finally, illegal actions involve additions
that violate the node overlapping constraint, resulting in a
severe −5 ∗N penalty. The agent receives a final return to
characterize overall performance by subtracting average hop
count in the generated NoC from average mesh hop count.
Minimal average hop count is therefore found by minimizing
the magnitude of cumulative returns.

4.4 Deep Neural Network
Residual Neural Networks: Sufficient network depth is

essential and, in fact, leading results have used at least ten
DNN layers [14, 40, 41]. High network depth, however, can
cause overfitting for many standard DNN topologies. Resid-
ual networks offer a solution by introducing additional short-
cut connections between layers that allow robust learning
even with network depths of 100 or more layers. A building
block for residual networks is shown in Figure 6(a). Here,
the input is X and the output, after two weight layers, is
F(X). Notice that both F(X) and X (via the shortcut con-
nection) are used as input to the activation function. This
shortcut connection provides a reference for learning optimal
weights and mitigates the vanishing gradient problem during
back propagation [14]. Figure 6(b) depicts a residual box
(Res) consisting of two convolutional (conv) layers. Here, the
numbers 3x3 and 16 indicate a 3x3x16 convolution kernel.

DNN architecture: The proposed DNN uses the two-
headed architecture shown in Figure 6(c), which learns both
the policy function and the value function. This structure
has been proven to reduce the amount of data required to
learn the optimal policy function [41]. We use convolutional
layers because loop placement analysis is similar to spa-

NxN conv, 16

Res: 3x3 conv, 16

pool, /2

3x3 conv, 32

pool, /2

Res: 3x3 conv, 32

3x3 conv, 64

pool, /2

Res: 3x3 conv, 64

3x3 conv, 128

Res: 3x3 conv, 128

3x3 conv, 2

32 FC 1 FC

3x3 conv, 2

1 FC

N
2

x N
2

HopCount

4xN Policy

(x1, y1, x2, y2)

1 Policy

Clockwise Loop
1 Value

Res: 3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

Weight Layer

Weight Layer

x
Activation Function

(a)

(b) (c)

X

F(X)

Figure 6: Deep residual networks. (a) A generic build-
ing block for residual networks. (b) A building block for
convolutional residual networks. (c) Proposed network.

tial analysis in image segmentation, which performs well
on convolutional neural networks. Batch normalization is
used after convolutional layers to normalize the value dis-
tribution and max pooling (denoted "pool") is used after
specific layers to select the most significant features. Fi-
nally, both policy and value estimates are produced at the
output as the two separate heads. The policy, discussed in
section 4.2, has two parts: the four dimensions, x1,y1,x2,y2,
which are generated by a softmax function following a ReLU
and dir, which is generated separately using a tanh func-
tion. Tanh output between -1 and 1 is converted to a di-
rection using dir > 0 as clockwise and dir ≤ 0 as counter-
clockwise. Referring to Figure 6(c), the softmax input af-
ter ReLU is {ai j} where i = 1,2,3,4 and j = 1, ...,N. Di-
mensions x1 and y1 are max j(exp(a1 j)/∑ j exp(a1 j)) and
max j(exp(a2 j)/∑ j exp(a2 j)). The same idea applies to x2
and y2. The value head uses a single convolutional layer
followed by a fully connected layer, without an activation
function, to predict cumulative returns.

Gradients for DNN Training: In this subsection we de-
rive parameter gradients for the proposed DNN architecture.2
We define τ as the search process for a routerless NoC in
which an agent receives a sequence of returns {rt} after tak-
ing actions {at} from each state {st}. This process τ can be
described a sequence of states, actions, and returns:

τ = (s0,a0,r0,s1,a1,r1,s2, ...). (6)

A given sequence of loops is added to the routerless NoC
based on τ ∼ p(τ;θ). We can then write the expected cumu-
lative returns for one sequence as

Eτ∼p(τ;θ)[r(τ)] =
∫

τ

r(τ)p(τ;θ)dτ (7)

p(τ;θ) = p(s0)∏
t≥0

π(at ;st ,θ)P(st+1;st ,at), (8)

where r(τ) is a return and θ is DNN weights/parameters we
want to optimize. Following the definition of π in section

2Although not essential for understanding the work, this subsection
provides theoretical support and increases reproducibility.

5

2.2, π(a0;s0,θ) is the probability of taking action a0 given
state s0 and parameter θ . We then differentiate the expected
cumulative returns for parameter gradients

∇Eτ∼p(τ;θ)[r(τ)] = ∇θ

∫
τ

r(τ)p(τ;θ)dτ (9)

=
∫

τ

(r(τ)∇θ log p(τ;θ))p(τ;θ)dτ (10)

= Eτθ∼p(τ;θ)[r(τ)∇θ log p(τ;θ)]. (11)

Notice that transition probability P(st+1,rt ;st ,at) is indepen-
dent of θ so we can rewrite Equation 11 as

Eτθ∼p(τ;θ)[r(τ)∇θ log p(τ;θ)] (12)

= Eτθ∼p(τ;θ)[r(τ)∇θ Σ logπ(at ;st ,θ)] (13)

≈∑
t≥0

r(τ)∇θ logπ(at ;st ,θ). (14)

The gradient in equation 14 is proportional to raw returns
(a constant value based on the past search trajectory). We
therefore substitute r(τ) with At as

∇θEτ∼p(τ;θ)[r(τ)]≈∑
t≥0

At∇θ logπ(at ;st ,θ) (15)

At = ∑
t ′>t

γ
t ′−trt ′ −V (st ;θ), (16)

where the first term in Equation 16 represents the returns
from the f uture trajectory at time t. We also subtract V (st ;θ)
to reduce the variance when replacing a constant with a pre-
diction. This approach is known as advantage actor-critic
learning where the actor and the critic represent the policy
function and value function, respectively [42]. In a two-
headed DNN, θ consists of θπ and θv for the policy function
and the value function, respectively. Gradients for these two
sets of parameters are directly obtained by representing Equa-
tion 15 as time intervals, rather than as a summation over
time. These gradients are then given as

dθπ = (∑
t ′>t

γ
t ′−trt ′ −V (st ;θv))∇θπ

logπ(at ;st ,θπ) (17)

dθv = ∇θv(∑
t ′>t

γ
t ′−trt ′ −V (st ;θv))

2. (18)

The whole training procedure repeats the following equations

θπ = θπ + γ ∗dθπ (19)
θv = θv + c∗ γ ∗θv, (20)

where γ is a learning rate and c is a constant.

4.5 Routerless NoC Design Exploration
An efficient approach for design space exploration is es-

sential for routerless NoC design due to the immense design
space. Deep reinforcement learning approaches are therefore
well-suited for this challenge as they can leverage recorded
states while learning. Some work uses experience replay,
which guides actions using random samples. These random
samples are useful throughout the entire learning process, so
improve collected state efficiency [35], but break the corre-
lation between states. Another approach is the Monte Carlo
tree search (MCTS), which is more closely correlated to hu-
man learning behavior based on experience. MCTS stores
previously seen routerless NoC configurations as nodes in a
tree structure. Each node is then labeled with the expected
returns for exploration starting from that node. As a result,

s

max

(a)

?

V+U

s

s

ss s

ss s

max V+U

V+U

V+U

s
?

s

(b)

s

s

(c)

V+U

s

s

ss s

ss s

V+U

V+U

s

Environment

Figure 7: Monte Carlo tree search. (a) Search. (b) Ex-
pansion+evaluation using DNN. (c) Backup.

MCTS can provide additional insight during state exploration
and help narrow the scope of exploration to a few promising
branches [40] to efficiently learn optimal loop placement.

In our implementation, each node s in the tree represents
a previously seen routerless NoC and each edge represents
an additional loop. Additionally, each node s stores a set of
statistics: V (snext), P(ai;s), and N(ai;s). V (snext) is the mean
cumulative return from snext and is used to approximate the
value function V π(snext). P(ai;s) is the prior probability of
taking action ai based on π(a = ai;s). Lastly, N(ai;s) is the
visit count, representing the number of times ai was selected
at s. Exploration starts from state s, then selects the best
action a∗ based on expected exploration returns given by

a∗ = argmax
ai

(U(s,ai)+V (snext)) (21)

U(s,ai) = c∗P(ai;s)

√
∑ j N(a j;s)

1+N(ai;s)
, (22)

where U(s,ai) is the upper confidence bound and c is a
constant [39]. The first term in Equation 21 encourages
broad exploration while the second emphasizes fine-grained
exploitation. At the start, N(ai;s) and V (snext) are simi-
lar for most routerless NoCs so exploration is guided by
P(ai;s) = π(a = ai;s). Reliance upon DNN policy decreases
with time due to an increasing N(ai;s), which causes the
search to asymptotically prefer actions/branches with high
mean returns [41]. Search is augmented by an ε-greedy factor
where the best action is ignored with probability ε to further
balance exploration and exploitation.

There are three phases to the MCTS algorithm shown in
Figure 7: search, expansion+evaluation, and backup. (1)
Search: an agent selects the optimal action (loop placement)
by either following Equation 21 with probability 1− ε or
using a greedy search with probability ε . Algorithm 1 de-
tails the greedy search that evaluates the benefit from adding
various loops and selects the loop with the highest benefit.
CheckCount() returns the total number of nodes that can com-
municate after adding a loop with diagonal nodes at (x1,y1)
and (x2,y2). Next, the Imprv() function returns the preferred
loop direction based on the average hop count improvement.
The tree is traversed until reaching a leaf node (NoC con-
figuration) without any children (further developed NoCs).
(2) Expansion+evaluation: the leaf state is evaluated using
the DNN to determine an action for rollout/expansion. Here,
π(a = ai;s) is copied, then later used to update P(ai;s) in
Equation 22. A new edge is then created between s and snext
where snext represents the routerless NoC after adding the
loop to s. (3) Backup: After the final cumulative returns are
calculated, statistics for the traversed edges are propagated
backwards through the tree. Specifically, V (snext), P(ai;s),
and N(s,ai) are all updated.

6

Algorithm 1 Greedy Search
1: Initialization: bestLoop = [0, 0, 0, 0], bestCount = 0, bestImprv = 0, and

dir = 0
2: for x1 = 1;+1;N do
3: for y1 = 1:+1;N do
4: for x2 = x1+1:+1;N do
5: for y2 = y1+1:+1;N do
6: count = CheckCount(x1,y1,x2,y2)
7: if count > bestCount then
8: bestCount = count
9: bestLoop = [x1, y1, x2, y2]

10: bestImpv, dir = Imprv(x1,y1,x2,y2)
11: else if return == bestCount then
12: imprv’, dre’ = Imprv(x1,y1,x2,y2)
13: if imprv’ > bestImprv then
14: bestLoop = [x1, y1, x2, y2]
15: bestImprv = imprv’
16: dir = dir’
17: return bestRing, dir

4.6 Multi-threaded Learning
The framework incorporates a multi-threaded approach,

in which many threads independently explore the design
space while collaboratively updating global parameters [34].
Figure 8 depicts the proposed framework with multi-threaded
exploration. At the start, thread 0 creates a parent DNN with
initial weights/parameters θ , then creates many child threads
(1 to n) that create their own child DNNs, each of which
acts as an individual learning agent. The parent thread sends
DNN parameters to child threads and receives parameter
gradients from child threads. Convergence is stabilized by
averaging both large gradients and small gradients during
training [34]. The parent thread additionally maintains a
search tree that records past child thread actions for each
MCTS query. While not needed for correctness, the multi-
threaded approach facilitates more efficient exploration as
shown in evaluation and is very useful in practice.

Thread 1 (T1)

Thread n (Tn)

Parent
Child

MCTS

Θ: Parameters

dΘ: Gradients

Query Queue

Query

Response

Thread 0 (T0)

Agent Environment

NoC

Child

Agent Environment

NoCT6T1T3T2

T5

Figure 8: Multi-threaded framework.

5. METHODOLOGY
We evaluate the proposed deep reinforcement learning

(DRL) routerless design against the previous state-of-the-art
routerless design (REC) [2] and several mesh configurations.
All simulations use Gem5 with Garnet2.0 for cycle-accurate
simulation [6]. For synthetic workloads, we test uniform
random, tornado, bit complement, bit rotation, shuffle, and
transpose traffic patterns. Performance statistics are collected
for 100,000 cycles across a range of injection rates, start-
ing from 0.005 flits/node/cycle and incremented by 0.005
flits/node/cycle until the network saturates. Results for PAR-

SEC are collected after benchmarks are run to completion
with either sim-large or sim-medium input sizes.3 Power and
area estimations are based on Verilog post-synthesis simula-
tion, following a similar VLSI design flow as in REC that
synthesizes the Verilog implementation in Synopsys Design
Compiler and conducts place & route in Cadence Encounter
under 15nm NanGate FreePDK15 Open Cell Library [36].

We regard node overlapping as a more appropriate mea-
sure than link overlapping (i.e., the number of links between
adjacent nodes) for manufacturing constraints. REC can only
generate NoCs with a single node overlapping value for a
given NoC size, whereas DRL designs are possible with many
values. Comparisons between REC and DRL therefore con-
sider both equal overlapping (demonstrating improved loop
placement for DRL) and unequal overlapping (demonstrating
improved design capabilities for DRL).

For synthetic and PARSEC workloads, REC and DRL
variants use identical configurations for all other parameters,
matching prior testing [2] for comparable results. Results
nevertheless differ slightly due to differences between Gem5
and Synfull [4], used in REC testing. In REC and DRL,
each input link is attached to a flit-sized buffer with 128-
bit link width. Packet injection and forwarding can each
finish in a single cycle up to 4.3 GHz. For mesh simulations,
we use a standard two-cycle router delay in our baseline
(Mesh-2). We additionally test an optimized one-cycle delay
router (Mesh-1) and, in PARSEC workloads, an "ideal" router
with zero router delay (Mesh-0) leaving only link/contention
delays. These mesh configurations use 256-bit links, 2 VCs
per link, and 4-flit input buffer. 128-bit links were considered,
but exhibited a sub-optimal trade-off between power/area
and performance (so would not provide a strong comparison
against DRL). Packets are categorized into control and data
packets, with 8 bytes and 72 bytes, respectively. The number
of flits per packet is then given as packet size divided by
link width. Therefore, in REC and DRL simulations, control
packets are 1 flit and data packets are 5 flits. Similarly, in
mesh simulations, control packets are 1 flit while data packets
are 3 flits. For PARSEC workloads, L1D and L1I caches are
set to 32 KB with 4-way associativity and the L2 cache is set
to 128 KB with 8-way associativity. Link delay is set to one
cycle per hop for all tests.

6. RESULTS & ANALYSIS
6.1 Design Space Exploration

Exploration starts without a priori experience or training
data. Over time, as the search tree is constructed, the agent
explores more useful loop configurations, which provide in-
creased performance. Configurations satisfying design crite-
ria can be found in seconds and minutes for 4x4 and 10x10
NoCs, respectively. Figure 9 illustrates a 4x4 DRL design.
Different from REC [2], the generated topology replaces one
inner loop with a larger loop and explores different loop di-
rections. The resulting topology is completely symmetric and
far more regular than IMR. We observe similar structure for
larger topologies, but omit these due to space constraints.

Multi-threaded exploration efficacy is verified by compar-
ing designs generated using either single or multi-threaded
search. For a 10x10 NoC, after a 10 hour period, single-
threaded search found 6 valid designs, whereas multi-threaded
search found 49 valid designs. Moreover, multi-threaded
search generates designs with 44% lower standard deviation
3Several workloads exhibit compatibility issues with our branch of
Gem5, but we include all workloads that execute successfully.

7

Table 1: Hyperparameter Exploration
Epsilon (ε) 0.05 0.10 0.20 0.30

Valid designs 25 27 11 2
Min Hop Count 5.59 5.60 5.61 5.53

SD for Hop Count 0.140 0.065 0.050 0.040

(SD) for hop count (decreasing from 0.027 to 0.015). This
demonstrates the benefits of multi-threaded search to effi-
ciently achieve more consistent results.

We further evaluate changes in the hyperparameter ε , which
balances search exploration and exploitation. Results after
a five hour period using 8x8 NoCs are summarized in Table
1. High values for ε can quickly generate more optimal con-
figurations, but may frequently explore invalid actions and
thus suffer under strict constraints. We therefore select the
best value for ε in subsequent evaluations based on the time
allocated to exploration as well as the rigor of constraints. In
most cases, ε = 0.1 generates high-performing designs given
adequate time.

Figure 9: A 4x4 NoC topology generated by DRL.

6.2 Framework Capabilities
The proposed DRL framework can automatically generate

NoC designs under various constraints so can be adapted to
available design resources for any NoC size. In contrast, REC
generates only a single design for each NoC size and, con-
sequently, cannot be adapted to design goals, thus severely
restricting real-world applicability. In the following, we ex-
emplify the broad design capabilities of the DRL framework,
none of which are possible with REC.

Generate feasible designs for larger NoCs: REC design
does not work if node overlapping is less than 2 ∗ (N− 1).
Conversely, the proposed DRL framework can generate NoCs
with smaller node overlapping across many sizes. For exam-
ple, with a fixed node overlapping of 18, REC cannot gener-
ate NoCs larger than 10x10. Our DRL framework, however,
has successfully generated configurations for 12x12, 14x14,
16x16 and 18x18 routerless NoCs. Note that 18x18 is the the-
oretical max routerless NoC size that can be fully connected
with a node overlapping of 18. In a 20x20 NoC, there must
be at least 19 rectangular loops passing through the bottom
left node to connect to all other columns. As summarized in
Table 2, the average hop count of DRL designs is still close
to N, even when N approaches the node overlapping limit,
showing the effectiveness of the DRL framework.

Utilize additional wiring resources: DRL is able to ex-
ploit additional wiring resources, when available, to improve
performance, whereas REC cannot use any wires beyond
2∗ (N−1). Table 3 and Table 4 illustrate the hop count ad-
vantage of DRL over REC with various node overlappings.
For example, a 10x10 DRL NoC with a node overlapping of
20 achieves a 20.4% reduction in hop count compared with
the only possible REC 10x10 NoC.

Facilitate routerless NoC implementation in industry:
Routerless NoCs offer a promising approach to achieve multi-
fold savings in hardware cost compared with router-based
NoCs, but the strict wiring requirements in the previous REC

Table 2: DRL supports larger NoCs with 18 overlapping.
NoC Size 10x10 12x12 14x14 16x16 18x18

REC Hop Count 9.64 N/A N/A N/A N/A
DRL Hop Count 7.94 12.25 15.11 18.03 21.01

Table 3: DRL utilizes additional wiring resources; 8x8.
Topology REC DRL DRL DRL DRL

Node overlapping 14 14 16 18 20
Hop count 7.33 6.22 5.94 5.82 5.80

Improve over REC N/A 15.14% 18.96% 20.60% 20.87%

Table 4: DRL utilizes additional wiring resources; 10x10.
Topology REC DRL DRL DRL DRL

Node overlapping 18 18 20 22 24
Hop count 9.64 7.94 7.67 7.59 7.55

Improve over REC N/A 17.64% 20.44% 21.27% 21.68%

designs may hinder adoption in industry. The proposed DRL
framework provides high flexibility to explore many combina-
tions of NoC sizes and constraints that are not possible with
REC. This flexibility can greatly aid future NoC research and
implementation in industry by adapting to other constraints,
such as maximum loop length or maximum hop count, which
can also be integrated into the reward function.

6.3 Synthetic Workloads
Performance evaluations in this and next subsections use

a node overlapping constraint of 2 ∗ (N− 1) for both REC
and DRL because that is the only possible constraint for
REC. Alternative DRL configurations, such as those shown
in Tables 2 to 4, can nevertheless provide additional benefits
while satisfying various design goals.

Packet Latency: Figure 10 plots the average packet la-
tency of four synthetic workloads for a 10x10 NoC. Tornado
and shuffle are not shown as their trends are similar to bit
rotation. Zero-load packet latency for DRL is the lowest in all
workloads. For example, with uniform random traffic, zero-
load packet latency is 9.89, 11.67, 19.24, and 26.85 cycles for
DRL, REC, Mesh-1, and Mesh-2, respectively, corresponding
to a 15.2%, 48.6%, and 63.2% latency reduction by DRL.
Across all workloads, DRL reduces zero-load packet latency
by 1.07x, 1.48x and 1.62x compared with REC, Mesh-1, and
Mesh-2, respectively. This improvement for both REC and
DRL over mesh configurations results from reduced per hop
latency (one cycle). DRL improves over REC due to addi-
tional connectivity and better loop placement. For example,
in a 10x10 NoC, DRL provides four additional paths.

Throughput: DRL provides substantial throughput im-
provements for all traffic patterns. For uniform traffic, through-
put is approximately 0.1, 0.125, 0.195, and 0.305 for Mesh-2,
Mesh-1, REC, and DRL, respectively. Notably, in transpose,
DRL improves throughput by 208.3% and 146.7% compared
with Mesh-2 and Mesh-1. Even in bit complement where
mesh configurations perform similarly to REC, DRL still
provides a 42.8% improvement over Mesh-1. Overall, DRL
improves throughput by 3.25x, 2.51x, and 1.47x compared
with Mesh-2, Mesh-1, and REC, respectively. Again, addi-
tional loops with greater connectivity in DRL allow a greater
throughput compared with REC. Furthermore, improved path
diversity provided by these additional loops allows much
higher throughput compared with mesh configurations.

6.4 PARSEC Workloads
We compare real-world performance of REC, DRL, and

three mesh configurations for 4x4 and 8x8 NoCs on a set
of PARSEC benchmarks. We generate Mesh-0 results by

8

01020304050

0.005 0.075 0.145 0.215 0.285

P
a

ck
e

t

La
te

n
c…

Injec!on Rate (flits/node/cycle)

Mesh-2 Mesh-1 REC DRL

0

10

20

30

40

50

0.00 0.05 0.10 0.15 0.20 0.25 0.30

P
a

ck
e

t
La

te
n

cy
 (

cy
cl

e
s)

Injec!on Rate (flits/node/cycle)

Uniform Random

0

10

20

30

40

50

0.000 0.025 0.050 0.075 0.100

Injec!on Rate (flits/node/cycle)

Bit Complement

0

10

20

30

40

50

0.00 0.05 0.10 0.15

Injec!on Rate (flits/node/cycle)

Bit Rota!on

0

10

20

30

40

50

0.00 0.05 0.10 0.15 0.20

Injec!on Rate (flits/node/cycle)

Transpose

Figure 10: Average packet latency for synthetic workloads in 10x10 NoC.

Mesh-2 Mesh-1 Mesh-0 REC DRL

0

5

10

15

20

P
a

ck
e

t
La

te
n

cy
 (

cy
cl

e
s)

a) 4x4 NoC

0

10

20

30

b) 8x8 NoC

Figure 11: Packet latency for PARSEC workloads.

0.00
5.00

10.00
15.00

4x4 6x6 8x8 10x10

A
v
e

ra
g

e

P
a

ck
e

t …

Mesh REC DRL

0.0

2.5

5.0

7.5

4x4 8x8

Blackscholes

0.0

2.5

5.0

7.5

4x4 8x8

Bodytrack

0.0

2.5

5.0

7.5

4x4 8x8

Canneal

0.0

2.5

5.0

7.5

4x4 8x8

Facesim

0.0

2.5

5.0

7.5

4x4 8x8

Fluidanimate

0.0

2.5

5.0

7.5

4x4 8x8

Streamcluster

0.0

2.5

5.0

7.5

4x4 8x8

Swap!ons

0.0

2.5

5.0

7.5

4x4 8x8

Average

Figure 12: Average hop count for PARSEC workloads.

artificially reducing packet latency by the hop count for every
recorded flit since such a configuration is difficult to simulate
otherwise. As a result, performance is slightly worse than an
"ideal" zero-cycle-router mesh.

Packet Latency: As shown in Figure 11, for the 4x4 net-
work, variations in loop configuration are relatively small,
being heavily influenced by full-connectivity requirements.
Nevertheless, in the 4x4 NoC, DRL improves performance
over REC in all but two applications where performance
is similar. For example, DRL reduces packet latency by
4.7% in fluidanimate compared with REC. Improvements
over mesh configurations for fluidanimate are greater with
a 68.5%, 60.4%, and 54.9% improvement compared with
Mesh-2, Mesh-1, and Mesh-0. On average, DRL reduces
packet latency by 70.7%, 62.8%, 56.1%, and 2.6% compared
with Mesh-2, Mesh-1, Mesh-0, and REC, respectively.

DRL improvements are more substantial in 8x8 NoCs
as DRL can explore a larger design space. For example,
in fluidanimate, average packet latency is 21.7, 16.4, 12.9,
11.8, and 9.7 in Mesh-2, Mesh-1, Mesh-0, REC, and DRL,
respectively. This corresponds to a 55.6%, 41.0%, 25.3%,
and 18.2% improvement for DRL compared with Mesh-2,
Mesh-1, Mesh-0, and REC. On average, DRL reduces packet
latency by 60.0%, 46.2%, 27.7%, and 13.5% compared with
Mesh-2, Mesh-1, Mesh-0, and REC, respectively.

Table 5: 8x8 PARSEC workload execution time (ms)
Workload NoC Type

Mesh-2 Mesh-1 REC DRL
Blackscholes 4.4 4.2 4.0 4.0

Bodytrack 5.4 5.3 5.1 5.1
Canneal 7.1 6.4 6.1 6.0
Facesim 626.0 587.0 515.2 512.3

Fluidanimate 35.3 29.2 25.2 24.4
Streamcluster 11.0 11.0 11.0 11.0

Hop Count: Figure 12 compares the average hop count for
REC, DRL, and Mesh-2 for 4x4 and 8x8 NoCs. Only Mesh-
2 is considered as differences in hop count are negligible
between mesh configurations (they mainly differ in per-hop
delay). For 4x4 networks, REC and DRL loop configurations
are relatively similar so improvements are limited, but DRL
still provides some improvement in all workloads compared
with REC. In streamcluster, average hop count is 1.79, 2.48,
and 2.34 for mesh, REC, and DRL, respectively. On average,
DRL hop count is 22.4% higher than mesh and 3.8% less
than REC. For larger network sizes, we again observe the
benefit from increased flexibility in loop configuration that
DRL exploits. This optimization allows more loops to be
generated, decreasing average hop count compared with REC
by a minimum of 12.7% for bodytrack and a maximum of
14.3% in fluidanimate. On average, hop count for DRL is
13.7% less than REC and 35.7% higher than mesh.

Execution Time: Execution times for 8x8 PARSEC work-
loads are given in Table 5. Reductions in hop count and
packet latency may not necessarily translate to reduced exe-
cution time as applications may be insensitive to NoC perfor-
mance (notably streamcluster). Nevertheless, in fluidanimate,
a NoC sensitive workload, DRL reduces execution time by
30.7%, 16.4%, and 3.17% compared with Mesh-2, Mesh-1,
and REC, respectively. Overall, DRL provides the smallest
execution time for every workload. Note that NoC traffic for
PARSEC workloads is known to be light, so the significant
throughput advantage of DRL over mesh and REC (Figure
10) is not fully reflected here. Additionally, as mentioned ear-
lier, this evaluation restricts DRL to use the only overlapping
value that works for REC. Larger benefits can be achieved
with other DRL configurations, as shown next.

6.5 Power
The proposed DRL framework can generate diverse NoCs

based on different objectives. Figure 13 demonstrates this
capability as a tradeoff between power and performance (av-
erage hop count) for 8x8 NoCs. Each point represents one
possible design and is labeled with the allowed node over-
lapping; REC therefore represents just a single design point.
DRL with a node overlapping of 10 exhibits 1% lower hop
count than REC while reducing power consumption by 15.9%
due to reduced hardware complexity. Additionally, DRL with

9

14

8

10

12

14

16

18

20

0.30

0.35

0.40

0.45

0.50

5.5 6.0 6.5 7.0 7.5 8.0 8.5

P
o

w
e

r
(m

W
)

Average Hop Count

REC DRL

Figure 13: Power-performance tradeoffs for 8x8 (labels
on the data points are node overlapping caps).

0.0

0.5

1.0

1.5

2.0

2.5

M
e

sh
R

E
C

D
R

L

M
e

sh
R

E
C

D
R

L

M
e

sh
R

E
C

D
R

L

M
e

sh
R

E
C

D
R

L

M
e

sh
R

E
C

D
R

L

M
e

sh
R

E
C

D
R

L

M
e

sh
R

E
C

D
R

L

M
e

sh
R

E
C

D
R

L

Black-

scholes

Body-

track

Canneal Facesim Fluid-

animate

Stream-

cluster

Swap-

 ons

Average

P
o

w
e

r
C

o
n

su
m

p

o
n

 (
m

W
)

Sta c Dynamic

Figure 14: Power consumption for PARSEC workloads.

a node overlapping of 16 reduces the average hop count by
18.9% with nearly equal power consumption (within 0.2%)
due to more efficient loop placement. Overall, DRL is more
flexible and efficient than the fixed REC scheme.

We additionally compare the power consumption of mesh
(Mesh-2), REC, and DRL (both with the same node overlap-
ping of 14) across PARSEC workloads. Results are gener-
ated after place & route in Cadence Encounter under 15nm
technology node [36]. Global activity factor is estimated
from link utilization statistics in Gem5 simulations. A clock
frequency of 2.0 GHz is used, comparable to commercial
many-core processors. As seen in Figure 14, static power
for REC and DRL is 0.23mW, considerably lower than the
1.23mW of mesh. Dynamic power is the lowest for DRL
due to improved loop configuration, leading to lower hop
count and therefore lower dynamic power than REC in all
workloads. DRL also provides significant savings over mesh
due to reduced routing logic and fewer buffers. On average,
dynamic power for DRL is 80.8% and 11.7% less than mesh
and REC, respectively.

6.6 Area
Node area in routerless NoCs is determined by the node

overlapping cap. In practice, to reduce design and verification
effort, the same node interface can be reused if the node
overlapping cap is the same. Figure 15 therefore compares
the node area for 8x8 mesh (Mesh-2), REC/DRL with an
overlapping of 14 (equal area due to equal overlapping), and
DRL with an overlapping of 10. DRL (10) is selected for
comparison here because it has very similar hop count to
REC, as shown in Figure 13. As can be seen, DRL (10) has
the smallest area at 5,860 µm2 due to an efficient design,

Figure 15: Area comparison (after P&R).

while providing equivalent performance to REC. Both REC
and DRL with an overlapping of 14 have a slightly increased
area at 7,981 µm2. Finally, mesh area is much higher at
45,278 µm2. This difference is mainly attributed to routerless
NoCs eliminating both crossbars and virtual channels. Note
that results for REC and DRL already include the small look-
up table at source. This table is needed to identify which loop
to use for each destination (if multiple loops are connected),
but each entry has only a few bits [2]. Area for the table and
related circuitry is 443 µm2, equivalent to only 0.9% of the
mesh router (power is 0.028mW or 1.13% of mesh). We also
evaluated the additional repeaters necessary to support DRL.
Total repeater area is 0.159 mm2 for DRL (14), so overhead
compared with REC represents just 1.1% of mesh.

6.7 Discussion
Comparison with IMR: Evaluation by Alazemi et al. [2]

showed that REC is superior to IMR in all aspects. In syn-
thetic testing, REC achieves an average 1.25x reduction in
zero-load packet latency and a 1.61x improvement in through-
put over IMR. Similarly, in real benchmarks, REC achieves a
41.2% reduction in average latency. Both static and dynamic
power are also significantly lower in REC due to reduced
buffer requirements and more efficient wire utilization. Fi-
nally, REC area is just 6,083 µm2 while IMR area is 20,930
µm2, corresponding to a 2.4x increase. Comparisons between
REC and DRL were therefore the primary focus in previous
subsections since REC better represents the current state-of-
the-art in routerless NoCs. The large gap between IMR and
REC also illustrates that traditional design space search (e.g.,
genetic algorithm in IMR) is far from sufficient, which calls
for more intelligent search strategies.

Reliability: Reliability concerns for routerless NoC stem
from the limited path diversity since wiring constraints re-
strict the total number of loops. For a given node overlapping,
DRL designs provide more loops and thus more paths be-
tween nodes as more nodes approach the node overlapping
cap. In the 8x8 NoC, there are, on average, 2.77 paths be-
tween any two nodes in REC. This increases to 3.79 paths,
on average, between any two nodes in DRL (using equal
overlapping). DRL can therefore tolerate more link failures
before the NoC fails.

Scalability: DRL scales well compared with both REC
and mesh configurations. For PARSEC workloads, shown
in Figure 11, DRL exhibits 2.6% lower packet latency than
REC for a 4x4 NoC, improving to a 13.5% reduction for an
8x8 NoC. Average hop count, shown in Figure 12, exhibits
a similar trend. DRL improves average hop count by 3.8%
in a 4x4 NoC and 13.7% in an 8x8 NoC. Scaling improve-
ments are more evident in synthetic workloads. Figure 16,

10

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Injec on Rate (flits/node/cycle)

Uniform Random - 10x10

0510152025303540

0.005 0.075 0.145 0.215 0.285P
a

ck
e

t

La
te

n
cy

(c
yc

le
s)

Injec on Rate (flits/node/cycle)

Mesh-2 Mesh-1 REC DRL

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25 0.30P
a

ck
e

t
La

te
n

cy
 (

cy
cl

e
s)

Injec on Rate (flits/node/cycle)

Uniform Random - 8x8

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Injec on Rate (flits/node/cycle)

Uniform Random - 6x6

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25 0.30P
a

ck
e

t
La

te
n

cy
 (

cy
cl

e
s)

Injec on Rate (flits/node/cycle)

Uniform Random - 4x4

Figure 16: Synthetic Scaling for NoC Configurations.

for example, shows scaling results for 4x4 to 10x10 NoC
sizes with uniform random workloads. Note that the same
axis values are used for all NoC sizes to emphasize scal-
ing performance. Whereas REC throughput decreases from
0.285 flits/node/cycle to 0.195 flits/node/cycle, corresponding
to a 31.6% decrease, the throughput for DRL only changes
slightly from 0.32 to 0.305 flits/node/cycle, corresponding to
a 4.7% reduction. This shows a significant improvement in
scalability from REC to DRL. Increasing the NoC size also
allows more flexibility in loop exploration, and thus more
effective use of wiring resources for a given node overlap-
ping constraint. Additionally, loop design for N×M NoCs
using DRL is straightforward to implement, only requiring
modifications to the DNN for dimension sizes.

6.8 Broad Applicability
Routerless NoC design represents just one possible ap-

plication for the framework presented in this paper. This
framework, with modifications to state/action representations,
could also be applied to router-based NoC designs. Specif-
ically, one related application is in 3-D NoCs where higher
dimensionality encourages novel design techniques. Prior
work has explored small-world router-based designs [10, 11]
using a relatively limited learning-based approach. The de-
sign space exploration would be more effective using our
framework. Specifically, state representation using hop count
remains compatible with the current DNN structure by con-
catenating matrices for each 2D layer. Actions can involve
adding links between nodes in the same layer (intra-layer
links) or different layers (inter-layer links). One DNN can
be used for each action type to achieve an efficient deep re-
inforcement learning process with a smaller design space.
A significant advantage of our framework is that strict con-
straints can be enforced on link addition, such as 3-D distance,
to meet timing/manufacturing capabilities.

The proposed framework can also be generalized for other
NoC-related research problems. While detailed exploration
is beyond the scope of this paper, we briefly mention a few
promising examples that can benefit from our framework.
Future work may exploit underutilized wiring resources in
silicon interposers [21,26] and explore better ways to connect
CPU cores and stacked memories. The framework could simi-
larly be used to improve the latency and throughput of chiplet
networks [31, 48] by exploring novel interconnects structures
that are non-intuitive and hard for human to conceive. NoCs

for domain-specific accelerators (e.g., TPU [25], Eyeriss [8],
and others) are another possible application. Due to their
data-intensive nature, accelerators can benefit from high-
performance [27] and possibly reconfigurable [15] NoCs,
where the framework can explore connectivity among pro-
cessing elements (PEs) and between PEs and memory.

7. RELATED WORK
Research on routerless NoCs has been limited to two meth-

ods. IMR uses a genetic algorithm with random mutations
to generate loop configuration. REC constructs layers recur-
sively, generating an exact structure for a given NoC size.
Our approach fundamentally differs from IMR and REC as
it can guarantee fully connected loop configurations with
various design constraints. This advantage is crucial to allow
improved flexibility in diverse applications.

Many studies have explored machine learning applied to
architecture and related tools [12, 18, 19, 20, 23, 24, 28, 30, 32,
37, 38, 43, 45, 46, 47, 49], but none have explored application
to routerless NoCs. Jiménez et al. [43] used a perceptron-
based approach for last level cache reuse prediction. Pat-
tnaik et al. [37] demonstrated near-optimal scheduling for
a processing-in-memory architecture using two regression
models. Wang et al. [45] demonstrated a holistic design
framework for NoCs using reinforcement learning. Margari-
tov et al. [32] proposed a highly-accurate scheme for virtual
address translation in TLBs using a two-level neural network.
Similar research is limited to specific architectural compo-
nents, so is complementary to our work on routerless NoCs.

Machine learning has also been used to address NoC de-
sign concerns such as congestion. Ipek et al. [20] use re-
inforcement learning to mitigate traffic congestion with an
approximate return function. The learned function allowed
improved path selection for packet transfer using current traf-
fic statistics such as queue lengths. That work, however, uses
a single learned function and does not enforce specific design
constraints. In contrast, our framework involves both a policy
and value function, using a two-headed DNN structure, both
of which are subject to strict design constraints.

8. CONCLUSION
Design space exploration using deep reinforcement learn-

ing promises broad application to architectural design. Cur-
rent routerless NoC designs, in particular, have been limited
by their ability to search design space, making routerless
NoCs an ideal case study to demonstrate our innovative frame-
work. The proposed framework integrates deep learning and
Monte Carlo search tree with multi-threaded learning to ef-
ficiently explore large design space under constraints. Full
system simulations shows that, compared with state-of-the-
art routerless NoC, our proposed deep reinforcement learning
NoC can achieve a 1.47x increase in throughput, 1.18X re-
duction in packet latency, 1.14x reduction in average hop
count, and 6.3% lower power consumption. The proposed
framework has broad applicability to diverse NoC design
problems and enables intelligent design space exploration in
future work.

ACKNOWLEDGMENT
We sincerely thank the reviewers for their helpful comments
and suggestions. This research was supported, in part, by the
National Science Foundation (NSF) grant #1750047, and the
Software and Hardware Foundations program.

11

9. REFERENCES
[1] T. W. Ainsworth and T. M. Pinkston, “On characterizing performance

of the cell broadband engine element interconnect bus,” in
International Symposium on Networks-on-Chip, May 2007.

[2] F. Alazemi, A. Azizimazreah, B. Bose, and L. Chen, “Routerless
networks-on-chip,” in IEEE International Symposium on High
Performance Computer Architecture, Feb. 2018.

[3] R. Ausavarungnirun, C. Fallin, X. Yu, K. K.-W. Chang, G. Nazario,
R. Das, G. H. Loh, and O. Mutlu, “Design and evaluation of
hierarchical rings with deflection routing,” in International Symposium
on Computer Architecture and High Performance Computing, Oct.
2014.

[4] M. Badr and N. E. Jerger, “Synfull: synthetic traffic models capturing
cache coherent behaviour,” in International Symposium on Computer
Architecture, 2014.

[5] J. Balkind, M. McKeown, Y. Fu, T. M. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Wentzlaff,
“Openpiton: An open source manycore research framework,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems, Feb 2016.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basil, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” Computer Architecture News, vol. 39, pp. 1–7, 2011.

[7] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for
effective power-gating of on-chip routers,” in International Symposium
on Microarchitecture, Dec. 2012.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in
International Symposium on Computer Architecture, June 2016.

[9] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Design Automation Conference, June
2001.

[10] S. Das, J. R. Doppa, D. H. Kim, P. P. Pande, and K. Chakrabarty,
“Optimizing 3d noc design for energy efficiency: A machine learning
approach,” in International Conference on Computer-Aided Design,
Nov. 2015.

[11] S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty, “Energy-efficient
and reliable 3d network-on-chip (noc): Architectures and optimization
algorithms,” in International Conference on Computer-Aided Design,
Nov. 2016.

[12] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri, “Dynamic
voltage and frequency scaling in nocs with supervised and
reinforcement learning techniques,” IEEE Transactions on Computers,
Oct. 2018.

[13] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger,
“Implementation and evaluation of on-chip network architecture,” in
International Conference on Computer Design, Nov. 2007.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, June 2016.

[15] B. Hong, Y. Ro, and J. Kim, “Multi-dimensional parallel training of
winograd layer on memory-centric architecture,” in International
Symposium on Microarchitecture, Oct. 2018.

[16] Y. Hoskote, S. Vangal, A. Singh, H. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” in IEEE Micro, Nov.
2007.

[17] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege,
T. Lund-Larsen, S. Steibl, S. Borkar, V. K. De, and R. V. D. Wijngaart,
“A 48-core ia-32 processor in 45 nm cmos using on-die
message-passing and dvfs for performance and power scaling,” in
IEEE Journal of Solid-State Circuits, Jan. 2011.

[18] E. Ipek, S. A. McKee, B. de Supinski, M. Schulz, and R. Caruana,
“Efficiently exploring architectural design spaces via predictive
modeling,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2006.

[19] E. Ipek, S. A. McKee, K. Singh, R. Caruana, B. de Supinski, and
M. Schulz, “Efficient architectural design space exploration via
predictive modeling,” in ACM Transactions on Architecture and Code
Optimization, Jan. 2008.

[20] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Self-optimizing
memory controller: A reinforcement learning approach,” in
International Symposium on Computer Architecture, July 2008.

[21] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, “Noc architectures for
silicon interposer systems,” in International Symposium on
Microarchitecture, Dec. 2014.

[22] N. E. Jerger, T. Krishna, and L.-S. Peh, On-Chip Networks, 2nd ed.
Morgan Claypool, 2017.

[23] D. A. Jiménez, “An optimized scaled neural branch predictor,” in
International Conference on Computer Design, Oct. 2011.

[24] D. A. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” in International Symposium on High Performance
Computer Architecture, Jan. 2001.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,

A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, and J. Ross, “In-datacenter performance
analysis of a tensor processing unit,” in International Symposium on
Computer Architecture, Dec. 2017.

[26] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based
disintegration of multi-core processors,” in International Symposium
on Microarchitecture, Dec. 2015.

[27] H. Kwon, A. Samajdar, and T. Krishna, “Rethinking nocs for spatial
neural network accelerators,” in International Symposium on
Networks-on-Chip, Oct. 2017.

[28] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang,
“Accelerating distributed reinforcement learning with in-switch
computing,” in International Symposium on Computer Architecture,
June 2019.

[29] S. Liu, T. Chen, L. Li, X. Feng, Z. Xu, H. Chen, F. Chong, and
Y. Chen, “Imr: High-performance low-cost multi-ring nocs,” in IEEE
Transactions on Parallel Distributed Systems, June 2016.

[30] Y. Liu, E. Z. Zhang, and X. Shen, “A cross-input adaptive framework
for gpu program optimizations,” in International Symposium on
Parallel & Distributed Processing, July 2009.

[31] G. H. Loh, N. E. Jerger, A. Kannan, and Y. Eckert,
“Interconnect-memory challenges for multi-chip, silicon interposer
systems,” in International Symposium on Memory Systems, Oct. 2015.

[32] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Virtual address
translation via learned page tables indexes,” in Conference on Neural
Information Processing Systems, Dec. 2018.

[33] M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind,
T. M. Nguyen, K. Lim, Y. Zhou, and D. Wentzlaff, “Power and energy
characterization of an open source 25-core manycore processor,” in
International Symposium on High Performance Computer
Architecture, Feb 2018.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning, June 2016.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep
reinforcement learning,” in NIPS Deep Learning Workshop, Dec.
2013.

[36] Nangate Inc., “Nangate freepdk15 open cell library,” [Online].
Available: http://www.nangate.com.

[37] A. Pattnaik, X. Tang, A. Jog, O. KayÄśran, A. K. Mishra, M. T.
Kandemir, O. Mutlu, and C. R. Das, “Scheduling techniques for gpu
architectures with processing-in-memory capabilities,” in
International Conference on Parallel Architecture and Compilation
Techniques, Sept. 2016.

[38] B. Reagen, J. M. Hernández-Lobato, R. Adolf, M. Gelbart,
P. Wahtmoug, G.-Y. Wei, and D. Brooks, “A case for efficient
accelerator design space exploration via bayesian optimization,” in
International Symposium on Low Power Electronics and Design, July
2017.

[39] C. D. Rosin, “Multi-armed bandits with episode context,” in Annals of
Mathematics and Artificial Intelligence, Mar. 2011.

[40] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” in Nature, Jan. 2016.

[41] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” in Nature, Oct.
2017.

[42] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. Cambridge, USA: MIT Press, 1998.

[43] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in International Symposium on Microarchitecture, Oct.
2016.

[44] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Towards
scalable, energy-efficient, bus-based on-chip networks,” in
International Symposium on High-Performance Computer
Architecture, Jan. 2010.

[45] K. Wang, A. Louri, A. Karanth, and R. Bunescu, “Intellinoc: A
holistic design framework for energy-efficient and reliable on-chip
communication for manycores,” in International Symposium on
Computer Architecture, June 2019.

[46] J.-Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their
bootstraps: Online learning in artificial neural networks for cmp
uncore power management,” in International Symposium on High
Performance Computer Architecture, June 2014.

[47] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and
H. Esmaeilzadeh, “Neural acceleration for gpu throughput processors,”
in International Symposium on Microarchitecture, Dec. 2015.

[48] J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. S. B. Altaf, N. E. Jerger,
and G. H. Loh, “Modular routing design for chiplet-based systems,” in
International Symposium on Computer Architecture, June 2018.

[49] Y. Zeng and X. Guo, “Long short term memory based hardware
prefetcher,” in International Symposium on Memory Systems, Oct.
2017.

12

http://www.nangate.com

