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Abstract: Linear repetitive construction projects require large amounts of resources which are used in a sequential manner and therefore
effective resource management is very important both in terms of project cost and duration. Existing methodologies such as the critical
path method and the repetitive scheduling method optimize the schedule with respect to a single factor, to achieve minimum duration or
minimize resource work breaks, respectively. However real life scheduling decisions are more complicated and project managers must
make decisions that address the various cost elements in a holistic way. To respond to this need, new methodologies that can be applied
through the use of decision support systems should be developed. This paper introduces a multiobjective linear programming model for
scheduling linear repetitive projects, which takes into consideration cost elements regarding the project’s duration, the idle time of
resources, and the delivery time of the project’s units. The proposed model can be used to generate alternative schedules based on the
relative magnitude and importance of the different cost elements. In this sense, it provides managers with the capability to consider
alternative schedules besides those defined by minimum duration or maximizing work continuity of resources. The application of the

model to a well known example in the literature demonstrates its use in providing explicatory analysis of the results.
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Introduction

Construction projects that are divided into sequential units involv-
ing the same repetitive activities usually require large amounts of
resources which are used in a sequential manner and therefore
effective resource management is very important with regard to
optimizing the overall financial performance, as the latter is af-
fected directly by the project’s cost, and also indirectly by meet-
ing final and intermediate delivery dates. Projects of this type are
considered high risk, due to unforeseen natural causes, potential
involvement in legal disputes, unpredicted weather conditions,
etc., which can cause delays in overall project completion and
cost overruns, thus making the management of resources and par-
tial delivery times a very important issue.

The critical path method (CPM) is most commonly used for
planning, scheduling, and control of such projects. Nonetheless,
network analysis techniques are duration oriented and cannot suf-
ficiently address resource management issues. Other techniques
that focus on resource usage, such as the repetitive scheduling
method (RSM) have been proposed as more suitable for schedul-
ing and controlling repetitive projects. However, scheduling deci-
sions for repetitive projects are more complex since several cost
elements related to different aspects of the project (i.e., overall
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duration, idleness of resources, timely delivery of project units,
financing costs) must be considered and balanced by project man-
agers in order to arrive at a cost efficient schedule. Decisions
therefore cannot be based solely on optimizing a single criterion
such as time or resource usage, but require a multiobjective ap-
proach. To address this need, new methodologies and approaches
that can be applied through the use of decision support systems
should be developed. In this paper we explore the multiobjective
nature of decision making in repetitive construction projects and
propose a parametric linear programming model formulation for
supporting the multiobjective process of scheduling decisions.

The rest of the paper is organized as follows: the following
section refers to definitions and clarifications, and presents a lit-
erature review with regard to classification of linear repetitive
projects (LRPs) and associated scheduling methodologies. In the
third section we introduce a linear programming formulation for
modeling the scheduling of LRPs, the parametric design of which
allows single or multiobjective optimization with respect to vari-
ous time or cost related criteria. The next section illustrates the
application of the proposed linear programming (LP) model to a
well known literature example under different set of assumptions
and parameters and provides demonstrative results. The same sec-
tion also shows the utilization of the model to derive critical break
points between the relative unit cost of project delays and that of
resource work breaks that define distinct scheduling outcomes.
Finally, the last section includes the conclusions and proposed
directions of future research.

Complex Nature of Linear-Repetitive Projects

In many instances construction projects consist of a set of activi-
ties that are repeated sequentially at different locations or units
(construction sites). After an activity is completed at one site, it is
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Fig. 1. Precedence network and PERT network for the LRP example

repeated in the next site (Mattila and Abraham 1998). The activi-
ties follow a logical and technological driven sequence and are
subject to certain time or distance constraints imposed by internal
(technological, managerial) or external causes that hold true for
the entire life span of the project (Kallantzis and Lambropoulos
2004).

During the last decades various terms have been used in the
literature to describe such projects. The most popular among
them is LRPs, where the term linear initially referred mainly to
construction projects, the activities of which are repeated con-
tinuously following a horizontal flow, such as in the case of high-
way segments, bridges, tunnels, railways, pipelines, sewers, etc.,
while the term repetitive described construction projects where
activities are repeated in discrete repeated units in a vertical di-
rection as in the case of high-rise and multistory buildings, mul-
tihousing projects, etc. Different methods have been proposed for
planning, scheduling, and controlling the construction process of
these types of projects. The development of the RSM by Harris
and Toannou (1998) and Yang (2002a) which can be applied to
both project categories, is the milestone for classifying these
projects into a unique category as LRPs. Although the work
breakdown structure of LRP could expand to hundreds of tasks,
these can be usually grouped in few activity groups repeated in
several units. El-Rayes and Moselhi (1998) examine a real life
case of road construction consisting of five activity groups re-
peated in 15 units and El-Rayes et al. (2002) also use a case of
housing construction project involving 13 activity groups re-
peated in ten units.

The most frequently used method for designing, planning,
scheduling and control of construction projects is the network
based PERT/CPM (Mattila and Abraham 1998). Nevertheless,
since the 1970s various researchers have challenged its applica-
bility in an attempt to prove its inadequacies, while at the same
time their research led to the development of alternative ap-
proaches and methods more suitable for the construction process
(Peer 1974; Carr and Mayer 1974; Dressler 1974; O’Brien 1975;
Ashley 1980; Selinger 1980; Birrell 1980; Johnston 1981; Stradal

and Cacha 1982; Russell and Caselton 1988; Reda 1990;
Harmelink and Rowings 1998; Harris and Ioannou 1998).

Network analysis has been characterized by its critics as in-
sufficient to describe the repetitive nature of LRPs. The CPM
treats the piecewise execution of an LRP task across the project
units as a set of distinct activities connected only through prece-
dence relationships. The size of the corresponding CPM network
of the LRP is quickly exploding. A network representation of a
repetitive project consisting of M tasks, P precedence relation-
ships, that is repeated in N units will contain (M-N) tasks and
[P-N+M-(N-1)] precedence relationships as it is illustrated in
the example used in a later section (Fig. 1).

The objective of CPM is the minimization of the duration of
the project through the definition of the critical path (CP) and the
optimum time/cost tradeoff of the project by means of crashing
the critical activities. Therefore, a CPM schedule cannot guaran-
tee work continuity for the LRP tasks, and its CP may well consist
of sections of different tasks, thus making CP-based project con-
trol impractical for construction managers who are interested in
monitoring the location and the production rate of each task as it
is progressing through the entire length of the project. Moreover
CP crashing is not suitable for LRPs as it may change the pro-
duction rate of a task in certain units introducing additional work
breaks.

Utilization of resource leveling heuristic techniques to CPM
schedules of LRPs still does not guarantee work continuity
(Selinger 1980; Reda 1990; Russell and Wong 1993). Such tech-
niques mainly address problems where the same resource is used
in many tasks, making an initial assumption of unlimited avail-
ability of resources in the development of the project schedule,
and through resource allocation require revision of the project
schedule in order to comply with resource availability constraints.
However, the main issue in LRPs is not the capacity of resources,
which are distinctly identified with specific tasks, but their sched-
uling. The development of more efficient genetic algorithm based
techniques, which address simultaneously resource allocation and
leveling in projects and operations as a multiobjective problem
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(Chan et al. 1996; Hegazy 1999), are mainly targeted to dynamic
scheduling and allocation of resources to tasks, using self-
improvement techniques, do not also provide a solution to the
work continuity problem in LRPs.

Finally, in traditional scheduling techniques like PERT/CPM,
the learning effect is not accounted for when time estimates are
produced for separate tasks. In a recent survey for the Michigan
State Transportation Department concerning 20 major roadway
construction projects in the years 1999-2001, findings show that
the contractors’ time schedule usually overestimated the duration
of the tasks (Mattila and Bowman 2004).

The alternative approaches that have been proposed for LRP
scheduling are derived mainly from graphical representations on
X-Y diagrams, where one axis indicates time and the other work
progress. These methods can be organized, according to Mattila
and Abraham (1998), in three basic categories: (1) those that are
based on the line-of-balance (LOB) technique, applied mainly to
discrete projects; (2) those that are based on the linear scheduling
method (LSM), more appropriate for continuous projects; and (3)
those that combine the previous techniques with other operations
research techniques such as dynamic programming, stochastic
programming, linear programming, simulation, etc.

While all of these techniques overcome the inadequacies of
PERT/CPM, they failed to obtain wide acceptance and practical
use. The main reasons for their limited acceptance are that:
(1) they have been more complicated than they should have been
and (2) there is not an acceptable algorithm (process) for identi-
fying the project’s critical path which determines the completion
time (Harris and Ioannou 1998; Harmelink and Rowings 1998;
Kallantzis and Lambropoulos 2003). The lack of a critical path
identification algorithm can be attributed to the fact that in
all these methods the underlying assumptions is that all activi-
ties must be considered as critical, for better control of a project
(Peer 1974). Significant efforts however have been made the last
few years toward the development of an acceptable and accurate
algorithm to determine the critical path in LRPs (Harmelink
and Rowings 1998; Harmelink 2001; Mattila and Park 2003;
Kallantzis and Lambropoulos 2003, 2004).

The RSM was introduced by Harris and Ioannou (1998), and
was further developed in the following years (Yang and Ioannou
2001, 2004; Yang 2002a,b; Ioannou and Harris 2003; Ioannou
and Yang 2003, 2004). It is also based on a graphical representa-
tion of the project on an X-Y diagram and its objective is to
integrate existing methods into a generalized one that ensures
continuous resource utilization. RSM can be used for the sched-
uling of both discrete and continuous projects. For discrete
projects, the repeated units (work progress) are usually drawn on
the Y-axis and the elapsed project time on the X-axis, while for
continuous projects the time is drawn on the Y-axis and the re-
peated units on the X-axis.

RSM follows the activity relationships concept of the CPM
and adopts three activity types, which were first introduced by
Vorster et al. (1992), as basic elements of graphical methods for
scheduling linear projects. These are: (1) line activity which indi-
cates the work progress from one unit to another as a function of
time; (2) block activity which represents work that occupies a
specific area over a certain period; and (3) bar activity which
defines nonrepetitive work. Moreover, three relationships are de-
fined for controlling the links between activities: the time-
controlled, the distance-controlled, and the continuity. The RSM
also introduces the terms controlling sequence and control points
for the determination of the critical activities that belong to the
controlling sequence not only in the case where a delay affects the

project completion time but also in the case where a delay intro-
duces an interruption in the resource utilization (work break).
RSM employs a pull-system approach, where the finish time of
the predecessor activity is pulled forward to meet the start date of
the successor in order to achieve work continuity and uninter-
rupted resource utilization, in contrast with the CPM push system,
where the start of every activity is pushed in time to maintain the
precedence relationships with its predecessors. The objective in
RSM is not minimization of the project completion time but
achieving work continuity which leads to minimizing the overall
project cost. In construction projects, the minimization of the cost
may be more desirable than the reduction of the project duration
(Yang 2002b). However this assumption may not be true since
prolonging the project duration may lead not only to delay pen-
alties, but also to lost revenues. Particularly in projects which
involve a high risk of long delays because of legal disputes or
other causes delivering parts of the project and making them op-
erational is vital for avoiding severe financial losses.

The repetitive project planner (RP2) (Yang 2002a) is the com-
puter implementation of the RSM. The algorithm involves two
stages: The first stage is similar to the forward pass computations
of CPM and results in the computation of the minimum project
duration. In the second stage each continuity relationship “pulls”
the predecessors to eliminate the time gap with the successor to
ensure work continuity, under the CPM duration constraint.

Although RSM optimizes for work continuity its analysis fea-
tures are limited. It can only allow tradeoffs between time gaps
and project duration on a trial and error basis. Cost considerations
and other control variables are not taken directly into consider-
ation in the computation, but only as back-end calculations.

Multiobjective LP Scheduling Model for LRPs
(MOLPS-LRP)

Multiobjective Nature of Scheduling Decisions in LRPs

Scheduling of LRPs is in practice more complicated and relevant
decisions could involve more control variables than just minimiz-
ing duration or achieving resource continuity which is the case
in CPM and RSM, respectively. A more comprehensive list of
criteria important to construction managers in their decision mak-
ing regarding the overall project performance may include the
following:

1. Duration: the project duration is a key variable to any
project;

2. Resource idle time: the execution of each of the project’s
tasks requires the use of certain resources. In a repetitive
project, the same task is repeated sequentially in the different
project units. Violating the continuity of the same task be-
tween successive project units introduces work gaps that in-
crease the cost of the project because of idle resources;

3. Unit completion time: completion of the work on a project
unit affects the project deliverables and it could have signifi-
cant financial implications since the project’s cash receipts
depend on completing intermediate deliverables. In other
cases, the completed units of the project can become opera-
tional before the completion of the entire project thus result-
ing in earlier cash inflows;

4. Slack time: reducing activity slack time may result in
achieving a high level of work continuity but at the same
time introduces higher risk, regarding completion time of the
units and the overall project duration; and

5. Number of units the project is divided into: in nondiscrete
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projects such as highways the division of the project is not
always a result of physical constraints as it is the case in
discrete projects (i.e., floors in a high rise building). In a
highway construction project a project unit represents a
segment of the highway of a certain length and not all units
necessarily have the same length. A certain fixed cost of
maintaining a construction site is associated with each
project unit, which on one hand could increase the cost of
the project but on the other hand result in smaller better
managed deliverables which could improve the project’s cash
flow.
Furthermore scheduling decisions are rarely based only on any
single variable. Alternative project schedules, comparisons, and
cost tradeoffs are often needed to arrive at an acceptable or opti-
mum project schedule. In this aspect the scheduling problem
can be seen as a multiobjective problem that can be addressed
efficiently by linear programming techniques. The following lin-
ear programming formulation for LRP scheduling is based on a
parametric objective function which, according to the values of its
parameters, could aim either at single target optimization (i.e.,
duration, unit completion time, work breaks), or a multiobjective
optimization by combining different criteria into a single cost
criterion.

Formal Description of MOLPS-LRP

Any LRP can be defined by a set of M tasks and P project de-

pendency relationships (SS, FS, SF, and FF, with or without time

lag). The project is divided into N separate units in a linear way

where without loss of generality the following general assump-

tions hold for the most part:

1. All tasks are performed in all units;

2. A task cannot be performed in any project unit before the
same task is completed in the previous unit; and

3. The set of dependencies remain the same in all units. Yang
(2002a) lists a set of practical concerns in scheduling repeti-
tive projects that are exceptions to these general assumptions
which, however, can be easily handled in the LP formulation
that follows.

Constraint Definitions

The following set of constraints describes the operation of activi-
ties in an LRP (see Notation):
Task duration constraints

Project linearity constraints

Sy s+l Vi=12..M, j=12..N-1 (2)

Any task in unit j+ 1 can start after the elapsed time from the start
of the same task in unit j. When [;=d;;, the constraint takes the
form of a finish to start relationship. Exceptions to this rule can be
handled accordingly.

Technological dependencies

i = fi

The exact form of the constraint depends on the type of the
dependency. Without loss of generality here we assume that
all dependencies are of FS type. Exceptions can be handled
accordingly.

Vi=12..M, j=12..N, YkeP, (3)

Unit completion time

Completion time for unit j, UCy equals the project’s duration.
Resource delay
N-1 M
WB, =, (sis1—f;)s Vi=1,2..M WB=> WB; (5)

J=1 i=1

The sum of time gaps for task 7, and the total resource time lost in
work break delay.

Global Objective Function

Depending on the values of the parameters c; and f;, the following
general objective function

N M
Minimize X, ¢;- (UC;- D)) + 2, f;- WB, (6)
j=1 i=1
can be used accordingly as follows for optimizing:
Project duration
Minimize UCy cy=1, rest of ¢; and f; equal 0 (7)
Total work-break time

Minimize WB  All f; equal 1, all ¢; equal to 0 (8)

Unit completion time
M
Minimize >, UC; All f; equal 0, all cj equal to 1 (9)

i=1
Total cost of work break

M

Minimize 2, f;-WB; All ¢; equal to 0 (10)
i=1

Delay cost in unit completion

M
Minimize X, ¢;-(UC,=D;) All f; equal 0 (11)

i=1

Tradeoffs between costs of project delays and resource delays
(work breaks)

N M
Minimize , c;-(UC;- D)) + 2 fi- WB; (12)

j=1 i=1

MOLPS-LRP Application and Results

Case Study Example

In this section we demonstrate the type of answers and analysis
that can be supported by the proposed model through the use
of a specific example. The LP model that was described in the
previous section is applied to the same example of a small linear
discrete project that was initially used by the RSM authors (Harris
and Toannou 1998), which is repeated here with certain modi-
fications regarding the task duration times. The project is divi-
ded into six repetitive units, with six discrete tasks each of which
is performed by a specific crew, repeated at each unit. All task
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CPM Schedule — Earliest Start Times Project Duration: 48 days

Units Gaps within Task:
Task A: Odays
Task B: 19
Task C: 16
Task D: 1
Task E: 0
Task F: 10

Total: 46 days

Unit Completion Time;
Unit 1: 18 days

Unit 2:24

Unit 3: 30

Unit 4: 36

Unit 5: 42

Unit 6: 48

Cost:
0 # Completion Delay: 0

Work-break: 18,400
0 4 8 12 162024283236404448T0ta[: 18,400

Fig. 2. Linear scheduling (CPM-ES)

dependencies are finish to start as shown in the precedence net-
work diagram on the left of Fig. 1 along with the duration of
each task at each of the six units, and other technological
constraints. The multiplicative complexity of the resulting PERT
diagram for all six units of the project, is shown on the right part
of Fig. 1. The critical path of the entire project consists of
Tasks A, and C, in unit 1, the sequence of Task E on all units
and Task F in unit 6.

Furthermore let us assume that the cost of work break (f;) is
400/day, the same for all tasks, while a penalty of 1,000/day ex-
ists for delays in project delivery (cg=1,000), and an additional
cost of 100/day is imposed for delays in the completion of units
1-5 (¢;=100, i=1,2,...,5). Completion delays are calculated as
deviations from the dates defined in the CPM early start (ES) time
schedule.

Minimizing Unit Completion Time

The CPM ES schedule minimizes the project duration and at the
same time the completion time for all units. Completing and de-
livering project units as early as possible could be critical because
of seasonal constraints (avoiding delays due to bad weather con-
ditions) and could also affect the financial standing of the projects
in cases where payments depend on the delivery of completed
units. In linear projects like highway construction the delivery of

CPM Schedule — Latest Start Times Project Duration: 48 days

Units Gaps within Task:
Task A: 6days
Task B: 20
Task C: 22
Task D: O
Task E: 0
Task F: 0

Total gaps: 48 days

Unit Completion Time

(delays from EFT):
Unit 1: 28 days (+10)
Unit 2: 32 (+8)

i
i
i
i

t 3
t 4:
t 5
Unit 6:
Total delays: 30 days

Cost:
Completion Delay: 3,000

Work-break: 19,200
0 4 8 12 16 20 24 28 R 36 40 4 48 Total: 22900

Fig. 3. Linear scheduling (CPM-LS)

Minimize Work Breaks
under CPM Duration constraint Project Duration: 48 days

Units Gaps within Task:
Task A: 0 days
Task B: 10
Task C: 16
TaskD: 0
TaskE: 0
TaskF: 0

Total gaps: 26 days

Unit Completion Time

(delays from EFT):
Unit 1: 28 days (+10)
Unit2: 32 (+8)

§+4)
Unit 5: 44 E+2)

)
Total delays: 30 days

Cost:
Completion Delay: 3,000
Work-break: 10,400
Total: 13,400

0 4 8 12 16 20 24 28 3R 3B 40 4 48

Fig. 4. Linear schedule—minimization of work breaks under CPM
duration

a certain unit could signal income generation milestones, there-
fore delays in unit completion could change negatively the net
present value of the project. In this case the objective is set to
minimization of completion time of all or certain units, even if
that means sacrifices in work continuity. Setting the objective
function of the MOLP-LRP as in Eq. (9) the solution is identical
to the CPM ES schedule which yields a project duration of
48 days, with unit completion times and resource delays set as
shown in Fig. 2, resulting in an additional cost of 18,400 due to
work breaks in the schedule. In the corresponding linear sche-
duling diagram, the progress of each task through the project
units is represented by a piecewise straight line. The slope of
the line corresponds to the production rate of the specific task at
each unit. Horizontal segments on the progress line correspond to
work breaks and therefore in resource idleness between the ex-
ecution of a task in successive units. Vertical segments represent
specific cases, where a task is not included in the corresponding
unit.

As mentioned previously, CPM is insufficient in addressing
work continuity objectives. Work breaks cannot be eliminated
or even reduced by scheduling tasks according to the latest
start (LS) time as it is demonstrated in Fig. 3. Pushing tasks to
their LS time transfers work breaks from the last project activities
to those in the beginning of the projects. In the specific example,
the LS schedule creates even more work breaks, while at the same
time produces delays in intermediate deliveries, raising the total
cost to 22,200. Additionally, the LS schedule consumes all the
slack, hence making the project more vulnerable to unexpected
delays.

Minimizing Work-Break Time

Introducing the 48 days CPM duration in constraint Eq. (4)
(UC¢=48), and setting the objective function as in Eq. (8), the
LP model was run with an objective of total resource work-break
time minimization. The resulting schedule is shown in Fig. 4. The
minimum project duration of 48 days can be achieved with a
minimum of 26 days of work breaks at Tasks B and C. Further
reduction of task work-break time cannot be achieved without
extending the project’s duration beyond 48 days.

If the CPM duration constraint is relaxed work breaks can be
further reduced to a minimum of 5 days, with a negative effect
in project’s duration which is extended to 62 days as shown
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Minimize Work Breaks Proect Duration: 64 G
without duration constraint Grolec ‘t:'raTloni( s
; aps within Task:
Units Task A: 0 days
Task B:
Task C:
Task D:
Task E:
Task F:
Total gaps: 5 days

Unit Completion Time
(delays from EFT}:
Unit 1: 44 days (+26)
Unit2: 48 (+24)
Unit 3: 52 (+22)
Unit4: 56 (+20)
5 )

Cooovo

Unit 5: 60
Unit 6: 64 (+16)
Total delays: 126 days

Cost:
Completion Delay: 27,000

Work-break: 2,000
0 4 8 12 16 20 24 28 32 36 40 44 48 B2 5% 60 BTty 29,000

Fig. 5. Linear schedule—minimization of work breaks without
duration constraints

in Fig. 5. The work break of Task C is eliminated, while that of
Task B is reduced to 5 days as set by the task’s technological
constraints. The finishing time of all units is also pulled to 14
days later than in the previous schedule.

Multicriteria Optimization

All the schedules derived under the previous conditions were
based on a single criterion each time. By trying different evalua-
tion criteria as they are defined in Egs. (7)-(11), alternative
schedules optimized with respect to the criterion selected could be
produced. The objective function defined in Eq. (12) consolidates
the criteria of duration, unit completion time, and work break into
a single cost evaluation criterion. Using the cost factors for
completion delays, duration, and work breaks, defined earlier, the
MOPLS-LRP multiobjective optimum solution is displayed in
Fig. 6.

Cost Trade-Offs

Resource idleness cost varies among different activities according
to the type and scarceness of the resources consumed. The same is
true with the cost associated with delays in completion time of
different units which can affect the overall cost of the project

Multiple Criteria Scheduling Project Duration: 48 days

Units Gaps within Task:

s Task A:  Odays
Task B: 10
Task C: 16
TaskD: 0
TaskE: 0
TaskF: 2

Total gaps: 28 days

Unit Completion Time
(delays from EFT):
Unit 1: 26 days {+8}
Unit 2: 30 (+6}
Unit3: 34 (+4)
)
)

{
Unit4: 38 (+2
Unit 5: 43 (+1
Unit 8: 48 (0)
Total delays: 21 days

Cost:
Completion Delay: 2,100

Work-break: 11,200
0 4 8 12 168 20 24 8 R 3B 40 4 48 Tt 13,300

Fig. 6. Linear schedule—Multicriteria cost minimization

Trade-off between Project Completion Delays
and Work-breaks

30
25 _ ''''' | Work-breaks
— 1 .
% 20 Range I |
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] Project :,
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Ratio of Work-Break to Project Delay cost (f/c)

Fig. 7. Tradeoff between project completion delays and work breaks

either directly (i.e., delay penalties) or indirectly (i.e., financial
cost due to late cash receipts, or delays in revenue generation).
The cost objective functions in Egs. (10)—(12) can be used either
for minimizing a total cost function as shown before, or for per-
forming a tradeoff analysis between the different types of costs.
The MOLPS-LRP model can be used to establish optimum sched-
ules at different levels of cost relations, in the case where no exact
cost data exist, by using the standard tools of LP range and sen-
sitivity analysis. The following two examples demonstrate this
type of analysis.

Trade-Off between Project Duration Delay Cost
and Work-Break Cost

The first case refers to a tradeoff analysis between the cost asso-
ciated with delays in project completion and that of task work
breaks. Delays are measured as deviations from the earliest finish
date of the project as it is set by the CPM or from any predefined
delivery date. It is also assumed at the moment that intermediate
delays in completing individual project units do not impose any
additional cost to the project, and that the cost of work breaks is
the same for all tasks.

In this case the objective function [Eq. (12)] of the LP model is
equivalent to

Minimize ¢(UCy) + f(WB) or Minimize ¢c[UCy + (f/c)WB] (13)

where ¢ and f denote the daily cost of project delay and work
break, respectively.

The results of the sensitivity analysis on the values of the
coefficient f/b of the objective function in Eq. (13) can be used to
set optimality ranges, associated with alternative optimum solu-
tions (schedules) as shown in Fig. 7. For the specific example
three optimality ranges exist related to three optimum solutions:
When the work-break unit cost ranges between 0 and up to 50%
of the lateness cost (Range I), the optimum scheduling results in
project duration of 48 days (minimum possible) with a maximum
work break time of 26 days. When the work-break unit cost
ranges between 50 and 100% of the lateness cost (Range II), it is
more economical to let the project duration slip by 5 days in order
to reduce work breaks to 16 days. And finally when the work-
break cost exceeds the lateness cost (Range III) the optimum
schedule is the one that reduces work breaks to the minimum of 5
days, which results in extending the project duration by 16 days.
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Trade-off between Unit Completion Delays and Work-breaks

Ratio of | Total| Total
Work-break |delay| work-

120 4 to Unit delay in all | break
cost units | time

Upto50% | O
50%-100%| 1 | 39

100% - 150% | 4
150% - 200%| 7 | 34
200% - 250%| 13 | 31
250% - 300%| 18 | 29
300% -400%| 33 | 18
1 400% - 500%| 37 | 17
500% - 600%| 42 | 16
over800% | 108 | 5

Time (days)

00 05 10 15 20 25 30 35 40 45 50 55 60

Ratio of Work-break to Unit delay cost (fic)

Fig. 8. Tradeoff between unit completion delays and work breaks

Trade-Off between Unit Completion Delay Cost
and Work-Break Cost

In the second example, the scenario where a penalty cost is asso-
ciated with delays in delivery time of individual project units is
examined. Delays could be measured as deviations from the ear-
liest finish dates of the project units (Fig. 2) or from a promised
time. The choice does not affect at all the range analysis that
follows, since the cost coefficients of the objective function re-
main unchanged. For simplicity purposes we assume here that the
same penalty applies to delays in any unit. Also as in the previous
case, the cost of work breaks is assumed to be the same for all
tasks.

In this case the objective function [Eq. (12)] of the LP model
can be written as

N M
Minimize >, ¢ - (UC;= D)) + >, f- WB,

j=1 i=1

N M N
=c| 2 UC;+ (flc) 2, WB; | =2, D; (14)
j=1

j=1 i=1

Since the second part of Eq. (14) is constant, the analysis to
define ranges of optimality is based on the level of the f/c ratio.
The results shown in Fig. 8 indicate ten optimality ranges corre-
sponding to ten different optimum solutions according to the re-
lation of the work break to unit completion cost. A schedule
which minimizes the work-break time (5 days) is optimum only
when the associated work-break cost is six times higher or more
than the cost paid for unit delays, and it is achieved by introduc-
ing a total of 108 days of delay in the completion of all units. As
the relative size of the work break to unit delay cost drops, alter-
native solutions that allow for work breaks may be more cost
efficient. A significant break point in optimality conditions occurs
when work break cost is three times higher than the cost of de-
lays. Under this level total delays in the units are kept below 18
days in total (average 3 days per unit) while above this level, they
range from 33 to 108 days (about 5.5 to 18 days per unit). Fig. 8
gives a graphical representation of the results. In general, any
distinct segment of a cost coefficient ratio defined by the sensi-
tivity analysis, corresponds to an optimal schedule associated
with optimum level of project duration, delays in unit completion,
and work breaks. The number of alternative optimum solutions
and the tradeoff brake points and quantities depend on the con-
straints of the specific problem that define the set of all feasible
schedules.

Conclusions

Scheduling of linear repetitive construction projects is not a single
dimension decision process. A scheduling decision must take into
consideration more than a single factor and most of the times
tradeoffs are required between unit completion times, project du-
ration, and work breaks. CPM and RSM while efficient in opti-
mizing with respect to duration and work continuity, respectively,
do not provide the facilities to optimize a project schedule in a
holistic way that takes into account various cost considerations.
The MOLPS-LRP model can address these issues efficiently and
has the capacity to provide optimum schedules reflecting not
only single but multiple complex objectives and assist project
managers in producing and selecting among alternative schedules
based on the relative magnitude of different cost elements. In this
sense it provides managers with the capability to consider alter-
native schedules besides those defined by minimum duration
(CPM) or minimum resource work breaks (RSM). A fully inte-
grated software implementation of this approach will enhance
the applicability of the methodology to real world projects and
provide compatibility in data interexchange with other common
PM software tools. Although the MOLPS-LRP model, as it
stands, can handle issues related to problem formulation such as
production learning curves, the introduction of distance con-
straints, different types of time constraints, etc., there are other
issues that need further research. One main issue to be further
investigated is the risk level associated with the alternative
scheduling decisions, as it is indicated by the slack time of the
tasks and the probability of meeting the objectives set (delivery
times, work breaks, etc.) since unexpected events in one task
or unit may affect not only the duration of the project and delivery
times of the units but also the work continuity in other resources.
Similarly the use of simulation techniques could provide further
insight into the stability of the different alternative optimum
solutions defined by the tradeoff approach. Another issue that
needs further consideration is whether the MOLPS-LRP model
can be used to determine the optimum number of units in a linear
project when these are not defined as physical units (i.e., floors,
apartments, etc.), given that an increase in the number of units
could affect positively the duration of the project but could also
increase the cost of work breaks and the total employment of the
resources.

Notation

The following symbols are used in this paper:

c¢; = cost per time unit (penalty or financial) for
delays in finishing unit j;

D; = promised delivery time of unit j;

d,-j = duration of task / in unit j;

d;j=w;j/p;; = duration at each unit;
E = set of all activities without successors;
fi = cost per time unit of work break (idle
resources) in task i;

i=1,2...M = project tasks;
j=1,2...N = project units;
/; = minimum time for starting task i between
successive units;
P; = set of predecessor activities to task i;
p! = beginning production rate at unit 1;
pl+ p? = corresponding ceiling on the production rate;
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pi; = production rate at unit j=function of a
learning factor p,-j:pf.’+p§1(1 —(1=r)™h;
r; = rate of improvement from unit to unit;
s;j»fi; = start and finish time, respectively, of task i in

unit j;
UC; = completion time of project unit j;
w;; = amount of the corresponding work; and
WB, = total time of work breaks for task i because of

discontinuities in successive units.
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