
Robust Learning for Adaptive Programs by Leveraging Program Structure

Jervis Pinto, Alan Fern, Tim Bauer, and Martin Erwig
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR 97331, USA
{pinto,afern,bauertim,erwig}@eecs.oregonstate.edu

Abstract—We study how to effectively integrate rein-
forcement learning (RL) and programming languages via
adaptation-based programming, where programs can include
non-deterministic structures that can be automatically opti-
mized via RL. Prior work has optimized adaptive programs
by defining an induced sequential decision process to which
standard RL is applied. Here we show that the success of this
approach is highly sensitive to the specific program structure,
where even seemingly minor program transformations can lead
to failure. This sensitivity makes it extremely difficult for a
non-RL-expert to write effective adaptive programs. In this
paper, we study a more robust learning approach, where the
key idea is to leverage information about program structure
in order to define a more informative decision process and to
improve the SARSA(λ) RL algorithm. Our empirical results
show significant benefits for this approach.

I. INTRODUCTION

Deterministic programming languages are not well suited
for problems where a programmer has significant uncer-
tainty about what the program should do at certain points.
To address this, we study adaptation-based programming
(ABP) where adaptive programs allow for specific decisions
to be left open. Instead of specifying those decisions the
programmer provides a “reward” signal. The idea then is
for the program to automatically learn to make choices at
the open decision points in order to maximize reward.

As detailed in Section VII, prior work has studied rein-
forcement learning (RL) for optimizing adaptive programs.
Here we identify a shortcoming of this prior work, which is
a significant obstacle to allowing non-RL-experts to benefit
from ABP. Mainly, the success of prior RL approaches
depends on subtle details of an adaptive program’s structure,
which is difficult to predict for non-RL-experts.

Motivating Example. Consider the two very simple
adaptive programs P1 and P2 in Figure 1 written using our
ABP Java library (see Section II). The objects A and B are
adaptives, and are used to encode the programmer’s uncer-
tainty. Program P1 is a conditional structure with rewards
at the leaves. Program P2 is a trivial transformation of P1
and to a typical programmer P1 and P2 appear functionally
equivalent. However, as will be detailed in Section IV, these
programs induce very different learning problems, apparent
when prior RL approaches easily solve P1, but can fail for
P2. Such sensitivity to trivial program changes is likely to be
counter-intuitive and frustrating for a typical programmer.

a = A.suggest();
b = B.suggest();

if (test()) { if (test()) {
if (A.suggest()) { if (a) {
reward(1); reward(1);

} else { } else {
reward(2); reward(2);

} }
} else { } else {
if (B.suggest()) { if (b) {
reward(2); reward(2); for (i=1; i<N; i++) {

} else { } else { c = randomContext();
reward(1); reward(1); m = move.suggest(c);

} } reward(payoff(c,m));
} } }

Program P1 Program P2 Program P3

Figure 1. Illustrative adaptive programs. test, randomContext, and
payoff are non-adaptive methods. reward and suggest are part of
our ABP library (Section II).

As detailed in Sections IV and V, the fundamental prob-
lem with prior work is that they ignore much information
about the structure of the program being optimized. Our
primary contribution is to develop a general learning ap-
proach that takes program structure into account. To our
knowledge this is the first work that attempts to exploit
such program structure for faster and more robust learning.
We show empirically that these ideas lead to significant
improvement in learning on a set of adaptive Java programs.

II. ADAPTATION-BASED PROGRAMMING

We review our Java ABP library and the learning problem.
ABP in Java. The key object in our ABP library is an

adaptive, which is the construct for specifying uncertainty.
An adaptive has a context type and action type and can be
created anywhere in a Java program where it can be viewed
and used as a function from the context type to the action
type, which changes over time via learning. This function
is called via an adaptive’s suggest method and we refer
to any call to suggest as a choice point. In P1 and P2 of
Figure 1, the action type of adaptives A and B is boolean, and
the context is null. As another example, an adaptive program
to control a grid world agent might include an adaptive
move with action type {N,E,S,W} for the desired movement
direction and context type GridCell, enumerating the grid
locations. The call move.suggest(gridCell) would
return a movement direction for gridCell.

The second key ABP construct is the reward method,



which has a numeric argument and can be called anywhere
in a Java program. In P1 and P2 the reward calls give
the desirability of each leaf of the conditional. The goal of
learning is to select actions at choice points to maximize
the reward during program runs. In a grid world, the reward
function might assert a small negative reward for each step
and a positive reward for reaching a goal.

ABP Learning Problem. A choice function for an adap-
tive A, is a function from A’s context type to action type.
A policy π for adaptive program P gives a choice function
for each adaptive in P . The execution of P on input x with
respect to π is an execution of P where calls to an adaptive
A’s suggest method are serviced by A’s choice function
in π. Each such execution yields a deterministic sequence
of reward calls and we denote the sum of rewards by
R(P, π, x). In a grid world, an input x might be the initial
grid position and R(P, π, x) might give the number of steps
to the goal when following π.

Let D be a distribution over possible inputs x. The learn-
ing goal is to find a policy π that maximizes the expected
value of R(P, π, x) where x is distributed according to D.1

Typically, finding the optimal π analytically is intractable.
Thus, the ABP framework attempts to “learn” a good, or
optimal, π based on experience gathered through repeated
executions of the program on inputs drawn from D.

III. BASIC PROGRAM ANALYSIS FOR ABP

Our proposed learning approach (Sections IV and V)
is based on leveraging the structure of adaptive programs
and thus assume the ability to compute the following two
properties of an adaptive program during its execution. v`
denotes the value suggested by a suggest call at program
location `.
(1) P̄ (`, `′) says that v` is definitely irrelevant for reaching

the location `′, that is, `′ would have been reached no
matter what the value of v` is. In this case we say that
`′ is path-independent of the choice point `.

(2) E(`, `′) says that v` is potentially relevant for the
computation of any value in a statement at position `′.
We say that `′ is value-dependent on `.

To understanding our learning algorithm, it is sufficient to
assume an oracle for these properties. We do not require
that the oracle be complete for these properties, which are
formally undecidable. Rather, our learning approach only
requires that the oracle be correct whenever it asserts that
one of the properties is true—the oracle can be incorrect
when asserting false. The design goal of our approach is for
a more complete oracle to lead to faster learning.

For lack of space, we only briefly outline a relatively
simple approach for implementing the oracle. The details

1In order to make this a well defined objective we assume that all program
executions for any π and x terminate in a finite number of steps so that
R(P, π, x) is always finite. If this is not the case then we can easily
formulate the optimization problem in terms of discounted infinite reward.

are not important for understanding our proposed learning
approach and can be safely skipped. The oracle can be
implemented as a pre-processor that instruments an adaptive
program with code that generates information for evaluating
the above predicates. We will use the notation V (`) for
the set of variables used in the statement at position `.
The key to implementing the predicates is to track the data
flow of suggested values as well as their use in control-
flow statements, which can be done via standard data-flow
analysis techniques [1]. This gives for each program block
B and each choice point ` the set VB(`) of variables visible
in B whose values are potentially derived from v`.

Second, we instrument the program by inserting com-
mands after each call to suggest and before each branch-
ing statement to report suggested value generation and us-
age. Moreover, before each branching statement at a position
`′ with V (`′) ∩ VB(`) 6= ∅ (where B is the current block),
we insert a command that, during the program run, will
produce a use event for v`. Through this instrumentation it
is easy to compute the predicates P̄ (`, `′) and E(`, `′). Our
experimental results are based on instrumenting the adaptive
programs by hand in the same way the above pre-processor
would. A fully automated pre-processor is being developed,
noting that it is a large but straightforward engineering task
that is not relevant to the main contribution of this paper
(using information about program structure).

IV. THE INFORMED DECISION PROCESS

Prior work on learning for ABP follows two steps: 1)
Define a decision process, which we will call the standard
decision process for the adaptive program, 2) Apply standard
RL to this decision process. Below we describe the first step,
a general deficiency with it and our proposed improvement.

We first define the notion of a general decision process,
which is defined over a set of observations and actions. We
consider episodic decision processes, where each episode
begins with an initial observation o1, drawn from an initial
observation distribution I . There is a decision point at
each observation, where a controller must select one of
the available actions. After the i’th action ai, the decision
process generates a numeric reward ri and a new observation
oi+1 according to a transition distribution T (ri, oi+1|Hi, ai),
where Hi = (o1, a1, r1, o2, a2, r2, . . . , oi) is the observation
history. Note that in general the transition distribution can
depend arbitrarily on the history. In the special case when
this distribution only depends on the oi and ai, then the
process is a Markov decision process (with states corre-
sponding to observations). The goal of RL is to interact with
a decision process in order to find an action-selection policy
that maximizes the expected total episodic reward.

Standard Decision Process. Similar to prior ABP work
[2], [3] we can define a decision process corresponding to
an adaptive program P and a distribution D over its inputs.
We will refer to this as the standard decision process to



reflect the fact that prior work on ABP define a similar
process to which RL is applied. The observations of the
standard process are the names of the adaptives in P and
the process actions are the actions for those adaptives. Each
episode of the process corresponds to an execution of P
on an input drawn from D. Decision points correspond
exactly to choice points during the execution, and at each
decision point the observation generated is the name of the
adaptive. It is easy to show that there is a well-defined
but implicit initial observation distribution and transition
function for the standard process, both of which will be
unknown to the learning algorithm. Further, there is a one-
to-one correspondence between policies for P and for the
standard process and the expected total reward for a policy
is the same for the adaptive program and associated process.
Thus, we can directly apply RL algorithms to the process
and arrive at a policy for the program.

Deficiencies. Consider now the standard process corre-
sponding to P1 in Figure 1. Each run of the program will
generate exactly one observation, either A or B. The reward
after the observation is equal to the appropriate leaf reward,
which depends on the selected action. It is easy to verify
that this process is Markovian and accordingly it can be
easily solved by nearly all RL algorithms. In contrast, P2
induces a standard process that is non-Markovian. To see
this, notice that the observation sequence for each run of
the program is always A, B with zero reward between those
observations and a non-zero reward at the end depending on
the actions. This process is non-Markovian since the final
reward depends not just on B and the action selected, but
also on the actions of A (in the case that the left branch of the
top level IF statement is selected). Because of this, applying
algorithms that strongly rely on the Markov property, such
as Q-learning or SARSA(0) can fail quite badly as our
experiments will show. Furthermore, the credit-assignment
problem is more difficult for P2 than P1 since the rewards
arrive further from the decision points responsible for them.
This example shows how even the simplest of program
transformations can result in an adaptive program of very
different difficulty for RL.

The Informed Decision Process. The general problem
highlighted by the above example is that for the standard
process, the sequence of observed decision points and
rewards is highly dependent on details of the program
structure, and some sequences can be much more diffi-
cult to learn from than others. Here, we partially address
the problem by introducing the informed decision process,
which is similar to the standard decision process, but with
the addition of pseudo decision points. The new decision
points will occur during a program execution whenever an
instruction “depends” on the action of a previous choice
point. Intuitively this encodes information into the process
about when, during a program execution, the action at a
choice point is actually used which is not available in the

standard process.
More formally, given an adaptive program P , the cor-

responding informed decision process has the same obser-
vation and action space as the standard process (names
of adaptives and their actions respectively). Also like the
standard process, the informed process has a decision point
whenever, during the execution of P , a choice point in-
volving an adaptive A is encountered, which generates an
observation A and allows for the selection of one of A’s
actions. In addition, at each non-choice-point location `′ of
P , the oracle is asked for each prior choice point location `,
whether `′ is value-dependent on `. If the answer is yes, then
a pseudo choice point is inserted into the informed decision
process, which generates observation A, where A is the
adaptive at `. Further, the only action allowed at this pseudo
decision point is the action a that was previously selected by
A, meaning that the controller has no real choice and must
select a. The only effect of adding the pseudo decision points
is for the informed process to generate an observation-action
pair (A, a) at times in P ’s execution where A’s choice of a
is potentially influential on the immediate future.

Properties. It is easy to show that there is a one-to-one
correspondence between policies of the informed process
and of the adaptive program and that policy values are
preserved. Thus, solving the informed decision process is
a justified proxy for solving the adaptive program. Consider
again P2 in Figure 1 on an execution where A and B both
select true. If the variable test() method evaluates to
true, then the informed decision process will generate the
following sequence of observations, actions, and rewards: A,
true, 0, B, true, 0, A, true, 1, where the fi-
nal observation A is a pseudo decision point, which was
inserted into the process when it was detected that the
condition in the IF statement was dependent on it via the
variable a. The insertion of the pseudo decision point has
intuitively made the sequence easier to learn from since the
choice (A,true), which was ultimately responsible for the
final reward, is now seen before this reward.

V. INFORMED SARSA(λ)

While the informed decision process will typically be bet-
ter suited to standard RL algorithms, it will still often be non-
Markovian and not capture all of the potentially useful infor-
mation about program structure. Prior work has studied the
problem of learning memoryless policies for non-Markovian
processes [4], [5], [6], showing that when good memoryless
policies exist, learning algorithms based on eligibility traces
such as SARSA(λ) [7] can often find optimal or very good
policies [6]. Thus, we take SARSA(λ) as a starting point
and later introduce the informed SARSA(λ) (iSARSA(λ))
algorithm that leverages information about program structure
not captured by the informed process.

SARSA(λ). The SARSA(λ) algorithm interacts with a
decision process in order to learn a Q-function Q(A, a).



While SARSA(λ) was originally developed for MDPs, it
can be applied to non-Markovian processes, though certain
guarantees are lost. The key idea of SARSA(λ) is to maintain
an eligibility trace function ηt(A, a) and to update the Q-
function after each transition for each (A, a) according to
their eligibilities. Intuitively, recently observed pairs are
more eligible for update based on a new transition.

At the start of each program run we set η(A, a) = 0 for
all pairs. The behavior of SARSA(λ) can now be described
by what it does at each decision point and transition: Given
a current observation A, SARSA(λ) first selects an action
a according to an exploration policy, ε-greedy here. This
action causes a transition, which produces a reward r and a
new observation A′ upon which it again uses the exploration
policy to select an action a′. The algorithm next updates the
eligibility trace and Q-values for all pairs as follows:

η(A, a) ← 1 (1)
η(B, b) ← λη(B, b), for all (B, b) 6= (A, a) (2)

δ ← r +Q(A′, a′)−Q(A, a) (3)
Q(B, b) ← Q(B, b) + α · δ · η(B, b), for all (B, b) (4)

where 0 ≤ λ ≤ 1 is the eligibility parameter, and 0 < α < 1
is the learning rate. For larger values of λ, decisions are more
eligible for update based on temporally distant rewards, with
λ = 1 corresponding to learning from Monte-Carlo Q-value
estimates. The selection of λ is largely empirical, but for
non-Markovian processes, larger values are preferred.

Deficiencies. Consider the observation-action-reward se-
quence of the informed process for an execution of program
P2 described at the end of Sec IV: A, true, 0, B,
true, 0, A, true,1, where the final observation was
a pseudo decision point inserted by the informed pro-
cess. When the final reward of 1 is observed, the choice
(B,true) will be eligible for update. However, a simple
analysis of the program reveals that in this trace the decision
of adaptive B had no influence on whether the reward was
received or not. Thus, intuitively the decision involving B
does not deserve credit for that reward, but this fact is missed
by the generic SARSA(λ) algorithm.

A more severe example is program P3 in Figure 1, which
contains a loop where each iteration corresponds to the
complete play of a simple game. The action, selected by
the adaptive move based on the current context influences
the reward payoff. An execution of P3 iterates through
the loop generating a sequence of choices made by the
adaptive and rewards. A simple analysis reveals that the
choice made at iteration i has no influence on the reward
observed in future iterations and thus should not be given
credit for those rewards. However, SARSA(λ) again does not
capture this information and will update the choice made at
i based on some combination of all future rewards, making
the learning problem very difficult since the independence
across iterations must be learned.

Exploiting this type of simple program analysis to im-
prove credit assignment is what iSARSA(λ) is designed to
do. The main idea is to reset the eligibility of such irrelevant
choices to 0, making them ineligible for updates based on
rewards they provably have no influence on.

iSARSA(λ). We now describe the working of our al-
gorithm listed in Algorithm 1. iSARSA(λ) gets invoked
at every observation-action pair (A′, a′) (henceforth simply
‘choice’) in the informed process. For each such (A′, a′),
let (A, a) denote the immediately preceding choice and r
be the reward between (A, a) and (A′, a′). Like SARSA(λ),
we first set the eligibility of choice (A, a) to 1 and decay the
eligibility of all prior choices by λ (Lines 2-5). Furthermore,
iSARSA(λ) will exploit the program analysis and ask for
every previous choice (B, b), whether it is irrelevant to
getting to A′ (Line 9). In this case Q(B, b) is updated based
on only the immediate reward r (rather than also on the
estimate of Q(A′, a′)) and its eligibility is then reset to zero
(Lines 10-11) so that it will not receive credit for further
rewards. Otherwise if irrelevance is not detected for (B, b)
the usual SARSA(λ) update is performed (Line 13).

Properties. The convergence of SARSA(λ) for arbitrary
lambda is an open problem even for Markovian processes,
though the algorithm is widely used for its well documented
empirical benefits. However, for λ = 1, iSARSA(λ) when
run in the informed decision process has a useful interpreta-
tion as a Monte Carlo algorithm. In particular, the Q-value
of program choice (A, a) will be updated toward the sum of
future program rewards, excluding those rewards for which
(A, a) is provably irrelevant. This is an intuitively appealing
property and as we will show can lead to very large empirical
benefits. As a simple illustration, for program P3 it is easily
verified that iSARSA(λ) will update the choice at iteration i
based on only the reward observed at iteration i, rather than
future iterations, as appropriate.

Algorithm 1 : iSARSA(λ). All Q, η values are initially 0.
1: {Current program location `′ at choice (A′, a′),

Last choice (A, a) with reward r seen in between }
2: for each choice (B, b) do
3: η(B, b) = η(B, b) ∗ λ
4: end for
5: η(A, a) = 1
6: δe = r −Q(A, a) {terminal delta}
7: δ = r +Q(A′, a′)−Q(A, a) {regular delta}
8: for each previous choice (B, b) at location ` do
9: if `′ is path-independent of ` then

10: Q(B, b) = Q(B, b) + αη(B, b)δe
11: η(B, b) = 0
12: else
13: Q(B, b) = Q(B, b) + αη(B, b)δ
14: end if
15: end for

VI. EXPERIMENTS

We experiment with adaptive programs that include a
Yahtzee playing program, a sequence labeling program,



and 3 synthetic programs containing a variety of program
structures. The programs and our ABP library are available
upon request. Space permits only a brief description of each.

Yahtzee [8]. This is a complex, stochastic dice game
played over 13 rounds or cycles where each round typically
requires 3 high-level decisions. We wrote an adaptive pro-
gram to learn to play Yahtzee over repeated games that in-
cludes 2 adaptives to make the 2 most difficult sub-decisions
while other easily-made decisions were hard-coded. The
program structure is such that certain choices made by the
adaptives may get ignored depending on the game context
making for a difficult credit assignment problem.

Sequence Labeling (SeqL). This is an important problem
in machine learning, where the goal is to accurately label a
sequence of input symbols by a sequence of output labels.
The programmer will often have significant domain knowl-
edge about proper labelings, and ABP provides a tool for
encoding both, the knowledge and the uncertainty. We wrote
an adaptive program that repeatedly cycles through a set of
labeled training sequences, and for each sequence makes
a left to right pass assigning labels. The reward statements
reflect whether the selected labels are equal to the true labels.
At each sequence position the choice of label is made using
a conditional structure that contains a combination of the
programmer’s knowledge and a single adaptive, which ends
up making the credit assignment problem quite difficult for
standard RL. We generated a synthetic data set based on a
Hidden Markov Model (HMM) involving 10 input and 10
output symbols. The training set contains 500 sequences,
while the test set has 200 sequences. The test set is hidden
during training and used to evaluate the learned program.

Synthetic Programs. These are composed of adaptives
and reward statements scattered across branches and loops.
All adaptives have binary actions and possibly non-null con-
text types. Program S1 is based on P3 from Figure 1, where
the adaptive has 10 possible contexts. This program captures
the common adaptive-programming pattern of repeated runs
which can cause failure when using standard RL. Program
S2 contains an IF-THEN-ELSE tree followed by another
tree. The reward generated in the first tree depends only on
the choices made in there and the reward seen in the lower
tree is independent of the first. This type of program might
be written when the input is used to solve two independent
sub-tasks, each with its own reward. Program S3 contains
a sequence of independent trees. The upper tree has a loop
with a tree inside it. The lower tree has a similar structure
but the reward depends on the context stochastically.

Results. We evaluate three algorithms: 1) SARSA(λ)
applied to the standard decision process, which is rep-
resentative of prior work, 2) SARSA(λ) applied to the
informed decision process, and 3) iSARSA(λ) applied to the
informed decision process. We used a constant learning rate
of α = 0.01 and ε-greedy exploration with ε = 0.1. For each
synthetic adaptive program we conducted 20 learning runs of

a)Yahtzee b)SeqL-Training Set

c)S1 d)S2

e)S3 f)SeqL-Test Set
Figure 2. (a-e) are performance graphs of programs Yahtzee, SeqL
(training set), S1,S2,S3 for λ = 0.75. (f) SeqL (test set) for varying λ
and algorithms

each learning algorithm and averaged the resulting learning
curves. Each learning run consisted of repeated program
executions during which the learning algorithm adapts the
policy. After every 10 program executions, learning was
turned off and the current policy was evaluated by averaging
the total reward of another 10 program executions, which are
the values we report. For Yahtzee we evaluate every 1000
games by averaging the score of 100 games and average over
20 learning runs. For the SeqL program, we use 1000 passes
over the training set, evaluating performance (i.e. number
of correct labels) on the training set after every 10 passes.
At the end of the program run, we evaluate performance
on the test set. This is done over 5 learning runs, each one
using different datasets generated by the HMM. Figures 2(a-
e) show the averaged learning curves when using λ = 0.75
for all algorithms on all benchmarks. Figure 2(f) shows the
average number of correct labels per sequence over the test
set for SeqL.

Benefit of Informed Decision Process. For all example
programs, we see a small improvement in learning efficiency
for SARSA(λ) when learning in the informed process ver-
sus the standard process. This shows that the additional
information in the informed process is useful, however,
the relatively small improvement indicates that the credit
assignment problem in the informed process is still difficult.

Benefit of iSARSA(λ). Now compare learning in the in-
formed process with SARSA(λ) versus iSARSA(λ). For



each of our programs there is a substantial boost in learn-
ing efficiency when using iSARSA(λ). Furthermore, for
the Yahtzee, SeqL and S1(loop) programs, it appears that
iSARSA(λ) leads to substantially better steady state per-
formance in the informed process than SARSA(λ). All
of these programs contain loops with independent itera-
tions, which makes credit assignment difficult with stan-
dard eligibility traces, but much easier with the informed
traces of iSARSA(λ). These results give strong evidence
that iSARSA(λ) is able to effectively leverage information
about the program structure for faster learning. Particularly
impressive is its performance on the test set in SeqL, in
Figure 2(f) where on average, it predicts 40% more labels
correctly for λ = 0.75.

Varying λ. We ran similar experiments for λ = 0 (pure
TD-learning) and λ = 1 (pure Monte Carlo). The general
observation of these experiments is that the relative per-
formance of the methods is similar to λ = 0.75. Further
iSARSA(λ) is much less sensitive to the value of λ than
SARSA(λ) in the informed process, which was less sen-
sitive to λ than SARSA(λ) in the standard process. This
shows that the additional information used by iSARSA and
contained in the informed process have a large benefit in
terms of addressing the credit assignment problem, which is
traditionally dictated by the precise value of λ.

Overall our results give strong evidence that: 1) Learning
in the informed process is beneficial compared to learning
in the standard process, and 2) iSARSA(λ) is able to
leverage program structure to dramatically improve learning
compared to pure SARSA(λ) in the informed process.

VII. RELATED WORK

There have been several prior and similar ABP efforts,
sometimes under the name partial programming [2], [3], [9],
[10]. Most notably ALISP [9] extends LISP with choice
structures, which are similar to adaptives in our library.
There is an important semantic distinction between our work
and prior work such as ALISP. The semantics of ALISP are
tied to an interface to an external MDP (e.g. which produces
reward). This coupling to MDP theory is a hurdle for non-RL
expert programmers. Rather, our ABP semantics are not tied
to the notion of an external MDP, but defined completely in
terms of a program and a distribution over its inputs. This
makes our library immediately applicable in any context that
Java programs might be written.

Prior learning algorithms for partial programming make
very limited use of the program structure, which is the
key contribution of our work. The only exception is work
on ALISP that leverages program structure in order to
decompose the value function according to subroutines [9].
While this is a powerful mechanism it is orthogonal to the
type of structure exploited in our work. In particular, the
program structure that we exploit can be present within
a single sub-routine and does not require a sub-routine

decomposition. Combining our work with decomposition
based on sub-routines is an interesting direction.

ABP should not be confused with work on RL frame-
works/libraries (e.g. RL-Glue[11]). Such libraries are in-
tended for RL experts to develop, test and evaluate RL algo-
rithms and provide a language-independent, standardized test
harness for RL experiments. Rather, ABP is intended to be
a more thorough integration of learning into a programming
language, allowing arbitrary programmers to benefit from
learning algorithms by simply including adaptive constructs
into their programs in a natural way.

VIII. SUMMARY

We have highlighted the fact that subtle differences in
adaptive programs can lead to large differences in the
performance of standard RL. For non-RL experts, this
seriously impedes their ability to use the ABP paradigm.
To address this issue we showed how to leverage program
structure to both define a new induced decision process and
inform the SARSA(λ) RL algorithm. The results show that
this approach leads to good performance on complicated
adaptive programs, both real and synthetic.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Reading, MA: Addison-Wesley, 1986.

[2] R. Parr and S. Russell, “Reinforcement learning with hierar-
chies of machines,” in NIPS, 1998.

[3] D. Andre and S. Russell, “Programmable reinforcement learn-
ing agents,” in NIPS, 2001.

[4] S. Singh, T. Jaakkola, and M. Jordan, “Learning without
state-estimation in partially observable Markovian decision
processes,” in ICML, 1994.

[5] M. Pendrith and M. McGarity, “An analysis of direct rein-
forcement learning in non-Markovian domains,” in Interna-
tional Conference on Machine Learning, 1998.

[6] J. Loch and S. Singh, “Using eligibility traces to find the best
memoryless policy in partially observable Markov decision
processes,” in ICML, 1998.

[7] R. Sutton and A. Barto, Reinforcement Learning: An Intro-
duction. MIT Press, 2000.

[8] J. Glenn, “An optimal strategy for yahtzee,” Loyola College,
Technical Report CS-TR-0002, 2006.

[9] D. Andre and S. Russell, “State abstraction for programmable
reinforcement learning agents,” in AAAI, 2002.

[10] C. Simpkins, S. Bhat, M. Mateas, and C. Isbell, “Toward
adaptive programming: Integrating reinforcement learning
into a programming language,” in OOPSLA, 2008.

[11] B. Tanner and A. White, “Rl-glue: Language-independent
software for reinforcement-learning experiments,” J. Mach.
Learn. Res., vol. 10, pp. 2133–2136, 2009.


