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Abstract
Current C++ implementations typecheck templates in two phases:
Before instantiation, those parts of the template are checked that do
not depend on template parameters, while the checking of the re-
maining parts is delayed until template instantiation time when the
template arguments become available. This approach is problemat-
ic because it causes two major usability problems. First, it prevents
library developers to provide guarantees about the type correctness
for modules involving templates. Second, it can lead, through the
incorrect use of template functions, to inscrutable error messages.
Moreover, errors are often reported far away from the source of the
program fault.

To address this problem, we have developed a type system for
Garcia’s type-reflective calculus that allows a more precise charac-
terization of types and thus a better utilization of type information
within template definitions. This type system allows the static de-
tection of many type errors that could previously only be detect-
ed after template instantiation. The additional precision and earli-
er detection time is achieved through the use of so-called “choice
types” and corresponding typing rules that support the static rea-
soning about underspecified template types. The main contribution
of this paper is a guarantee of the type safety of C++ templates
(general definitions with specializations) since we can show that
well-typed templates only generate well-typed object programs.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs–Type structure;
D.3.1 [Programming Languages]: Formal Definition and Theory

Keywords Metaprogramming, type systems, type reflection, choice
types, C++ Templates

1. Introduction
C++ templates help construct safer programs by shifting runtime
error checking to static type checking. For example, with templates
C++ container classes do not have to rely on the notorious void*

type, and they can guarantee that only type-correct data can be
stored in a specific container.

However, type-safety guarantees about the template programs
before they are instantiated are limited since only expressions that
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do not depend on any template parameter are type checked at the
definition site. In the following example, there is a type error in
the expression return powN<N-1>(m)*m because powN<N-1>(m) is
of type int and m is of type string. However, the statement return
powN<N-1>(m)*m will not be type checked until the function powN is
instantiated since the expression powN<N-1>(m) uses the template
parameter N. Therefore, the detection of the type error will be
unnecessarily delayed.

template<int N>
int powN(string m){

return powN<N-1>(m)*m;
}

Type checking of templates happens in two phases. When the tem-
plate definition is first parsed, expressions that do not involve any
template parameters are type checked, while those that depend on
template parameters, directly or indirectly, are stored as abstract
syntax trees without any associated type information. When the
template is instantiated, template parameters are replaced with con-
crete arguments, and full type checking is performed.1 This model
of type checking causes several usability problems.

First, library providers cannot guarantee that their code is type
correct. Second, misuse of template functions results in large, in-
scrutable error messages. Third, since many type errors in template
programs are not captured until programs are instantiated, they are
often reported far away from where they really occur.

The language feature of concepts has been proposed to address
these usability issues [9, 15]. Unfortunately, however, concepts
face some problems. First, they incur a burden for programmers,
forcing them to develop concepts manually. Second, as discussed
in Section 6, concepts do not provide a satisfying solution for the
typing problem.

A different route was taken by Garcia and Lumsdaine [14] who
presented a core calculus that captures the fundamental capabilities
while avoiding many shortcoming of C++ metaprogramming. This
calculus provides the foundation for further study of the typing
problem. Figure 1 shows this calculus.

The calculus mainly consists of two parts. An object language
that expresses the computation performed during runtime and a
metalanguage to manipulate object language expressions, provid-
ing a means for static computation.

The calculus provides well-known features for metaprogram-
ming [34, 35]. For example, the splice expression ∼em escapes
to the compile-time computation, that is, the computation of em

is performed at compile time; the bracket expression ≺ e� injects
a piece of object code into metacode; the lift expression %em first
evaluates em at compile time and then injects the resulting value
into object code.

At the same time, the calculus provides the full machinery for
constructing and querying object types that are essential to C++

1 Depending on the compiler implementation, some type checking may be
delayed to link time.



γ constant types (int, float, string)
x meta-level variables
c value and function constants

object types
τ ::= γ | τ→ τ

object language
e ::= x | c | λx : em.e | e e | ∼em | let x = e in e |

let meta x = em in e | if e then e else e
meta types
τm ::= γ | code | type | τm→ τm

meta language
em ::= x | c | cm | γ | λx : τm.em | em em | ≺ e� |

%em | if em then em else em | let x = em in em

cm ::= → | γ? | →? | =τ | dom | cod | typeof

Figure 1: Garcia’s calculus for C++ Metaprogramming

Metaprogramming (C++ MP). The type constructor → takes two
types and constructs an arrow type. The type destructors dom
and cod return the argument type and result type, respectively,
of an arrow type. The unary predicates γ? and →? determine if
the argument expression em represents the type γ or an arrow
type, respectively. We say an expression em represents type γ if
em evaluates, through metareduction, to γ. The binary predicate =τ

decides if two expressions represent the same type. Finally, typeof
allows metaprograms to query the type of a piece of object code.

Like C++ templates, Garcia’s type system only assures that the
generated object programs are well formed but not well typed.
However, looking back at the powN example, we can observe that
although the expression powN<N-1>(m) depends on the template
parameter N, we are still able to find out that the expression is of
type int, which is enough to help us detect the type error in the
program because we know that * does not accept an int value and
a string value.2

Miao and Siek [22] exploit this kind of type information to
detect type errors earlier. Employing the idea of gradual typing [29,
31], they use existential types to characterize metaexpressions.
The type system collects type information as metaprograms are
instantiated and metaevaluations are making progress. It reports the
type error when a conflicting use of a type is detected.

In essence, existential types approximate the type information
for metaexpressions, that is, some important information is lost,
which causes some type errors to be detected later than necessary.
For example, consider the following program, presented in [22],
where f0 is a metaprogram that takes a type argument t and defines
an identity function id. Based on the non-type template parameter
x, id has the type code (t → t) when x is true or has the type
code (bool→ bool) when x is false.

let meta f0 =
λt : type.

let meta id =
λx : bool. ≺ λy : if x then t else bool.y�

in
≺ (∼(id false)) 1¬ �

in
let meta f1 = ≺∼( f0 int) � in

...

We know that at position ¬ the expression id false has the type
code (bool→ bool) and the expression ∼(id false) has the type
bool→ bool. Thus, we can catch the type error there because

2 More precisely, the string class does not have a * operator overloaded to
have int as its first parameter type.

the type of the argument, which is bool, is conflicting with the
type of 1, which is int. However, Garcia’s type system does not
catch the error until the metaprogram is instantiated; Miao and
Siek’s type system detects the error at position . The reason
for this imprecision is that the type for id is approximated to
bool→∃α.code (α→ α), which misses the information that when
the template argument to id is false, the type of id is code (bool→
bool). Thus when ∼(id false) is applied to an int value, the type
error goes undetected at ¬.

From the analysis we can learn that it is possible to catch type
errors earlier if we make better use of available type and value in-
formation. However, a corresponding type checking method faces
many challenges. For example, how to precisely represent the types
for metaexpressions, and how to reason with uncertain type infor-
mation? In the example, what should be the type for the metafunc-
tion id? Given the fact that false is a static value, how do we deduce
the type for id false? Previous type systems assign only one type
to each expression. However, for metaprograms this is generally
insufficient. For example, the id function has two different types,
depending on the instantiation argument. This kind of situation is
prevalent in C++ template programs, for example, in implementing
the traits technique [1].

We address these challenges by using choices [10] of values
and types to encapsulate all potential types for metaexpressions.
We construct and eliminate choices as the type checking process
unfolds. Whenever needed, we use variational type unification to
solve type equality constraints among types [6].

The two possible types for the id function can be represented
by the type code (D〈t,bool〉 → D〈t,bool〉), where the two choice
types are synchronized by the use of the common name D. The de-
pendency of the chosen type on the boolean value can be encoded in
a dependent type D〈true, false〉 → code (D〈t,bool〉 → D〈t,bool〉)
where the dependency is expressed by a choice between two values
using again the same name D. This type expresses that the type of
id depends on the instantiation argument. If it is instantiated with
true, the type is code (t → t), and code (bool→ bool) otherwise.
At position ¬, since the instantiation argument is false, we infer
that the expression ∼(id false) has the type bool→ bool. We can
therefore catch the type error where it occurs.

The main contribution of this paper is the design of a modu-
lar type system for generic C++ template definitions with special-
izations. Through the use of choice types we can represent un-
certain type information for metaexpressions. Together with very
fine-grained types that represent static computations, we can pre-
cisely reason about the types of metaprograms. Since our type sys-
tem separates the type checking of the definitions and the use of
metafunctions, we can type check object programs without gener-
ating them. Consequently, the type system ensures that well-typed
metaprograms only generate well-typed object programs.

The rest of the paper is organized as follows. In Section 2, we
present the necessary background for formalizing the type system.
We define the type system in Section 3, where we also discuss the
properties of the type system. A sound and complete implementa-
tion of the type system is presented in Section 4. In Section 5 we
evaluate our type system by comparing its behaviors with that of
other type systems and by investigating its expressiveness. We dis-
cuss related work in Section 6 and conclude the paper in Section 7,
where we also discuss directions for future research.

2. Background
This section introduces some technical background for presenting
the type system for C++ templates. Specifically, in Section 2.1 we
present the concept of choices, and in Section 2.2 we introduce
metareduction, which is used to relate the properties of different
type systems.



CHOICE
τ1 ≡ τ

′
1 τ2 ≡ τ

′
2

D〈τ1,τ2〉 ≡ D〈τ′1,τ′2〉

FUN
τ
′
l ≡ τ

′
r τl ≡ τr

τ
′
l → τl ≡ τ

′
r→ τr

F-C
D〈τ1,τ2〉 → D〈τ′1,τ′2〉 ≡ D〈τ1→ τ

′
1,τ2→ τ

′
2〉

C-IDEMP
τ1 ≡ τ τ2 ≡ τ

D〈τ1,τ2〉 ≡ τ

C-C-MERGE1
D〈D〈τ1,τ2〉,τ3〉 ≡ D〈τ1,τ3〉

C-C-SWAP1
D′〈D〈τ1,τ2〉,τ3〉 ≡ D〈D′〈τ1,τ3〉,D′〈τ2,τ3〉〉

Figure 2: Variational type equivalence

2.1 Choices
The choice calculus was introduced in [10] as a generic variation
representation for software. It provides named choices to represent
variation points in programs (and other tree-structured artifacts).
As an example, consider the following variational expression that
applies one of two functions to a constant.

A〈odd,inc〉 3
Here the choice A〈〉 denotes a named variation point. We can gen-
erate two variants from this expression, odd 3 and inc 3, depending
on which alternative of the choice is selected. Different choices
tagged by the same name will be synchronized, that is, the expres-
sion A〈odd,inc〉 A〈3,5〉 represents only two expressions odd 3 and
inc 5, while differently named choices are independent of one an-
other, that is, A〈odd,inc〉 B〈3,5〉 would generate four plain expres-
sions, resulting from combining each function with each argument.

The types of variational expressions can as well be variational.
For example, under the typing rules developed in [7], the above
example expression has the choice type A〈bool, int〉.

The name of a choice is called a dimension and is introduced
through a binding construct that also defines tags to make selections
in choices. In our example we can add a dimension declaration as
follows.

dim A〈a,b〉 in A〈odd,inc〉 3
This dimension declaration allows us to select odd using the tag
A.a. In the following we will employ the choice calculus to rep-
resent alternatives in types through choices. Moreover, tags for s-
electing specific variants will be represented by choices of values
that serve as type indices.

Syntactically different types and values can be equivalent, for
example, the type A〈int, int〉 is equivalent to int since whatever de-
cision made about choice A〈〉, the result is always int. We write
τ1 ≡ τ2 to express that the types τ1 and τ2 are equivalent. Figure 2
lists a subset of the type equivalence rules developed in [7]. For
brevity, we have omitted the standard rules for reflexivity, symme-
try, and transitivity that turn≡ into an equivalence relationship, and
the two rules C-C-MERGE2 and C-C-SWAP2 that work analogously
to the shown rules with the second alternative. Most of the rules are
straightforward. Note that the rule C-C-MERGE1 allows us to in-
troduce or eliminate the dead alternative τ2, which can’t be reached
with neither D.1 nor D.2. The rule C-C-SWAP1 enables us to reorder
the choice nesting by swapping choices.

An important result about typing choice expressions is that the
typing relationship is preserved over selection, that is, the typing
process commutes with selections. If the variational expression e
is of the type t, then the type of an expression derived from e
through a specific selection can be derived from t with the same
selection. For example, the choice expression A〈odd,inc〉 3 has the

type indices σ ::= γ | σ→ σ | α
object types τ ::= σ | D〈τ〉
meta values ξ ::= τ | c | D〈c〉
meta annot. δ ::= code τ | type | η
meta types φ ::= code τ | typeτ | typex

D〈σ,ε〉 |
ηc | ηx

D〈c,ε〉 | D〈φ〉 | φ→ φ

choice indices t ::= c | σ | ε

proper object code eo ::= x | c | λx : σ.eo | eo eo

normal forms vm ::= c | σ | λx : δ.em | ≺ eo �

Figure 3: Definitions of Types and related concepts

type A〈bool, int〉. If we select the first alternative from choice A,
then we know in advance that odd 3 has the type bool.

2.2 Meta Reduction
Garcia [14] defines a set of local rewriting rules for reducing
metaredexes to metavalues in the form of em

1 →Em em
2 . For example,

dom (τ1→ τ2)→Em τ1. Based on that relation, the metareduction
relation can be represented as follows

META-EVAL
em

1 →Em em
2

Em[em
1 ] 7−→ Em[em

2 ]

where Em represents a metaevaluation context that can be filled
with a metaexpression. If em is not object code, then it can be sub-
ject to reduction in only one way because that em can be decom-
posed uniquely into a context and a redex [14]. Essentially, this
relation models template instantiation and the object program gen-
eration process.

3. Type System
This section presents the basic features of the type system that
facilitates the detection of type errors without generating object
programs.

Section 3.1 presents the types for typing both object programs
and metaprograms. A crucial aspect of the type system is that
we use choice types to represent uncertain type information. In
Sections 3.2 and 3.3, we discuss the core parts of the type system,
namely reasoning about the type representation along the typing
process. In Section 3.4, we investigate some properties of the type
system.

3.1 Type syntax
Figure 3 specifies the types for object programs and the metapro-
grams. We use γ to range over constant types, such as int or bool,
and α to range over type variables. Except for choice types D〈τ〉,
the types for typing object programs are similar to those for the
lambda calculus [24]. A choice type D〈τ〉 represents an uncertain
type for object programs, to be employed in cases when abstrac-
tions are annotated by metaexpressions.

We use δ to describe the types of template parameters, that
is, the annotations attached to meta-abstractions. C++ support-
s both type parameters and non-type parameters in defining tem-
plates [32]. Non-type template parameters can be integral or enu-
meration types (η) or pointers to functions (code τ).3

To precisely represent the types for metaexpressions, we define
very fine-grained types so that the mapping from expressions to
types will cause minimal information loss. For example, instead

3 C++ also allows non-type parameters to be pointers to objects, pointers
to members, and references to functions and objects. These can be handled
similarly; we omit the discussion for simplicity.



of type we use types like typeint, typebool, and so on. Likewise,
instead of using int, which can only represent the type of all
integer values, we use type-level integers and booleans such as int1,
boolfalse, and so on. Note that the information needed to specialize,
for example, type by int or bool, int by 1, or bool by false, are
all available at compile time, which makes the fine-grained type
representation available for type checking.

Types can also be indexed by choices—choices of values (repre-
sented by ηx

D〈c,ε〉) and choices of types (represented by typex
D〈σ,ε〉).

In the following discussion we focus on the latter kind. The case for
value-indexed types is analogous. A function type with typex

D〈σ,ε〉
as its argument type can express both universally quantified types
and dependent types, expressed by choice-type indices. The meta-
level variable x (see Figure 1) serves as the placeholder for the
types or values passed to the metafunctions. We can view these
as universally quantified type variables as we can pass any types to
metafunctions with type template parameters.

The type index D〈σ,ε〉 expresses a dependency (it may be
dropped when the return type is independent of the values of the
argument). Note that all the indices must be of type type. Moreover,
we assume them to be unique. The special tag ε matches any value.
With the type definitions, we can use typex→ typex to represent
the type ∀x.x, and the type of the function id from Section 1 is as
follows.

boolxD〈true,false〉→ code (D〈t,bool〉 → D〈t,bool〉)

Note that we can also express more complex types such as the
following.

typex
D〈bool,int,ε〉→ D〈typeint, typebool, typex〉 (1)

This type characterizes the metafunctions that accept and return
object types. More precisely, when the input is int the output is
bool and vice versa, and for all other types, the output is the same
as the input.

While the choice types in [6, 7] are global, the choice types in
this paper are scoped, and the subscript D〈t〉 in δx

D〈t〉→ φ serves as
a dimension declaration [10]. (We let δ range over η and type.) The
declared tags will act as selectors for choices only in φ. Since all
choices are introduced during compile time, we can ensure that they
are all unique. This restriction significantly simplifies the definition
of tag selection.

We let t range over tags (that is, type indices), which, besides
constant values and types, also includes default tag ε that matches
any value.

The tag selection operation bφcD.t , given the type φ and a se-
lector D.t, is defined by traversing the tree representation of φ and
making appropriate selections. Conceptually, it is realized in two
phases. First, use the choice D in the selector to search for a dimen-
sion declaration, and when found, use t to decide which alternative
to select. When no tag matches, the alternative corresponding to tag
ε will be taken. Assume the ith alternative is chosen in this phase.
Second, traverse the rest of the tree representation of the type, and
when the current node is a choice with the name D, the node is re-
placed by its ith alternative. The process recursively descends to all
the children of the current node and makes selections. In the fol-
lowing, we present the cases in which the traversal hits the choice
for which the selection is intended.

Formally, we define the tag selection process as follows.

bδD〈t1,··· ,ti,··· ,tn,ε〉→ φcD.ti = bφcD.i

bδD〈t1,··· ,ti,··· ,tn,ε〉→ φcD.t = bφcD.n+1 ∀i : t 6= ti

bφ1→ φ2cD.i = bφ1cD.i→ bφ2cD.i

bD〈φ1, · · · ,φi, · · · ,φn〉cD.i = φi

T-ABS
Γ;Ψ;∆ `m em : φ φ≡ typeτ Γ,(x,τ);Ψ;∆ `o e : τ

′

Γ;Ψ;∆ `o λx : em.e : τ→ τ
′

T-APP
Γ;Ψ;∆ `o e1 : τ1 Γ;Ψ;∆ `o e2 : τ2 τ1 ≡ τ2→ τ

Γ;Ψ;∆ `o e1 e2 : τ

T-ESP
Γ;Ψ;∆ `m em : code τ

Γ;Ψ;∆ `o ∼em : τ

T-IF
Γ;Ψ;∆ `o e1 : bool

Γ;Ψ;∆ `o e2 : τ2 Γ;Ψ;∆ `o e3 : τ3 τ2 ≡ τ3

Γ;Ψ;∆1 `o if e1 then e2 else e3 : τ2

Figure 4: Typing rules for object language

We observe that there is no superscript x associated with the
metatypes since the substitution of x occurs before selection. For
example, assume a metafunction whose type is expression (1) is
applied to the type char. Then x is substituted with char and ex-
pression (1) becomes the following.

typeD〈bool,int,ε〉→ D〈typeint, typebool, typechar〉

Next, we make a selection of this expression with the selector
D.char. We first decide that the third alternative of choice D will
be chosen, and then we select third alternative from the return type,
resulting in the type typechar.

Given the extended type definitions, the type equivalence rela-
tion has to be augmented by the following straightforward rules
(which also hold for n-ary choices).

code D〈τ1,τ2〉 ≡ D〈code τ1,code τ2〉
typeD〈τ1,τ2〉 ≡ D〈typeτ1

, typeτ2
〉

3.2 Typing rules for the object language
Figure 4 presents a subset of typing rules for object programs.
Typing rules for other constructs are similar to thoses in type
systems for lambda calculi [24] and are omitted here.

The typing judgment has the form Γ;Ψ;∆ `o e : τ, with envi-
ronments Γ and Ψ storing type bindings for object variables and
metavariables, respectively. The choice environment ∆ is a map-
ping from metavariables to choices of tags. For example, ∆ =
{(x,D〈true, false〉)} maps x to a choice D between true and false.
The environment ∆ controls how choice types are constructed,
which is a core part of typing metaexpressions. We discuss this in
more depth when we present the typing rule for metaconditionals.

We need Ψ and ∆ for typing object programs because metaex-
pressions can be used as type annotations for function parameters.
Also, the escape expression ∼em evaluates em to an object value,
which is injected into the object program at compile time. To type
such an expression, we have to first type em, which will access Ψ

and ∆.
The abstractions in object code are more expressive than those

of the simply-typed lambda calculus (STLC) [4] since the type an-
notations can be any metaexpression. Note that each object is it-
self a metaexpression. Thus, to type an abstraction we first type the
metaexpression em and check if its type is equivalent to typeτ for
some object type τ. If so, we bind the variable x to type τ and type
check the body of the abstraction with the extended assumption. If



M-CONST
Γ;Ψ;∆ `m γ : typeγ

M-CONSV
c is of type η

Γ;Ψ;∆ `m c : ηc

M-VAR
(x,φ) ∈Ψ

Γ;Ψ;∆ ` x : φ

M-TYPEOF
Γ;Ψ;∆ `m em : code τ

Γ;Ψ;∆ `m typeof em : typeτ

M-CODE
Γ;Ψ;∆ `o e : τ

Γ;Ψ;∆ `m≺ e�: code τ

M-DOM
Γ;Ψ;∆ `m em : typeτ1→τ2

Γ;Ψ;∆ `m dom em : typeτ1

M-TEQ

Γ;Ψ;∆ `m em
1 : typeτ1

Γ;Ψ;∆ `m em
2 : typeτ2

r = (τ1 ≡ τ2⇒ true; ⇒ false)
Γ;Ψ;∆ `m em

1 =τ em
2 : boolr

M-IF
(x,A〈t〉) ∈ ∆ Γ;Ψ;∆ `m x : δx

Γ;Ψ;∆ `m v : δv Γ;Ψ;∆ `m em
2 : φ2 Γ;Ψ;∆ `m em

3 : φ3

Γ;Ψ;∆ `m if x = v then em
2 else em

3 : A〈φ2〉 ♦ φ3

M-IFTRUE
Γ;Ψ;∆ `m em

1 : booltrue Γ;Ψ;∆ `m em
2 : φ2

Γ;Ψ;∆ `m if em
1 then em

2 else em
3 : φ2

M-IFFALSE
Γ;Ψ;∆ `m em

1 : boolfalse Γ;Ψ;∆ `m em
3 : φ3

Γ;Ψ;∆ `m if em
1 then em

2 else em
3 : φ3

Figure 5: Typing rules for basic metaconstructors

under this assumption the body has type τ′, then the abstraction has
the type τ→ τ′.

There is a difference between typing applications in STLC and
applications in object programs. While in STLC the argument type
of the function must be syntactically identical to the type of the
argument, the typing rule T-APP only requires that the two types be
equivalent as defined by rules in Figure 2. In fact, we can further
relax this restriction by only requiring that the type of the function
be equivalent to an arrow type whose argument type is the same as
the type of the argument. If this is the case, then the result type is
the return type of the arrow type.

For a metaexpression em to be successfully spliced into some
other object expression, it must be evaluated to some value that
has an object type. Thus, for the expression ∼em to be well typed,
the expression em must have the type code τ for some τ. We use
Γ;Ψ;∆ `m em : code τ to achieve this. If this is the case, the typing
result is τ. The rule T-IF types the conditionals in the object pro-
gram. If both branches have equivalent types, then the conditional
has that type. Although the rule T-IF itself is simple, it is needed
as the counterpart for the corresponding typing rule M-IF for meta-
conditionals.

3.3 Typing rules for the metalanguage
Since the typing rules for metaprograms have to deal with meta-
computations, they are more involved. We break the presentation
of the typing rules into two parts. Figure 5 shows the typing rules
for basic metaconstructors and conditionals, and Figure 6 shows
the rules for abstractions and applications.

For any constant type γ, such as int and bool, the rule M-CONST
states that it has the type typeγ. The rule M-CONSV assigns types
to constants of integral or enumeration types. The rule M-VAR re-

trieves the type of a metavariable x from the metatyping environ-
ment Ψ. For a type query to be successful, the queried expression
em must have the type code τ for some τ. In this case, the type of
the whole expression is typeτ. For the expression ≺ e� to be well
typed, the object code e must be well typed. The rule M-CODE ex-
presses this relation. Since dom extracts the argument type of an
arrow type, dom em will succeed only when em evaluates to an ob-
ject function type τ1→ τ2. In this case, the type of the expression
is τ1. The rule M-DOM describes this.

The rule M-TEQ is slightly more complicated. Since =τ decides
if two metaexpressions represent the same object type, we first have
to check if both the operands have object types. If so, we further
determine if the two types are equivalent since the metaexpressions
can represent potentially many types. If two types are equivalent,
then the result will be true. Thus, the result type is booltrue.
Otherwise, the result type is boolfalse.

In the typing rule we make use of a syntactic abbreviation
for expressing conditional values in premises that essentially al-
lows us to combine two inference rules in one. The expression
(c⇒ e;c′⇒ e′) yields e if the condition c is true, and it yields e′ if
condition c′ is true. We sometimes use as a shorthand for ‘true’
for c′ to express that the condition for c′ is always satisfied.

Unlike the typing rule for the object if statement, which requires
that both then and else branches to have the same type, the meta
if statement does not have this requirement. Given the statement
if em

1 then em
2 else em

3 , the result type is the type of em
2 when the

condition em
1 is satisfied and the type of em

3 otherwise. Thus, the
result type is dependent on the condition. We use choice types to
express such dependencies.

However, the type definition in Figure 3 allows tags to be only
type indices and constant values. Moreover, tag selection is defined
by equality checking of tags. Therefore, we only support conditions
of the form x = v where v is a metavalue (that is, any object type
or any enumerable value). Together with the default tag ε, this
limited form of comparison already allows us to type C++ generic
definitions with specializations.

In fact, C++ Metaprogramming doesn’t provide any metalev-
el if statements directly. Rather, it supports conditional operations
through (partial) template specializations. Consider, for example
the following program. We first give a generic definition stating that
values of all types shouldn’t be copied through low-level memory
operations for the purpose of safety. We then define two specializa-
tions for the types bool and int such that their values may be copied
through some faster memory operations due to their memory rep-
resentations.

template<class Tp>
struct __type_traits{

typedef _false_t fast_cp;
};

template<> struct __type_traits<bool>{
typedef _true_t fast_cp;

};

template<> struct __type_traits<int>{
typedef _true_t fast_cp;

};

We can translate the above program and its specializations into
Garcia’s calculus as follows. We observe that with the current
definition of types and tag selection, together with the default tag ε,
we can handle the generic definitions and their specializations.

type traits= λx : type.
if x = bool then true t

else if x = int then true t

else false t



In the rule M-IF, we first determine the choice type we will create
from ∆, which controls how choice types are created as we men-
tioned earlier. We then retrieve the types for the two branches and
then use the ♦ operation to merge two types into a choice type,
which is formally defined as follows.

D〈φn〉 ♦ D〈φm〉= D〈φn,φm〉
D〈φn〉 ♦ φ = D〈φn,φ〉

This operation essentially merges the corresponding alternatives
when both are choice types and have the same name. Otherwise,
the second type is treated as the last alternative of the first type,
which must be a choice type.

To simplify the presentation of typing rules, we assume that
the ordering of tags in ∆ for a specific variable x matches the or-
dering it is compared with in the program. For example, before
typing the body of the above type traits program, ∆ contains
(x,A〈bool, int,ε〉). Note that x is first compared with bool and thus
it comes first in the tag list. In Section 4, we show an implementa-
tion that computes ∆s in this manner.

This assumption doesn’t limit our type system. We can lift this
assumption by designing a more involved M-IF rule. Given the
condition x = v, we not only retrieve the choice name bound to
x as we are doing now, but also find the index in the tag list for
v and use that index to decide where the type of the then branch
should appear in the result type of the conditional.

For the type traits example, we assume (x,A〈bool, int,ε〉)∈
∆. Then after applying the rule M-IF twice, we obtain the following
result type.

φtt = A〈type true t, type true t, type false t〉

The rule M-IF deals with the case that the condition doesn’t have a
specific type. When the condition has the type booltrue or boolfalse,
we no longer have to build up choice types because we already
know which branch will be taken. We only need to ensure that the
relevant branch is well typed. There is no requirement on the other
branch. We use rules M-IFTRUE and M-IFFALSE to deal with these
two special cases.

We now turn our attention to the typing rules for meta-abstractions
and meta-applications, which are presented in Figure 6. To type
metafunctions (rule M-ABS1), we first extend Ψ with the assump-
tion for the parameter, and we extend ∆ with the choice and tags
assumption for the parameter. Then we type the body under the
extended assumptions. Note the minor difference between the an-
notation to the abstraction variable x, which is δ, and the type
assumption for x in Ψ, which is δx. We need this more precise
representation for x to type the function body because, as we have
seen before, we not only remember the types of expressions, but
also their values.

After typing the body, we need to distinguish between two dif-
ferent situations: (a) the result type has different representations ac-
cording to different values of the parameter, and (b) the result type
can be uniformly represented involving the parameter. The type of
the body φ2 contains this information. We use the auxiliary func-
tion chcs(φ) to get the dimension names in φ without corresponding
declarations. For example, chcs(D〈typebool, typeint〉) = {D}. If di-
mension D is in chcs(φ2), then the parameter value is scrutinized,
and we build up a choice type. Otherwise, the return type has a
uniform representation based on the parameter.

For case (a), consider the type traits example introduced
earlier. We know that if x binds to A〈bool, int,ε〉, then the result
type of the if expression is φtt. Based on the rule M-ABS1, the
abstraction has the following type.

typex
A〈bool,int,ε〉→ A〈type true t, type true t, type false t〉

M-ABS1
Γ;Ψ,(x,δx);∆,(x,D〈t〉) `m em : φ2

φ1 = (D ∈ chcs(φ2)⇒ δ
x
D〈t〉; ⇒ δ

x)

Γ;Ψ;∆ `m λx : δ.em : φ1→ φ2

M-ABS2
Γ;Ψ,(x,code τ);∆ `m em : φ

Γ;Ψ;∆ `m λx : code τ.em : code τ→ φ

M-APP1
Γ;Ψ;∆ `m em

1 : δξ→ φ Γ;Ψ;∆ `m em
2 : δξ

Γ;Ψ;∆ `m em
1 em

2 : φ

M-APP2
Γ;Ψ;∆ `m em

1 : δ
x→ φ1 Γ;Ψ;∆ `m em

2 : φ

ξ1 = (φ = δy⇒ y;φ≡ δξ⇒ ξ)

Γ;Ψ;∆ `m em
1 em

2 : [ξ1/x]φ1

M-APP3
Γ;Ψ;∆ `m em

1 : δ
x
D〈t〉→ φ Γ;Ψ;∆ `m em

2 : δti

Γ;Ψ;∆ `m em
1 em

2 : b[ti/x]φcD.i

M-APP4
Γ;Ψ;∆ `m em

1 : φ
′

Γ;Ψ;∆ `m em
2 : δC〈ξ〉 φ

′ = δ
x
D〈t〉→ φ

Γ;Ψ;∆ `m em
1 em

2 : C〈b[ξi/x]φ′cD.ξi
〉

M-APP5
Γ;Ψ;∆ `m em

1 : δ
x
D〈t〉→ φ

Γ;Ψ;∆ `m em
2 : δy (y,C〈t〉) ∈ ∆

Γ;Ψ;∆ `m em
1 em

2 : C〈bφcD.i〉

M-APP6
Γ;Ψ;∆ `m em

1 : code τ1→ φ

Γ;Ψ;∆ ` em
2 : code τ2 τ1 ≡ τ2

Γ;Ψ;∆ ` em
1 em

2 : φ

Figure 6: Typing rules for meta-abstraction and meta-application

For case (b), consider the following expression.

mf = λx : type.≺ λy : x.y�
The body of the outer lambda expression has the type code (x→ x),
and the type for mf is typex → code (x → x), which precisely
captures the type for the function mf. The argument type denotes
that the function only accepts object types, and for any object type
x, the result type is code (x→ x).

Based on the forms of the argument type of the function and
the type of the argument, there are many cases for metafunction
applications. If the argument type matches the type of the argument,
including the meta-annotation and the value, the result type of the
application is the return type of the function (rule M-APP1). If the
argument type has the form δx, then for any argument of the type
δ, we substitute the value of the argument for x in the return type
of the function (rule M-APP2). Continuing with the mf example,
if the metaexpression g has the type D〈typeint, typebool〉, then the
application mf g has the type code (D〈int,bool〉 → D〈int,bool〉).
Note the type equivalence relation in M-APP2. In this example, we
have D〈typeint, typebool〉 ≡ typeD〈int,bool〉.

The typing relation becomes more interesting when the return
type of the function depends on the value to the function. In this
case, we have to distinguish three different cases: (a) the argument
evaluates to a single value that selects a specific return type, (b) the



argument evaluates to some unknown value, and the return type
becomes dependent on the value of the argument, and (c) the
argument evaluates to a variable, and the dependency structure
transfers to the argument variable and the new return type.

We represent each case with a specific rule. Rule M-APP3 deals
with case (a). We first substitute the value ti for x in the return type
φ and select the ith alternative in the substituted return type. For
the function type traits, if the metaexpression g has the type
typeint, then the second alternative of the return type, true t, will
become the result type of the application type traits g.

Rule M-APP4 deals with case (b). When the argument is also
a choice between different alternatives, then the result type is a
choice depending on the argument. We know that under each differ-
ent argument, we have a particular return type, and we put them all
as alternatives in the argument choice. Note the minor difference
between the tag selections in rules M-APP3 and M-APP4. In rule
M-APP3, we use index i to get the ith alternative of the return type,
while in M-APP4, we use each ξi to select from the whole function
type. This difference originates from the fact that we don’t know
which alternative will be chosen in the return type for each ξi in
advance. Again, for the type traits function, assuming that g
has the type D〈typeint, typebool〉, the type of the meta-application
type traits g is D〈 true t, true t〉.

Of course, the argument expression does not necessarily reduce
to a value or a choice—it could be a variable (M-APP5). The overall
idea to typing the application in this case is to make the function
type depend on the new variable. To realize this, we eliminate the
choice in D and create a choice in C, which is the choice y is bound
to in ∆. Assuming that the tags in C have the same ordering as those
in D, we create of result type by simply replacing D of C in the
result type φ. To avoid the introduction of a new notation, we select
φ with each index D.i and these types as alternatives for choice C.
Consider, for example, the following expression.

λy : type. type traits y

Assuming (y,C〈int,bool,ε〉) ∈ ∆, the expression type traits y
has the following choice type.

C〈type true t, type true t, type false t〉

According to rule M-ABS1, we obtain the following type for the
metafunction.

typey
C〈bool,int,ε〉→C〈type true t, type true t, type false t〉

Note that a metaprogram can manipulate and produce object code
as function result, which is handled by the rules M-ABS2 and
M-APP6.

Although the typing of abstractions and applications is spread
across many different rules, the fact that the premises don’t overlap
ensures non-ambiguity, that is, it is always possible to decide which
rule to apply based on the form of the types. This facilitates a simple
implementation of the type system.

Given the typing rules in Figures 4, 5, and 6, the table shown
in Figure 7 illustrates how to assign types to terms for the example
presented in the introduction, repeated here for convenience.

let meta f0 =
λt : type.

let meta id =
λx : bool.± ≺ λy : if ®x then t¬ else bool.¯y�°

in
≺ (∼³(id false)²) 1´ �

in
let meta f1 = ≺∼( f0 int)� in

...

Pos Rule Type
¬ M-VAR typet
 M-CONST typebool
® M-IF D〈typet , typebool〉 4

¯ T-ABS D〈t,bool〉 → D〈t,bool〉
° M-CODE code (D〈t,bool〉 → D〈t,bool〉)
± M-ABS1 boolxD〈true,false〉→ code (D〈t,bool〉 → D〈t,bool〉)
² M-APP3 code (bool→ bool)
³ T-ESP bool→ bool
´ T-APP type error

Figure 7: Typing of introductory example

As we can see, our type system is able to catch the type error in the
definition of the metafunction.

3.4 Properties of the type system
We first show that the type system is sound by relating the typ-
ing rules to the reduction relation introduced in Section 2.2. This
property can be proved by showing that the type system has the
preservation and progress properties.

For the following theorem, we say that an expression e is “prop-
er” if it doesn’t contain metaexpressions. Specifically, annotations
of object abstractions are object types.

THEOREM 1 (Progress).

• If e1 is closed and Γ;Ψ;∆ `o e : τ, then e1 is a proper object
code, or there is some e2 such that e1 7−→ e2.
• If em

1 is closed and Γ;Ψ;∆ `m em
1 : φ, then em

1 is in normal form,
or there is some em

2 such that em
1 7−→ em

2 .

PROOF The proof is based on an induction of the typing derivation-
s. Observe that, although the type definitions are sophisticated, the
fact still holds that if em is of type φ1→ φ2 then em is an abstraction.
�

THEOREM 2 (Preservation).

• If Γ;Ψ;∆ `o e1 : τ and e1 7−→ e2, then Γ;Ψ;∆ `o e2 : τ.
• If Γ;Ψ;∆ `m em

1 : φ and em
1 7−→ em

2 , then Γ;Ψ;∆ `m em
2 : φ.

The proof of this theorem is significantly more involved than that
for STLC [24] because of the complicated types and typing rules.
The proof is based on an induction over the typing derivation. The
proof strongly relies on the following lemmas, whose proofs follow
a standard process and will be omitted here.

LEMMA 1 (Substitution).
If Γ;Ψ,(x,δx);∆ `m em : φ and Γ;Ψ;∆ `m em

1 : δξ, then
Γ;Ψ;∆ `m [em

1 /x]em : [ξ/x]φ.

LEMMA 2 (Selection).
If Γ;Ψ;∆,(x,D〈t〉) `m em : φ, then Γ;Ψ;∆ `m [ti/x]em : bφcD.ti where
ti 6= ε.

PROOF SKETCH OF THEOREM 2 With Lemma 1 and Lemma 2,
we can prove M-APP1 through M-APP5 based on an induction over
typing derivations. The proof for the other rules follow a standard
process. �

Combining Theorems 1 and 2, we obtain the following safety
property.

THEOREM 3 (Safety).

• If Γ;Ψ;∆ `o e1 : τ and e1 7−→∗ e2, then Γ;Ψ;∆ `o e2 : τ and
either e2 is a proper object code, or there is some e3 such that
e2 7−→ e3.

4 Assume x binds to D〈true, false〉 in ∆.



• If Γ;Ψ;∆ `m em
1 : φ and em

1 7−→
∗ em

2 , then Γ;Ψ;∆ `m em
2 : φ and

either em
2 is a normal form, or there is some em

3 such that
em

2 7−→ em
3 .

In the theorem, em
1 7−→

∗ em
2 denotes the reduction of em

1 to em
2 in an

arbitrary number of steps.
There is an important difference between Theorem 1 and the

similar theorems in [14, 22]. While well-typed metaprograms may
get stuck in previous systems, this will never happen in our type
system. All well-typed metaprograms will reduce to metavalues.
This fact makes our type system more strict and enables the earlier
detection of type errors.

Another important difference involves the type preservation
theorem. In [22] the type for a metaprogram changes as metaeval-
uation progresses. In contrast, in our type system a metaexpression
will retain its type. From this property it follows that if a metaex-
pression evaluates to an injected object program, we can type that
object program without having to generate it. This observation is
captured in the following lemma.

LEMMA 3 (Early Typing). If em is a closed metaexpression with
em 7−→∗≺ e� and Γ;Ψ;∆ `m em : code τ, then Γ;Ψ;∆ `o e : τ.

PROOF Follows from Theorem 3 with M-CODE being the last rule
in the typing derivation. �

For open metaexpressions there is an intimate connection be-
tween the typing relation and the reduction relation in our type sys-
tem, which is expressed in the following theorem.

THEOREM 4 (Instantiation Preserves Typing). Given em
1 and em

2
with Γ;Ψ;∆ `m em

1 : φ1 and Γ;Ψ;∆ `m em
2 : φ2. If em

1 em
2 7−→

∗ em
3

with Γ;Ψ;∆ `m em
3 : φ3, then Γ;Ψ;∆ `m em

1 em
2 : φ′ with φ3 ≡ φ′.

PROOF Take em
1 to be em

1 em
2 and em

2 to be em
3 in Theorem 3. �

The fact that we can type individual expressions and put them
together helps to provide a modular type system. As a corollary,
we obtain the guarantee that well-typed metaprograms can only
generate well-typed object programs.

COROLLARY 1. Given any well-typed metaprogram em
1 , for any

instantiation argument em
2 whose type matches the argument type

of em
1 the generated object program em

1 em
2 is well typed.

This is a desirable property that helps compilers to delimit the
source of type errors and helps address many usability problems
with C++ templates.

4. Implementation
This section presents a unification-based implementation of the
type system. An implementation both performs type checking and
constructs ∆s that control how choice types are created. Although
object expressions are annotated with type information, type infer-
ence is sometimes needed to perform full type checking. For exam-
ple, given the following expression

f = λt : type.≺ (λx : t.x) 1�

the parameter x has the type t, for which we only know it must
be a type. The inner abstraction thus has the type t → t. Applying
it to 1 requires us to solve the unification problem between t and
int, the type of 1. Here we get a unifier {t 7→ int}. However, in
general we need a variational unification algorithm because, as we
have seen before, type annotations can be variational. We use the
unification algorithm developed in [7] to unify variational types,
which is proved to be sound, complete, and most general. More
specifically, we write θ = vunify(τ1,τ2) to denote the unifier for τ1
and τ2. If the unification succeeds, θ stores the most general unifier.

In the above example, the type variable t is unified to int, which
implies that the instantiation argument to f should only be int. In-
stantiations with other arguments will lead to type errors in gener-
ated object programs. This phenomenon indicates that we provide a
way to potentially infer the constraints of template parameters. We
may extend the type system to deal with a richer set of constraint
forms, and thus support to infer concepts, rather than specify con-
cepts for parameters.

For brevity, Figure 8 presents the implementation of only the
most important rules. The implementation for other rules can be
derived similarly. We use infero and inferm to implement the typing
relation for the object language and metalanguage, respectively.
Both functions have the same signature except that infero returns
object types τ while inferm returns metatypes φ. Each function
takes four arguments, Γ, Ψ, ∆, and an expression e or em, and
returns a result type, a unifier, and a ∆, which records how variables
are compared with values.

In the implementation, we use several auxiliary functions to de-
compose metatypes. In particular, for a given type φ= δx

D〈t〉, we use
� φ, ↑ φ, and ↓ φ to get δ, x, and D〈t〉, respectively. The expression
assert( cond ) terminates the inference process when the condition
cond doesn’t hold. Moreover, ∆ is handled qwuite differently in
the implementation of the typing rules. When specifying rules, we
assume variables are already bound to choices and corresponding
tags. However, in the implementation we need to generate them.
There are two places where ∆ is updated.

First, when we encounter a condition of the form x = v in
a conditional, we update the binding information for x. This is
realized by adding (x,C〈v,ε〉) to ∆ when x /∈ dom(∆), where C is
a fresh dimension name. Otherwise, if (x,C〈t,ε〉) ∈ ∆, we extend
C〈t,ε〉 to C〈t,v,ε〉. Note that we always keep the default tag ε at
the end of the tag list. For the type traits example introduced
in Section 2.2, ∆ first has no binding information for the variable x.
When x = bool is visited, (x,A〈bool,ε〉) is added to ∆, where we
assume A is the fresh choice. Later when x = int is encountered,
(x,A〈bool,ε〉) changes to (x,A〈bool, int,ε〉).

Second, when a function whose argument type is a choice is ap-
plied to a variable in the metalanguage, we have to extend ∆ to add
binding information for the variable. In Figure 8, this is handled by
the code with the comment M-APP5. To realize this, we generate
a fresh choice (C in the implementation) and associate the vari-
able (y) with the new choice and the tags (t) in the argument type.
We implement this by extending ∆2 with the binding information
(y,C〈t〉). Note that there should be no binding information for y in
∆2 yet. Otherwise, the type of y would not be of the form δy but of
some more specific form δA〈ξ〉. Consider, for example the expres-
sion λy : type. type traits y. The subexpression type traits y
has the following choice type.

C〈type true t, type true t, type false t〉

C is a fresh dimension name, and the resulting choice environment
contains the binding information (y,C〈bool, int,ε〉).

The implementation for meta-abstractions has also changed.
The condition for deciding whether the argument type contains
a choice differs from that in the typing rules. If, after typing the
body, ∆ contains binding information for the parameter x, then the
argument type contains a choice. Based on the implementation, the
expression λy : type. type traits y has the type

typey
C〈bool,int,ε〉→C〈type true t, type true t, type false t〉

The implementation is correct in the sense that it is both sound
and complete with respect to the type system. We capture these
properties in following theorems.



infero : Γ×Ψ×∆× e→ τ×θ×∆

infero(Γ,Ψ,∆,λx : em.e) =
(φ,θ,∆1)← inferm(Γ,Ψ,∆,em)
assert( � φ = type )
τ←↓ φ

(τ′,θ′,∆2)← infero(θ(Γ,(x,τ)),Ψ,∆1,e)
return (θ′(τ′→ τ),θ′,∆2)

infero(Γ,Ψ,∆,e1 e2) =
(τ1,θ1,∆1)← infero(Γ,Ψ,∆,e1)
(τ2,θ2,∆2)← infero(Λ,θ1Γ,Ψ,∆1,e2)
θ← vunify(θ2τ1,τ2→ a) {- a is a fresh type variable -}
return (σa,θ◦θ2 ◦θ1,∆2)

inferm : Γ×Ψ×∆× em→ φ×θ×∆

inferm(Γ,Ψ,∆,λx : δ.em) =
(φ,θ,∆1)← inferm(Γ,(Ψ,(x,δx)),∆)
if (x,D〈t〉) ∈ ∆1

φ′ = δx
D〈t〉→ φ

else
φ′ = δx→ φ

return (φ′,θ,∆1)

inferm(Γ,Ψ,∆, if x = v then em
2 else em

3 ) =
(φx, , )← inferm(Γ,Ψ,∆,x)
(φv, , )← inferm(Γ,Ψ,∆,v)
assert( � φx =� φv )
if (x,D〈t,ε〉) ∈ ∆

∆1 = ∆\{(x,D〈t,ε〉)}∪{(x,D〈t,v,ε〉)}
else

∆1 = ∆∪{(x,D〈v,ε〉)} {- D is a fresh choice -}
(φ2,θ2,∆2)← inferm(Γ,Ψ,∆1,em

2 )
(φ3,θ3,∆3)← inferm(θ2Γ,Ψ,∆2,em

3 )
return (D〈φ2〉 ♦ φ3,θ3 ◦θ2,∆3)

inferm(Γ,Ψ,∆,em
1 em

2 ) =
(φ→ φ1,θ1,∆1)← inferm(Γ,Ψ,∆,em

1 )
(φ2,θ2,∆2)← inferm(θ1Γ,Ψ,∆1,em

2 )
if φ→ φ1 = φ2 {- M-APP1 -}

return (φ1,θ2 ◦θ1,∆2)
assert( � φ =� φ2 )
x←↑ φ

if ↓ φ is empty {- M-APP2 -}
return ([φ2/x]φ1,θ2 ◦θ1,∆2)

D〈t〉 ←↓ φ

if ↓ φ2 is a value ti {- M-APP3 -}
return (b[ti/x](φ→ φ1)cD.ti ,θ2 ◦θ1,∆2)

if ↓ φ2 is C〈u〉 {- M-APP4 -}
return (C〈b[ui/x](φ→ φ1)cD.ui〉,θ2 ◦θ1,∆2)

if ↓ φ2 is a variable y {- M-APP5 -}
∆3← ∆2∪{(y,C〈t〉)} {- C is a fresh choice -}
return (C〈bφ1cD.i〉,θ2 ◦θ1,∆3)

Figure 8: An implementation of the type system

THEOREM 5 (Inference algorithm is sound).

• If (τ,θ,∆) = infero(Γ,Ψ,∅,e), then θΓ;Ψ;∆ `o e : τ.
• If (φ,θ,∆) = inferm(Γ,Ψ,∅,em), then θΓ;Ψ;∆ `m em : φ.

THEOREM 6 (Inference algorithm is complete and principal).

• If θΓ;Ψ;∆ `o e : τ, then (τ′,θ′,∆′) = infero(Γ,Ψ,∅) and θ =
θ1 ◦θ′ for some mapping θ1, τ = θ2τ′ for some θ2 and ∆ = ∆′

if the fresh dimension for x is D in ∆′ when (x,D〈t〉) ∈ ∆.

• If θΓ;Ψ;∆ `m e : φ, then (φ,θ′,∆′) = inferm(Γ,Ψ,∅) and θ =
θ1 ◦θ′ for some mapping θ1 and ∆ = ∆′ if the fresh dimension
for x is D in ∆′ when (x,D〈t〉) ∈ ∆.

We have implemented a prototype of the inference algorithm in
Haskell. We performed an initial evaluation of our approach by type
checking part of the Standard Template Library (STL).5 We first
manually translated the source code from the files type traits.h,
stl iterator base.h, and stl algo.h and their dependent header
files into Garcia’s calculus extended by other basic types. Since
our type system doesn’t support partial specializations, we omitted
the code introduced by the compilation conditional STL CLASS -

PARTIAL SPECIALIZATION. We also simplified loop statements to
if statements in the translated source code. The translation results
in about 3000 lines of source code. Type checking each function
is finished within several tenth seconds, which demonstrates the
efficiency of our approach. Our type checking result doesn’t reveal
any type error in the source code, which implies that STL without
partial specializations shouldn’t be blamed as sources for type
errors.

5. Discussion
In this section, we investigate the expressiveness of our type system
and its ability to guarantee the type safety of object programs.

There are two principally different approaches to type checking
meta-applications of the form em

1 em
2 that evaluate to an object

program. On the one hand, one can evaluate the application to
generate an object program, which is then type checked. Both,
the C++ standard and Garcia’s work [14] follow this approach.
Alternatively, one can try to type check the metaexpressions em

1
and em

2 and obtain the type for the object program through the
application rule for em

1 em
2 . The type system presented in this paper

realizes this approach.
If em

1 em
2 doesn’t evaluate to an object program, the first approach

is unable to type it whereas the second approach can still determine
its type. Miao and Siek’s approach falls in between these two ap-
proaches. Figure 9a illustrates the typing processes for the different
type systems for typing the metaexpression em

1 em
2 em

5 . In the figure,
we use blue arrows (also annotated with circles), orange arrows (al-
so annotated with diamonds) and red arrows (also annotated with
squares) to denote the typing relation of our type system, Miao and
Siek’s type system, and C++ templates, respectively. Dashed ar-
rows denote that the typing relation holds but no real computation
is needed. This means there are two ways to type, for example, em

4 .
On the one hand, we can use the blue arrows to obtain the types
for em

1 and em
2 and derive the result through the M-APP rule. On the

other hand, we can obtain em
4 through metareduction, and then type

em
4 to get φ4. The dashed arrows express that the results obtained

through our approach are correct and can be achieved earlier with-
out metareduction. Finally, we use 7→ arrows to represent individual
steps of the metaevaluation.

Our type system types each subexpression once and assembles
the results employing the application rules twice. In the standard
C++ implementation, the typing doesn’t happen until the objec-
t program has been generated. Miao and Siek’s type system will
collect initial type constraints from the expression em

1 em
2 and also

additional constraints from each intermediate result. All type con-
straints will be combined to compute the type for the generated
program.

The employed type checking strategy has a huge impact on
when type errors are caught and where they are reported. For
example, we can envision that in em

1 em
2 em

5 , em
1 is a library function

and em
2 and em

5 are the instantiation arguments of em
1 . Based on

5 http://www.sgi.com/tech/stl/index.html
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1 em

2 em
5
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guarantee of safety
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trade-off

Figure 9: A comparison of different type systems

Theorem 4 and Corollary 1, our type system can detect the potential
type errors in em

1 . When em
1 is well typed, we can simply check if

the types of em
2 and em

5 match the argument type of em
1 to detect

type errors. Thus, type errors within the library will not leak into
the client side, and we can easily determine the location of type
errors. The C++ templates approach represents the other extreme of
handling type errors, where very little type checking of the library
code is done, effectively delegating much of type error detection
to generated programs. Thus, it is very hard to precisely locate the
source of type errors. Library functions are always blamed for type
errors, although they are usually caused by the client programs. A
problem with Miao and Siek’s type system is that it is hard to reason
about the detection of type errors, because type checking happens
incrementally. It is not clear when there is enough type information
to detect type errors. Although it usually detects the type errors
earlier than the C++ templates approach, the approach is unlikely
to detect type errors without invoking any metaevaluations.

In comparison with other type systems, our type system has the
following advantages. First, it improves the usability of C++ tem-
plates. It can guarantee the type safety of library code, locate type
errors more precisely, and thus offers the opportunity to generate
better error messages. Second, our type system is more efficient
than other approaches. Since metafunctions are usually complicat-
ed, the need for repeated type checking is a potential source of in-
efficiency. While our type system needs to type each metafunction
only once, other type systems have to type them whenever they are
instantiated and object programs are generated.

A drawback of our type system is that it lacks the complete-
ness property. There are two main limitations that prevent our type
system from being complete. First, as already discussed in Sec-
tion 3.3, when typing metaconditionals we only consider conditions
of the form x = v. Thus, we can only deal with generic definition-
s and template specializations, but not partial specializations [32].
As an example, consider the following metafunction, which decides
whether a given type is a pointer type.

is pointer= λx : type.if isPtr(x) then true else false

We assume that isPtr is a function to decide, at compile time,
whether or not a type is a pointer. This is, in fact, the case for
any C++ compiler. Such a predicate must also be available to our
type system if we want to extend the type definition to represent
pointer types. To support such partial specializations, we have to
extend tag selection to predicates. Currently, we only support tag
selection with exact matching and default tags. With an extension
by a predicate isPtr, we could assign the following type to the
above metafunction.

typex
D〈isPtr(x),ε〉→ D〈booltrue,boolfalse〉

Second, we use types to represent static computations. Since the
C++ template system is Turing complete, we obviously can’t rep-
resent all the functions. Consider, for example, the following meta-
function that removes all pointers from types. Here we assume
rmPtr is a function available to C++ compilers, and thus also to
our type system.

rm pointer= λx : type.
if isPtr(x) then rm pointer(rmPtr(x)) else x

Although we know that this function terminates and can potentially
represent it using the following type, it’s unclear about how to
construct this type.

typex
D〈isPtr(x),ε〉→ D〈typermAllPtr(x), typex〉

We leave this as a challenge for future work.
Figure 9b visualizes the trade-off between completeness and

type-safety guarantees for different type systems. Note that we use
the same coloring scheme as in Figure 9a. While C++ templates
can deal with all template definitions, they provide the weakest
safety guarantees. Our current type system can only handle tem-
plate generic definitions with specializations, and is thus the least
complete, but it provides the strongest safety guarantees. Miao and
Siek’s type system lies between the two. Note, however, that with
extended support for predicate-based tag selection, we can substan-
tially expand the expressiveness of our approach. Such an extension
promises to cover the area enclosed by the dashed blue lines.

6. Related Work
We will first discuss the related work that is directly concerned
with the typing problem for C++ templates. After that we also
address the question of metaprogram safety and usability. Since we
use values in our type system, we additionally discuss briefly type
systems that involve dependent typing of some sort.

Checking C++ Templates The problem of type checking C++
templates has received quite a lot of attention [9, 14, 15, 19, 22,
26, 28]. To improve the typing of C++ templates, the two-phases
type checking model of C++ has to be adjusted [32]. One way to
tackle this problem is to turn parameter-dependent expressions into
parameter-independent ones as much as possible so that more type
checking can be performed during the first phase. Concepts [9, 15]
fall under this approach. Concepts attached to templates express the
requirements of the template parameters, which give type checker
more information about template parameters. For example, if the
template parameter T has the concept LessThanComparable, then
the type checker knows that the use of the operator < is permitted.

Algorithm specializations in C++ pose a challenge for modular
type checking of C++ templates [19]. By reducing the type check-
ing of generics with constraints problem to FG, Siek and Lums-



daine [30] showed that modular type checking can be achieved.
However, integrating specializations will break this property. To
achieve modular type checking, we either have to eliminate the use
of specialization, which precludes the selection of most appropriate
implementation, or restricts the implementation of specializations,
which dramatically impedes the expressiveness. Neither approach
seems to be promising. On the other hand, with choice types, our
type system doesn’t impose any particular requirements on the def-
initions of the specializations with respect to generic definitions.
Moreover, our type system is modular. This is an important step to-
wards Stroustrup’s goal of enforcing type safety of C++ program-
s [33].

For a more rigorous study of C++ templates metaprogramming,
Garcia and Lumsdaine [14] analyzed the capabilities of C++ and
proposed a calculus for modeling metaprogramming, focusing on
type reflection. However, like C++ the calculus only guarantees that
the produced object programs are well-formed but not well-typed.

Miao and Siek improved this situation using incremental typ-
ing [22], with the ideas from gradual typing [29, 31]. Unlike C++
compilers that separate metaevaluation and type checking, these
phases are instead intertwined in their type system. Whenever one
more step of metaevaluation has been completed, newly available
type constraints are merged into the constraints previously collect-
ed. This process continues until a type error is caught or the metae-
valuation is complete. The advantage of this approach is that the
type error may be caught earlier.

The most important difference between their work and ours is
the representation of uncertain type information and its ramifica-
tions. When an expression has potentially several types, they use
an existential type to subsume these, while we put all the types in-
to a choice. Their approach can lead to important information loss,
which might delay the detection of type errors. An example that
illustrates the difference to our approach was given in Section 1.

The other difference is that choice types are usually carried over
to be part of the final types for expressions whereas existential types
are gradually eliminated and replaced with more specific types as
metaevaluation proceeds. This has two implications. (A) The pres-
ence of existential types precludes the type soundness property of
the type system because, although an expression may be assigned
a type, later metaevaluation may get stuck. In contrast, this does-
n’t happen in our type system. Well-typed programs will not get
stuck. (B) Miao and Siek’s type system can’t ensure that an object
program is well typed until metaevaluation is finished. Therefore,
metaprograms will be type checked whenever they are instantiated.
In contrast, our type system can determine the type of generated
object programs without actually generating and type checking it,
because a metaprogram is type checked once, and based on that
type, the types for generated object programs can be derived.

Metaprogramming Safety and Usability There is a tension be-
tween expressiveness and safety, such as type safety of metapro-
gramming [36]. C++ template metaprograming [1, 3] and Tem-
plate Haskell [27] represent the position that supports maximum
expressiveness. C++ templates provide static type reflection [13]
by allowing metaprograms to inspect type structures through spe-
cializations. Template Haskell allows the interpreter to be invoked
to generate object code that is spliced into the program currently
being compiled. However, either approach can provide very few
type safety guarantees for the generated object programs. MetaML
[35] and MacroML [12] represent the other extreme by ensuring
that generated objects are well typed at the expense of limited ex-
pressiveness for the metaprogramming system.

Our approach averts the shortcoming of C++ template metapro-
gramming by designing a type system for C++ templates that guar-
antees type safety of object programs without the need to generate

them, which helps move C++ closer to an ideal model for metapro-
gramming: ensuring type safety without sacrificing expressiveness.

Along with increasing recognition of C++ templates, usabili-
ty problems have become apparent. There have been several ap-
proaches addressing this issue from different angles. For example,
Pataki et al. [23] extended STL with iterator adaptors to solve the
iterator invalidation problem and to check that the preconditions
of certain algorithms are met (for example, that the range passed
to lower bound is sorted) . By viewing compiler actions as run-
time computations, Porkoláb et al. [25] developed a framework
named Templight to debug C++ templates. The tool enables pro-
grammers to set breakpoints along the instantiation chain and in-
spect metaprogram information.

Outside of the C++ community, SafeGen [17] and MorphJ [16]
support a mechanism for generating new classes from existing
classes. These systems ensure that generated programs are well
typed through a mechanism similar to C++ concepts. Inoue and
Taha [18] theoretically studied the problems involved in verifying
multi-staged programs.

Dependent Types Choice types and type indices used in this pa-
per are similar to types found in dependent type systems [2, 11,
20, 21], and so one question is whether one could implement the
type system with one of the dependently typed programming lan-
guages. However, these approaches suffer from some shortcoming
that make them less than ideal for that task. In Cayenne [2], type
checking programs always involves runtime computation, which
can significantly slow down the type checker, which does not hap-
pen in this type system. To get programs type checked in [11, 21],
the programmers usually have to provide fancy type annotations or
provide proof terms, which is often too much of a burden for pro-
grammers, as pointed out by Chlipala [8]. Finally, it seems possible
to use GADTs [20], whose constructors may return different types,
to simulate the if statements in this calculus. However, GADTs re-
quire that all branches’ return types refine the data type being de-
fined, which can make type information less precise as happens in
Miao and Siek’s type system [22].

Applications of Choice Types Choice types can be employed for
facilitating the efficient type checking for a family of related pro-
grams. We have demonstrated this aspect in [6, 7]. Another use of
choice types that was presented in this paper is the encoding of un-
certainty about type information. As a different application of this
aspect, we have developed a method of counter-factual typing to
precisely locate type errors and suggest type or expression changes
to fix type errors [5]. The fundamental idea of counter-factual typ-
ing is to assume that principally any constant or variable can be
the potential cause for a type errors. Consequently we can assign
each such constant or variable a choice type, whose first alternative
contains the type under normal type inference and whose second al-
ternative contains the type that the context requires it to be to make
the program well typed. When the inference process terminates,
constants or variables whose corresponding choices have different
alternatives may be blamed for type errors. Combined with a few
simple heuristics, counter-factual typing provides precise and con-
cise feedback about type errors.

7. Conclusions
In metaprogramming there is a critical tension between ensuring
the type safety of generated object programs and the expressive-
ness of metaprograms. In this paper, we have developed a type
system for a subset of the C++ template system that provides a
type safety guarantee without sacrificing expressiveness. We have
achieved this by using choice types to represent uncertain type in-
formation of metaexpressions. At the same time, we have used very



fine-grained types to represent the types involving static computa-
tions and have defined a set of typing rules to reason about the
uncertain type information. The most significant properties of our
type system are that it can type object programs without generating
them and that instantiation preserves the typing relation, that is, we
can derive the type for metaprograms by only looking at the types
of the functions and their arguments. This makes our type system
modular.

There are many potential directions for future research. First, we
can extend the tag selection of choice types to accommodate the
representation of type dependencies with regard to template par-
tial specializations. We would also like to know which instantiation
arguments will lead to type-correct object programs for metapro-
grams that are ill-typed. This will also help to infer the constraints
of template parameters, which is currently done with concepts.
However, concepts are only informally attached to metaprogram-
s, and they are not verified against the metaprograms. We hope to
also address this issue.
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