
Counter-Factual Typing for Debugging Type Errors ∗

Sheng Chen
School of EECS, Oregon State University

chensh@eecs.oregonstate.edu

Martin Erwig
School of EECS, Oregon State University

erwig@eecs.oregonstate.edu

Abstract
Changing a program in response to a type error plays an important
part in modern software development. However, the generation of
good type error messages remains a problem for highly expressive
type systems. Existing approaches often suffer from a lack of pre-
cision in locating errors and proposing remedies. Specifically, they
either fail to locate the source of the type error consistently, or they
report too many potential error locations. Moreover, the change
suggestions offered are often incorrect. This makes the debugging
process tedious and ineffective.

We present an approach to the problem of type debugging
that is based on generating and filtering a comprehensive set of
type-change suggestions. Specifically, we generate all (program-
structure-preserving) type changes that can possibly fix the type
error. These suggestions will be ranked and presented to the pro-
grammer in an iterative fashion. In some cases we also produce
suggestions to change the program. In most situations, this strategy
delivers the correct change suggestions quickly, and at the same
time never misses any rare suggestions. The computation of the
potentially huge set of type-change suggestions is efficient since it
is based on a variational type inference algorithm that type checks
a program with variations only once, efficiently reusing type infor-
mation for shared parts.

We have evaluated our method and compared it with previous
approaches. Based on a large set of examples drawn from the litera-
ture, we have found that our method outperforms other approaches
and provides a viable alternative.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs–Functional
constructs,Type structure; D.3.2 [Programming Languages]: Lan-
guage Classifications–Applicative (functional) languages; D.2.5
[Software Engineering]: Testing and Debugging

General Terms Languages, Theory

Keywords Type inference, error localization, type error messages,
choice types, change suggestions, type-error debugging

∗ This work is supported by the National Science Foundation under the
grants CCF-0917092, CCF-1219165, and IIS-1314384.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
POPL’14 January 22 - 24 2014, San Diego, CA, USA
ACM 978-1-4503-2544-8/14/01...$15.00. Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2535838.2535863.

1. Introduction
Generating informative and helpful type error messages remains
a challenge for implementing type inference algorithms. Soon af-
ter the algorithm W [8] had been developed, this problem was
recognized [15, 26]. It has since prompted numerous research ef-
forts [7, 12, 14, 16–18, 20, 21, 23, 25, 27, 29]. Although consid-
erable progress has been made, there is still no single method that
consistently produces satisfactory results. Most of the existing ap-
proaches perform poorly in certain cases.

As an example, consider the following Haskell function palin,
which checks whether a list is a palindrome [24]. The first equation
for fold contains a type error and should return z instead of [z].

fold f z [] = [z]
fold f z (x:xs) = fold f (f z x) xs
flip f x y = f y x
rev = fold (flip (:)) []
palin xs = rev xs == xs

Existing tools have difficulties in finding this error. For example,
the Glasgow Haskell Compiler (GHC) 7.61 produces the following
error message.2

Occurs check: cannot construct the infinite type: t0 = [t0]
Expected type: [[t0]]

Actual type: [t0]
In the second argument of ‘(==)’, namely ‘xs’
In the expression: rev xs == xs

While technically accurate, the error message doesn’t directly point
to the source of the error, and it doesn’t tell the user how it could
be fixed either. The use of compiler jargon makes the error mes-
sage difficult to understand for many programmers. While giving
reasons for the failure of unification might be useful for experi-
enced programmers and type system experts, such error messages
still require some effort to manually reconstruct some of the types
and solve unification problems. (Hugs983 produces a similar error
message and suffers from the same problems.)

One of the problems of the approach taken in GHC is that
it commits to a single error location, because in some cases the
program text does not contain enough information to confidently
make the right decision about the correct error location. This has
led to a number of program slicing approaches that try to identify a
set of possible error locations instead.

The basic idea is to find all program positions that contribute
to a type error and exclude those that do not. For example, the
Skalpel4 type error slicer for SML [12] produces the following

1 www.haskell.org/ghc/
2 For presentation purposes, we have slightly edited the outputs of some
tools by changing their indentation and line breaks.
3 www.haskell.org/hugs/
4 www.macs.hw.ac.uk/ultra/skalpel/

result. (We have translated the program into ML for Skalpel to
work.)

fun fold f z [] = [z] ;
| fold f z (x::xs) = fold f (f (z,x)) xs ;

fun flip f (x,y) = f (y, x) ;
fun rev xs = fold ((flip op ::)) [] xs ;
fun palin xs = rev xs = xs ;

Showing too many program locations involved in the type error di-
minishes the value of the slicing approach because of the cognitive
burden put on the programmer to work through all marked code
and to single out the proper error location. To address this problem,
techniques have been developed that try to minimize the possible
locations contributing to a type error. An example is the Chameleon
Type Debugger,5 which produces the following output.

fold f z [] = [z] ;
fold f z (x:xs)= fold f (f z x) xs ;
flip f x y = f y x ;
rev = fold (flip (:)) [] ;
palin xs = rev xs = xs ;

Chameleon is based on constraint solving and identifies a mini-
mal set of unsatisfiable constraints, from which the corresponding
places in the program contributing to the type error are derived.
While Chameleon is a clear improvement over other slicing ap-
proaches in reporting fewer potential error locations, a programmer
still has to work through several code parts to find the type error.
In particular, figuring out which types should be used at specific
locations can be quite time consuming.

On the other end of the single-vs.-many location spectrum we
find approaches that, like GHC or Hugs, follow Johnson and Walz’s
idea of finding the most likely erroneous location and try to add ex-
planations or suggestions for how to correct the error. One example
is the Helium compiler6, which was developed to support the teach-
ing of typed functional programming languages. A declared focus
of Helium is to generate good error messages [14]. For our exam-
ple, it produces the following message.

(5,19): Type error in infix application
expression : rev xs == xs
operator : ==

type : a -> a -> Bool
does not match : [[b]] -> [b] -> c

because : unification would give infinite type

Unfortunately, Helium doesn’t perform much better than GHC or
Hugs on this example and provides feedback only in terms of
internal representations used by the compiler.

Seminal7 is a tool for type checking ML programs that also
produces change suggestions [18, 19]. Seminal blames the type
error on the function palin and suggests the following corrective
change.

5 ww2.cs.mu.oz.au/~sulzmann/chameleon/. Since Chameleon
doesn’t offer a type diagnosis option anymore, the result is reproduced
directly from [24].
6 www.cs.uu.nl/wiki/bin/view/Helium/WebHome
7 cs.brown.edu/~blerner/papers/seminal_prototype.html

File "Palin.ml", line 8, characters 21-27:
This expression has type ’a list list but is
here used with type ’a list
Relevant code: rev xs

File "Palin.ml", line 8, characters 15-17:
Try replacing

xs == (rev xs)
with

(==) (xs, (rev xs))
of type

’b list * ’b list list -> bool
within context

let palin xs = (==) (xs, (rev xs)) ;;

Unfortunately, the suggested error location is not correct (according
to [24]), and although the suggested change will eliminate the type
error, it changes the wrong code (the suggested change of partially
applying == to the pair of differently typed lists turns palin’s type
into ’a list -> ’a list * ’a list list -> Bool.)

Offering change suggestions is a double-edged sword: While it
can be very helpful in simplifying the task of fixing type errors,
it can also be sometimes very misleading, and frustrating when
the suggested change doesn’t work. In the shown example, both
change-suggesting tools fail to correctly locate the error location.

The tasks of debugging type errors seems to be an inherently
ambiguous undertaking, because in some situations there is just not
enough information present in the program to generate a correct
change suggestion. Consider, for example, the expression not 1.
The error in this expression is either not or 1,8 but without any
additional knowledge about the purpose of the expression, there is
no way to decide whether to replace the function or the argument.
This is why it is generally impossible to isolate one point in the
program as the source of a type error. This fact provides a strong
justification for slicing approaches that try to provide an unbiased
account of error situations. On the other hand, in many cases some
locations are more likely than others, and specifically in larger
programs, information about the context of an erroneous expression
can go a long way of isolating a single location for a type error.

Thus, a reasonable compromise between slicing and single-
error-reporting approaches could be a method to principally com-
pute all possible type error locations (together with possible change
suggestions) and present them ranked and in small portions to the
programmer. At the core of such an approach has to be a type
checker that produces a complete set of type changes that would
make the program type correct.

In this paper we present a method for counter-factual change
inference, whose core is a technique to answer the question “What
type should a particular subexpression have to remove type errors in
a program”. We have also implemented and evaluated a prototype
for a type checker that is based on this technique.

To keep the complexity manageable we only produce so-called
atomic type changes, that is, type changes for the leaves of the
program’s abstract syntax tree. This helps avoid the introduction of
too exotic or too extreme changes. Consider, for example, the non-
atomic type change suggested by Seminal for the palin program,
which seems to be not realistic. Or consider changing a whole
program to a value of type Bool or Int, which always works but
is hardly ever correct.

However, errors that are best fixed by non-atomic expression
changes are quite common. Examples are the swapping of function
arguments or the addition of missing function arguments. The iden-
tification of such non-atomic program changes is not ruled out by

8 It could also be the case that the whole expression is incorrect and should
be replaced by something else, but we ignore this case for now.

Rank Loc Code Change code of type/expression To new type/expression Result type
1 (1,19) (:)9 a -> [a] -> [a] a -> [b] -> a [a] -> Bool

[z] z

2 (5,22) xs [a] [[a]] [a] -> Bool

3 (5,12) rev [a] -> [[a]] [a] -> [a] [a] -> Bool

4 (5,19) (==) [a] -> [a] -> Bool [[a]] -> [a] -> b [a] -> b

5 (4,7) fold (a -> b -> a) -> a -> [b] -> [a] ([a] -> a -> [a]) -> [b] -> [a] -> [a] [a] -> Bool

Figure 1: Ranked list of single-location type and expression change suggestions inferred for the palin example.

the approach taken and can actually often be achieved by deducing
expression changes from type changes.

Returning to the palin example, Figure 1 shows a ranked list
of all (single-location) type changes, computed by our prototype,
that can fix the type error. The correct change ranks first in our
method. Note that this is not a representation intended to be given
to end users. We rather envision an integration into a user interface
in which locations are underlined and hovering over those loca-
tions with the mouse will pop up windows with individual change
suggestions. In this paper we focus on the technical foundation to
compute the information required for implementing such a user in-
terface.

Each suggestion is essentially represented by the expression that
requires a change together with the inferred actual and expected
type of that expression. (Since we are only considering atomic type
changes, this expression will always be a constant or variable in
case of a type change, but it can be a more complicated expression
in case of deduced expression change.) We also show the position
of the code in the program10 and the result types of the program if
the corresponding change is adopted. This information is meant as
an additional guide for programmers to select among suggestions.

The list of shown suggestions is produced in several steps. First,
we generate (lazily) all possible type changes, that is, even those
that involve several locations. Note that sometimes the suggested
types are unexpected. For example, the suggested type for fold is
([a] -> a -> [a]) -> [b] -> [a] -> [a] although (a -> b ->

a) -> a -> [b] -> a would be preferable. This phenomenon can
be generally attributed to the context of the expression. On the one
hand, the given context can be too restrictive and coerce the inferred
type to be more specific than it has to be, just as in this example the
first argument flip (:) forces fold to have [a] -> a -> [a] as
the type of its first argument. On the other hand, the context could
also be too unrestrictive. There is no information about how fold is
related to [] in the fourth line of the program. Thus, the type of the
second argument of fold is inferred as [b]. This imprecision can’t
be remedied by exploiting type information of the program.

Second, we filter out those type changes that involve only one
location. We present those first to the programmer since these are
generally easier to understand and to adopt than multi-location
change suggestions. Should the programmer reject all these single-
location suggestions, two-location suggestions will be presented
next, and so on.

Third, in addition to type-change suggestions, we also try to
infer some non-atomic expression changes from type changes. In
general, only the programmer who wrote the program knows how
to translate required type changes into expression changes. How-
ever, there are a number of common programming mistakes, such
as swapping or forgetting arguments, that are indicated by type-
change suggestions. Similar to Seminal, our prototype identifies

9 Our prototype represents [z] as (:) z [].
10 We have added the line and column numbers by hand since our prototype
currently works on abstract syntax and doesn’t have access to the informa-
tion from the parser.

these kind of changes that are mechanical and do not require a deep
understanding of the program semantics. In our example, we infer
the replacement of [z] by z, because the expected type requires
that the return type be the same as the first argument type. We thus
suggest to use the first argument, that is z, to replace the application
(:) z [].

Note however, that we don’t infer a similar change for the fifth
type change because fold is partially applied in the definition, and
we have no access to the third argument of fold. Had the rev

function been implemented using an eta-expanded list argument,
say xs, we would have also inferred the suggestion to change fold

(flip (:)) [] xs to xs.
Note also that we do not supplement type-change suggestions

with atomic expression changes. For example, in the second sug-
gestion, we do not suggest to replace xs by [xs]. There are two
reasons for this. On the one hand, we believe that, given the very
specific term to change, the inferred type, and the expected type, the
corresponding required expression change is often easy to deduce
for a programmer. On the other hand, suggesting specific expres-
sion changes requires knowledge about program semantics that is
in many cases not readily available in the program. Thus, such sug-
gestions can often be misleading.

Finally, all the type-change suggestions are ranked according to
a few simple, but effective complexity heuristics.

At the core of the proposed method is a type system for inferring
a set of type-change suggestions. This type system is described
in detail in Section 4. We show that the type system generates a
complete and correct set of atomic type change suggestions.

The type system is based on a systematic variation of the
types of atomic expressions in a program. Therefore, some back-
ground information on how to represent variation in expressions
and types, how to make use of it for the purpose of type infer-
ence, and what technical challenges this poses, is provided in Sec-
tion 2. Equipped with the necessary technical background, the ra-
tionale behind variation-based type-change inference can then be
explained on a high level in Section 3.

The algorithmic aspects of type inference and some measures
for controlling runtime complexity are discussed in Section 5. We
also briefly describe a set of heuristics that we use for ranking
change suggestions. The method of deducing expression changes
from type changes is discussed in Section 6. We have evaluated
our prototype implementation by comparing it with three closely
related tools and found that counter-factual typing can generate
correct change suggestions more often than the other approaches.
The evaluation is described in Section 7. Related work is discussed
in Section 8, and conclusions presented in Section 9 complete this
paper.

2. Variation-Based Typing
The idea of variation-based type change inference is to explicitly
represent and reason about discrepancies between inferred and
expected types that are detected by the type checker. This idea can
be realized in different ways, and the counter-factual (CF) type

inference presented in this paper is just one incarnation of this
more general strategy. In this section we will introduce the idea of
variation-based typing, and gather some technical machinery that
will then be employed to formalize counter-factual type change
inference.

First, the goal of CF type inference is to generate suggestions
for how to change types and expressions in a program to fix a type
error. Both kinds of changes will be represented using the generic
choice representation of the choice calculus that was introduced
in [11]. The first application of this representation in the context
of type checking was to extend type inference to program families
(that is, a set of related programs) [5]. We will introduce the concept
of choices, variational expressions and types, and some related
concepts in Section 2.1.

Second, when type checking a program family, it is important
to obtain the types of some programs (family members) even if the
typing of other programs fails. This leads to the notion of partial
types, typing patterns, and an associate method for partial unifica-
tion. The application rule will be further generalized to accommo-
date partial types. We will explain these concepts in Section 2.2.

2.1 Variational Expressions and Variational Types
The Choice Calculus [11] provides a disciplined way of represent-
ing variation in software. The most important concept is the named
choice, which can be used to represent variation points in both ex-
pressions and types. For example, the variational expression e =
not A〈1,True〉 contains the named choice A that represents a choice
between the two constants 1 and True as the argument to not .

The process of eliminating a variation point is called selection.
Selection takes a selector of the form D.i, where D is the name
of the variation point, traverses the expression and replaces all the
variation points named D with its corresponding ith alternative. In
this paper, we are only concerned with binary choices, that is, i will
be either 1 or 2. For example, selecting A.1 from e yields the plain
expression not 1. Plain expressions are obtained after all choices
are eliminated from a variational expression. Note that variation
points with different names vary independently of one another,
and only those with the same name are synchronized during selec-
tion. For example, the variational expression A〈odd,not〉 A〈1,True〉
represents only the two expressions odd 1 and not True, while
A〈odd,not〉 B〈1,True〉 represents the four expressions odd 1, odd
True, not 1, and not True.

Through the use of independent choices, variational programs
can very quickly encode a huge number of programs that differ
only slightly. Ensuring the type correctness of all selectable plain
programs is challenging because the brute-force approach of gen-
erating and checking each variant individually is generally infeasi-
ble. Variational typing [5] solves this problem by introducing vari-
ational types and a method for typing variational programs in one
run. The result of type checking a variational program is a varia-
tional type, from which the types for individual program variants
can be obtained with the same selection as the program is derived.

The syntax of variational types is shown below where α ranges
over type variables, and γ ranges over type constants.

φ ::= γ | α | φ→ φ | D〈φ,φ〉 | ⊥

The type⊥ is used to denote the occurrences of type errors and will
be discussed shortly in Section 2.2.

Under variational typing, the expression A〈odd,not〉 has the
type A〈Int→ Bool,Bool→ Bool〉. The most important property of
variational typing is that the type for each plain expression selected
from the variational expression can be obtained through the same
selections from the corresponding variational type. For example,
selecting A.2 from both the variational expression and type, the
expression not has the type Bool→ Bool.

Typing patterns π ::= ⊥ | > | D〈π,π〉

↑ : φ→ φ

↑(φ1→ φ2) = φ1→ φ2

↑(D〈φ1→ φ′1,φ2→ φ′2〉) = D〈φ1,φ2〉 → D〈φ′1,φ′2〉
↑(D〈φ1,φ2〉) = ↑(D〈↑(φ1),↑(φ2)〉)

↑(φ) =⊥→⊥ (otherwise)

./ : φ×φ→ π

φ ./ φ = >
⊥ ./ φ = ⊥
φ ./ ⊥ = ⊥
φ ./ φ′ = ⊥

D〈φ1〉 ./ D〈φ2〉 = D〈φ1 ./ φ2〉
D〈φ〉 ./ φ′ = D〈φ ./ φ′〉
φ′ ./ D〈φ〉 = D〈φ′ ./ φ〉

φ1→ φ2 ./ φ′1→ φ′2 = (φ1 ./ φ′1)⊗ (φ2 ./ φ′2)

C : π×φ→ φ ⊗ : π×π→ π

⊥Cφ =⊥ >⊗π = π

>Cφ = φ ⊥⊗π =⊥
D〈π〉Cφ = D〈πCφ〉 D〈φ〉⊗φ′ = D〈φ⊗φ′〉

Figure 2: Operations for typing applications

An important technical part of variational typing is the fact that
the equivalence of choices is not merely syntactical, but governed
by a set of equivalence rules, originally described in [11]. For ex-
ample, A〈Int,Int〉 is equivalent to Int, written as A〈Int,Int〉 ≡
Int, since either decision in A yields Int. The equivalence rela-
tionship plays an important part in, and poses a challenge to, the
unification of variational types. For details we refer to [5].

A shortcoming of the variational typing approach is that it can
succeed only if all variants are well typed, that is, it is impossible
to assign a type to the variational expression A〈odd,not〉 1, even
though one of its variants is type correct. Error-tolerant variational
typing addresses this issue.

2.2 Error-Tolerant Variational Typing
The idea of error-tolerant typing [4] is to assign the type ⊥ to pro-
gram variants that contain type errors. The explicit representation
of type errors via ⊥ as normal types supports the continuation of
the typing process in the presence of type errors. Moreover, each
variational program can be typed, and the resulting variational type
contains ⊥ for all variants that are type incorrect and a plain type
for all type-correct variants. For example, A〈odd,not〉 1 has the type
A〈Bool,⊥〉, which encodes exactly the types that we obtain if we
generate and type each expression separately.

The most challenging part of the error-tolerant type system is
the handling of function applications because type errors can be
introduced in different ways. For example, the function might not
have an arrow type, or the type of the argument might not match the
argument type of the function. Moreover, we have to consider the
case of partial matching, that is, in the case of variational types, the
argument type of the function and the type of the argument might
be compatible for some variants only. Deciding in such a case that
the whole application is of type ⊥ would be too restrictive. This
challenge is addressed by the following typing rule [4].

Γ ` e1 : φ1 Γ ` e2 : φ2
φ
′
2→ φ

′ = ↑(φ1) π = φ
′
2 ./ φ2 φ = πCφ

′

Γ ` e1 e2 : φ

The first two premises retrieve the types for the function and argu-
ment. Unlike in the traditional application rule, however, we do not

require φ1 to be a function type. Instead, the third premise tries
to lift φ1 into an arrow type using a function ↑ that is defined
at the top of Figure 2. Lifting specifically accounts for the case
in which φ1 is a choice between arrow types, as in ↑(A〈Bool→
Bool,Int → Bool〉) = A〈Bool,Int〉 → A〈Bool,Bool〉, and it also
deals with, and introduces if necessary, error types. For example,
↑(A〈Int→ Bool,Int〉) can succeed only by introducing an error
type and thus yields A〈Int,⊥〉→ A〈Bool,⊥〉.

The fourth premise computes a typing pattern π that records to
what degree (that is, in which variants) the type of e2 matches the
argument type of the (partial) arrow type obtained for e1. As can
be seen in Figure 2, a typing pattern is a (possibly deeply nested)
choice of the two values ⊥ (type error) and typing success (>).
The computation of a typing pattern proceeds by induction over the
type structure of its arguments. Note that the definition given in Fig-
ure 2 contains overlapping patterns and assumes that more specific
cases are applied before more general ones. When two rules are
equally applicable, the computed result is equivalent modulo the ≡
relation [4]. Note also that we employ the abbreviating notation x
for a sequence of alternatives x1, . . . ,xn (types or expressions) used
within choices. (In Figure 2, this applies only to the case n = 2.)

For two plain types, matching reduces to checking equality. For
example, Int ./ Int=> and Int ./ Bool=⊥. On the other hand,
matching a plain type with a variational type results in a choice
pattern. For example, Int ./ D〈Int,Bool〉= D〈>,⊥〉.

Note that for two arrow types to be matched successfully, both
their corresponding argument types and return types have to be
matched successfully. There is no partial matching for function
types. We define the operation ⊗ to achieve this, which is also
presented in Figure 2. We can essentially view it as the logical
“and” operation if we treat > as true and ⊥ as false. For example,
when computing Int→ A〈Bool,Int〉 ./ B〈Int,⊥〉→ Bool, we first
obtain B〈>,⊥〉 and A〈⊥,>〉 for matching the argument types and
return types, respectively. Next, we use ⊗ to derive the final result
as A〈⊥,B〈>,⊥〉〉.

In the fifth and final premise, the typing pattern is used to
preserve the type errors that the fourth premise has potentially
produced. This is done by “masking” the return type with the typing
pattern. The masking operation essentially replaces all the>s in the
typing pattern with the variants in the return type and leaves all ⊥s
unchanged, denoting the occurrences of type errors.

To see the application rule in action, consider the expression
A〈not,odd〉 B〈1,True〉. The first two premises produce the follow-
ing typing judgments.

A〈not,odd〉 : A〈Bool→ Bool,Int → Bool〉
B〈1,True〉 : B〈Int,Bool〉

Lifting transforms the type of the function into A〈Bool,Int〉 →
A〈Bool,Bool〉, which is equivalent to A〈Bool,Int〉 → Bool.
The computation of A〈Bool,Int〉 ./ B〈Int,Bool〉 yields π =
A〈B〈⊥,>〉,B〈>,⊥〉〉, and masking the return type of the function,
Bool, with π yields A〈B〈⊥,Bool〉,B〈Bool,⊥〉〉.

3. Counter-Factual Typing
The main idea behind counter-factual typing is to systematically
vary parts of the ill-typed program to find changes that can elim-
inate the corresponding type error(s) from the program. It is in-
feasible to apply this strategy directly on the expression level since
there are generally infinitely many changes that one could consider.
Therefore, we perform the variation on the type level. Basically, we
ask for each atomic expression e the counter-factual question: What
type should e have to make the program well typed?

The counter-factual reasoning is built into the type checking
process in the following way. To determine the type of an expres-

sion e we first infer e’s type, say φ. But then, instead of fixing this
type, we leave the decision open and assume e to have the type
D〈φ,α〉, where D is a fresh name and α is a fresh type variable. By
leaving the type of e open to revision we account for the fact that
e may, in fact, be the source of a type error. By choosing a fresh
type variable for e’s alternative type, we enable type information
to flow from the context of e to forge an alternative type φ′ that
fits into the context in case φ doesn’t. If φ does fit the context, it
is unifiable with φ′, and the choice could in principle be removed.
However, this is not really necessary (and we, in fact, don’t do this)
since in case of a type-correct program, we can find the type at the
end of the typing process by simply selecting the first option from
all generated choices.

Let us illustrate this idea with a simple example. Consider the
expression e = not 1. If we vary the types of both not and 1, we
obtain the following typing judgments.

not : A〈Bool→ Bool,α1〉
1 : B〈Int,α2〉

where α1 and α2 represent the expected types of not and 1 accord-
ing to their respective contexts. To find the types α1 and α2, we
have to solve the following unification problem.

A〈Bool→ Bool,α1〉 ≡? B〈Int,α2〉 → α3

where α3 denotes the result type of the application and ≡? denotes
that the unification problem is solved modulo the type equivalence
relation mentioned in Section 2.1 rather than the usual syntactical
identity.

Another subtlety of the unification problem is that two types
may not be unifiable. In that case a solution to the unification
problem consists of a so-called partial unifier, which is both most
general and introduces as few errors as possible. The unification
algorithm developed in [4] achieves both these goals.

For the above unification problem, the following unifier is com-
puted. The generality introduced by α6 and α7 ensures that only
the second alternatives of choices A and B are constrained [5].

{α1 7→ A〈α6,B〈Int,α4〉 → α5〉,
α2 7→ B〈α7,A〈Bool,α4〉〉,
α3 7→ A〈Bool,α5〉}

Additionally, the unification algorithm returns a typing pattern
that characterizes all the viable variants and helps to compute
the result type of the varied expression. In this case we obtain
A〈B〈⊥,>〉,>〉. Based on the unifier and the typing pattern, we can
compute that the result type of the varied expression of not 1 is
φ = A〈B〈⊥,Bool〉,α5〉. From the result type and the unifier, we can
draw the following conclusions.

• If we don’t change e, that is, we select A.1 and B.1 from the
varied expression, the type of the expression is ⊥ (the variant
corresponds to A.1 and B.1 in the result type), which reflects the
fact that the original expression is ill typed.

• If we vary not to some other expression f , that is, if we select
variant A.2 and B.1 from the variational result type, the result
type will be α5. Moreover, the type of f is obtained by selecting
A.2 and B.1 from the type that α1 is mapped to, which yields
Int→ α5. In other words, by changing not to an expression of
type Int→α5, not 1 becomes well typed. In the larger context,
α5 may be further constrained to have some other type.

• If we vary 1 to some expression g, that is, if we select A.1 and
B.2 from the variational type, then the result type becomes Bool.

• If we vary both not to f and 1 to g, which means to select
A.2 and B.2, the result type is α5. Moreover, from the unifier
we know that f and g should have the types α4 → α5 and α4,
respectively.

Term variables x, y, z Value constants c
Type variables α, β Type constants γ

Expressions e, f ::= c | x | λx.e | e e | let x = e in e |
if e then e else e

Monotypes τ ::= γ | α | τ→ τ

Variational types φ ::= τ | ⊥ | D〈φ,φ〉 | φ→ φ

Type schemas σ ::= φ | ∀α.φ
Selectors s ::= D.i

Type environments Γ ::= ∅ | Γ,x 7→ σ

Substitutions η, θ ::= ∅ | η,α 7→ φ

Choice environments ∆ ::= ∅ | ∆,(l,D〈φ,φ〉)

Figure 3: Syntax of expressions, types, and environments

This gives us all atomic type changes for the expression not 1.
The combination of creating variations at the type level and vari-
ational typing provides an efficient way of finding all possible type
changes.

4. Type-Change Inference
This section presents the type system that generates a complete set
of atomic corrective type changes. After defining the syntax for
expressions and types in Section 4.1, we present the typing rules for
type-change inference in Section 4.2. In Section 4.3 we investigate
some important properties of the type-change inference system.

4.1 Syntax
We consider a type checker for lambda calculus with let-
polymorphism. Figure 3 shows the syntax for the expressions,
types, and meta environments for the type system. We extend the
bar notation to other sequences of elements, such as bindings. Both
the definitions of expressions and types are conventional, except for
variational types, which introduce choice types and the error type.

We use l to denote program locations, in particular, leaves in
ASTs. We assume that there is a function `e(f) that returns l
for f in e. For presentation purposes, we assume that f uniquely
determines a location. We may omit the subscript e when the
context is clear. The exact definition of `(·) does not matter.

As usual, Γ binds type variables to type schemas for storing
typing assumptions. We use η to denote type substitutions that map
type variables to variational types. The metavariable θ ranges over
type substitutions that are unifiers for unifiable types or partial uni-
fiers for nonunifiable types. Finally, we use the choice environment
∆ to associate choice types that were generated during the typing
process with the corresponding location in the program. Operations
on types can be lifted to ∆ by applying them to the types in ∆.

We stipulate the conventional definition of FV that computes the
free type variables in types, type schemas, and type environments.
We write η/S for {α 7→ φ ∈ η | α /∈ S}.

The application of a type substitution to a type schema is written
as η(σ) and replaces free type variables in σ by the corresponding
images in η. The definition is as follows.

η(⊥) = ⊥
η(∀α.φ) = ∀α.η/α(φ)

η(D〈φ〉) = D〈η(φ)〉

η(φ1→ φ2) = η(φ1)→ η(φ2)

η(α) =

{
α if α /∈ dom(η)
φ if α 7→ φ ∈ η

Note that we do not consider variational polymorphic types.
This is not a problem since we can always lift quantifiers out
of choices. For instance, D〈∀α.φ1,∀β.φ2〉 can be transformed to

Γ ` e : φ|∆

CON
c is of type γ D fresh

Γ ` c : D〈γ,φ〉|{(`(c),D〈γ,φ〉)}

VAR

Γ(x) = ∀α.φ1 D fresh φ = {α 7→ φ′}(φ1)

Γ ` x : D〈φ,φ2〉|{(`(x),D〈φ,φ2〉)}

UNBOUND
x /∈ dom(Γ) D fresh

Γ ` x : D〈⊥,φ〉|{(`(x),D〈⊥,φ〉)}

ABS
Γ,x 7→ φ ` e : φ

′|∆
Γ ` λx.e : φ→ φ

′|∆

LET
Γ,x 7→ φ ` e : φ|∆

α = FV(φ)−FV(Γ) Γ,x 7→ ∀α.φ ` e′ : φ
′|∆′

Γ ` let x = e in e′ : φ
′|∆∪∆

′

APP
Γ ` e1 : φ1|∆1 Γ ` e2 : φ2|∆2

φ
′
2→ φ

′ = ↑(φ1) π = φ
′
2 ./ φ2 φ = πCφ

′

Γ ` e1 e2 : φ|∆1∪∆2

IF

(Γ ` ei : φi|∆i)
i:1..3

π1 = φ1 ./ Bool π2 = φ2 ./ φ3 φ = π1 C (π2 Cφ2)

Γ ` if e1 then e2 else e3 : φ|∆1∪∆2∪∆3

Figure 4: Rules for type-change inference

∀α1β1.D〈φ′1,φ′2〉 with α1 /∈ FV(φ1) and β1 /∈ FV(φ2), and φ′1 =
{α 7→ α1}(φ1) and φ′2 = {β 7→ β1}(φ2).

4.2 Typing Rules
Figure 4 presents the typing rules for inferring type changes. The
typing judgment is of the form Γ ` e : φ|∆ and produces as a result
a variational type φ that represents all the typing “potential” for e
plus a set of type changes ∆ for the atomic subexpressions of e that
will lead to the types in φ.

Since we are only interested in atomic changes during this
phase, we only vary the leaves in the AST of programs, which
are constants and variable references. This is reflected in the typ-
ing rules as we generate fresh choices in rules CON, VAR, and
UNBOUND. In each case, we place the actual type in the first alter-
native and an arbitrary type in the second alternative of the choice.
When an unbound variable is accessed, it causes a type error. We
thus put ⊥ in the first alternative of the choice.

The rules ABS and LET for abstractions and let-expressions are
very similar to those in other type systems except that variables are
bound to variational types. The rule APP for typing applications is
very similar to the application rule discussed in Section 2.2. The
only difference is that the rule here keeps track of the information
for ∆.

The IF rule employs the same machinery as the APP rule for the
potential introduction of type errors and partially correct types. In
particular, the condition e1 is not strictly required to have the type
Bool. However, only the variants that are equivalent to Bool are
type correct. Likewise, only the variants in which both branches
are equivalent are type correct.

∆ ⇓ ∆′

∅ ⇓∅
∆ ⇓ ∆

′ ∃τ : D〈φ〉 ≡ τ

∆,(l,D〈φ〉) ⇓ ∆
′

∆ ⇓ ∆
′ ¬∃τ : D〈φ〉 ≡ τ

∆,(l,D〈φ〉) ⇓ ∆
′,(l,D〈φ〉)

b c : φ× s→ φ

bτcs = τ bφ1→ φ2cs = bφ1cs→ bφ2cs
b⊥cs =⊥ bB〈φ〉cA.i = B〈bφcA.i〉 if A 6= B

bB〈φ〉cB.i = bφicB.i

Figure 5: Simplifications and selection

4.3 Properties
In this section we investigate some important properties of the
type-change inference system. We show that it is consistent in the
sense that any type selected from the result variational type can be
obtained by applying the changes as indicated by that selection. We
also show that the type-change inference is complete in finding all
corrective atomic type changes. Based on this result we also show
that the type-change inference system is a conservative extension
of the Hindley-Milner type system (HM).

We start with the observation that type-change inference always
succeeds in deriving a type for any given expression and type
environment.

LEMMA 1. Given e and Γ, there exist φ and ∆ such that Γ ` e : φ|∆.

The proof of this lemma is obvious because for any construct in
the language, even for unbound variables, there is a corresponding
typing rule in Figure 4 that is applicable and returns a type.

Next, we need to simplify ∆ in the judgment Γ ` e : φ|∆ to
investigate the properties of the type system. Specifically, we define
a simplification relation ⇓ in Figure 5 that eliminates idempotent
choices from ∆. Note that the sole purpose of simplification is
to eliminate choice types that are equivalent to monotypes, or
equivalently, remove all positions that don’t contribute to type
errors. Thus, there is no need to simplify types nested in choice D
in Figure 5. Also, we formally define the selection operation bφcs
in Figure 5. Selection extends naturally to lists of selectors in the
following way: bφcs′s = bbφcs′cs.

Next we want to establish the correctness of the inferred type
changes. Formally, a type update is a mapping from program loca-
tions to monotypes. The intended meaning of one particular type
update l 7→ τ is to change the expression at l to an expression of
type τ. We use δ to range over type updates. A type update is given
by the locations and the second component of the corresponding
choice types in the choice environment. We use ↓· to extract that
mapping from ∆. The definition is ↓∆ = {l 7→ τ2 | (l,D〈τ1,τ2〉) ∈
∆}. (For the time being we assume that all the alternatives of
choices in ∆ are monotypes; we will lift this restriction later.) For
example, with ∆ = {(l,A〈Int,Bool〉)} we have ↓∆ = {l 7→ Bool}.

The application of a type update is part of a type update sys-
tem that is defined by the set of typing rules shown in Figure 6.
These typing rules are identical to an ordinary Hindley-Milner type
system, except that they allow to “override” the types of atomic ex-
pressions according to a type update δ that is a parameter for the
rules. We only show the rules for constants, variables, and applica-
tions since those for abstractions and let-expressions are obtained
from the HM ones in the same way as the application rule by sim-
ply adding the δ parameter. We write more shortly δ(e) for δ(`(e)),
and we use the “orelse” notation δ(e)||τ to pick the type δ(e) if δ(e)
is defined and τ otherwise.

CON-C
c is of type γ

Γ;δ ` c : δ(c)||γ
VAR-C
Γ;δ ` x : δ(x)||{α 7→ τ}(Γ(x))

APP-C
Γ;δ ` e1 : τ1→ τ Γ;δ ` e2 : τ1

Γ;δ ` e1 e2 : τ

Figure 6: Rules for the type-update system

The rules CON-C and VAR-C employ a type update if it exists.
Otherwise, the usual typing rules apply. Rule APP-C delegates the
application of change updates to subexpressions since we are con-
sidering atomic change suggestions only.

We can now show that by applying any of the inferred type
changes (using the rules in Figure 6), we obtain the same types
that are encoded in the variational type potential computed by
type-change inference. We employ the following additional nota-
tion. We write ∆.2 for the list of selectors D.2 for each choice
D〈〉 in ∆. For example, {(`1,A〈Int,Bool〉),(`2,B〈Bool,Int〉)}.2 =
[A.2,B.2]. Formally, we have the following result. (We assume that
∆ has been simplified by ⇓ in Figure 5 and the alternatives of
choices in ∆ are plain, as mentioned before.)

THEOREM 1 (Type-change inference is consistent). For any given
e and Γ, if Γ ` e : φ|∆ and there is some τ such that bφc∆.2 = τ, then
Γ;↓∆ ` e : τ.

Moreover, the type-change inference is complete since it can gen-
erate a set of type changes for any desired type.

THEOREM 2 (Type-change inference is complete). For any e, Γ

and δ, if Γ;δ ` e : τ, then there exist φ, ∆, and a typing derivation
for Γ ` e : φ|∆ such that ↓∆ = δ and bφc∆.2 = τ.

The proofs for these two theorems can be constructed through
an induction over the typing derivations of both type systems. In
particular, note that constants and variable reference have the same
type in these two systems, regardless of whether or not they are
changed.

The introduction of arbitrary alternative types in rules CON,
VAR, and UNBOUND are the reason that type-change inference is
highly non-deterministic, that is, for any expression e we can gen-
erate an arbitrary number of type derivations with different type
potentials and corresponding type changes.

Many of those derivations don’t make much sense. For
example, we can derive Γ ` 5 : A〈Int,Bool〉|∆ where ∆ =
{(`5(5),A〈Int,Bool〉)}. However, since the expression 5 is type
correct, it doesn’t make sense to suggest a change for it.

On the other hand, the ill-typed expression e = not (succ 5)

can be typed in two different ways that can correct the error, yield-
ing two different type potentials and type changes. We can either
suggest to change succ to an expression of type Int→ Bool, or we
can suggest to change not into something of type Int→ α1. The
first suggestion is obtained by a derivation for Γ ` e : A〈⊥,α1〉|∆1
with ∆1 = {(`e(not),A〈Bool → Bool,Int → α1〉)}. The second
suggestion is obtained by a derivation for Γ ` e : B〈⊥,Bool〉|∆2
with ∆2 = {(`e(succ),B〈Int→ Int,Int→ Bool〉)}.

Interestingly, we can combine both suggestions by deriving a
more general typing statement, that is, we can derive the judgment
Γ ` e : A〈B〈⊥,Bool〉,B〈α1,α2〉〉|∆3 where

∆3 = {(`e(not),A〈Bool→ Bool,B〈Int→ α1,α3→ α2〉〉),
(`e(succ),B〈Int→ Int,A〈Int→ Bool,Int→ α3〉〉)}

We can show that the third typing is better than the first two
in the sense that its result type (a) contains fewer type errors than
either of the result types and (b) is more general. For example, by
selecting [A.1,B.2] from both result types, we obtain ⊥ and Bool,
respectively. Making the same selection into the third result type,
we obtain Bool. Likewise, when we select with [A.2,B.1], we get
the types α1, ⊥, and α1, respectively. For each selection, the third
result type is better than either one of the first two.

In the following we show that this is not an accident, but that
we can, in fact, always find a most general change suggestion from
which all other suggestions can be instantiated.

First, we extend the function ↓ to take as an additional parameter
a list of selectors s. We also extend the definition to work with
general variational types (and not just monotypes).

↓s∆ = {l 7→ bφ2cs | (l,D〈φ1,φ2〉) ∈ ∆∧D.2 ∈ s}
Intuitively, we consider all the locations for which the second
alternative of the corresponding choices are chosen. We need to
apply the selection bφ2cs because each variational type may include
other choice types that are subject to selection by s.

Next we will show that type-change inference produces most
general type changes from which any individual type change can
be instantiated. We observe that type potentials and type changes
can be compared in principally two different ways. First, the result
of type-change inference φ|∆ can be more defined than another
result φ′|∆′, which means that for any s for which bφ′cs yields a
monotype then so does bφcs. Second, a result φ|∆ can be more
general than another result φ′|∆′, written as φ≤ φ′, if there is some
type substitution η such that φ′ = η(φ). (Similarly, we call a type
update δ1 more general than another type update δ2, written as
δ1 ≤ δ2, if dom(δ1) = dom(δ2) and there is some η such that for
all l δ2(l) = η(δ1(l)).

Since we have these two different relationships between type
changes, we have to show the generality of type-change inference
in several steps.

First, we show that we can generalize any type change that pro-
duces a type error in the resulting variational type for a particular
selection when there is another type change that does not produce
a type error for the same selection.

LEMMA 2 (Most defined type changes). Given e and Γ and two
typings Γ ` e : φ1|∆1 and Γ ` e : φ2|∆2, if bφ1cs =⊥ and bφ2cs = τ,
then there is a typing Γ ` e : φ3|∆3 such that

• bφ3cs = bφ2cs and for all other s′ bφ3cs′ = bφ1cs′ .
• ↓s∆3 = ↓s∆2 and ↓s′∆3 = ↓s′∆2 for all other s′.

Next we show that given any two type changes, we can always find
a type change that generalizes the two.

LEMMA 3 (Generalizability of type changes). For any two typ-
ings Γ ` e : φ1|∆1 and Γ ` e : φ2|∆2, if neither bφ1cs ≤ bφ2cs nor
bφ2cs ≤ bφ1cs holds, there is a typing Γ ` e : φ3|∆3 such that

• bφ3cs ≤ bφ1cs, bφ3cs ≤ bφ2cs and for all other s′, bφ3cs′ =
bφ1cs′ .

• ↓s∆3 ≤ ↓s∆1, ↓s∆3 ≤ ↓s∆2 and for all other s′, ↓s′∆3 = ↓s′∆1.

We can now combine and generalize Lemmas 2 and 3 and see that
type-change inference can always produce maximally error-free
and general results at the same time. This is an important result,
captured in the following theorem.

THEOREM 3 (Most general and error-free type changes). Given e
and Γ and two typings Γ ` e : φ1|∆1 and Γ ` e : φ2|∆2, there is a
typing Γ ` e : φ3|∆3 such that for any s,

• if bφ1cs =⊥ and bφ2cs = τ, then bφ3cs = τ and ↓s∆3 = ↓s∆2.

• if bφ2cs =⊥ and bφ1cs = τ, then bφ3cs = τ and ↓s∆3 = ↓s∆1.
• if bφ1cs = τ1 and bφ2cs = τ2, then bφ3cs ≤ τ1 and bφ3cs ≤ τ2.

Moreover, ↓s∆3 ≤ ↓s∆1 and ↓s∆3 ≤ ↓s∆2.

The proofs for Lemma 2, Lemma 3 and Theorem 3 can be estab-
lished by showing that in each derivation step, the result types from
two derivations can always be combined into the result type for a
third derivation such that the new result type is both more general
and contains fewer errors. The key ingredient we need is that given
a variational type, we can change the type for a specific variant and
leave all other variants unchanged.

From Theorems 3 and 2 it follows that there is a typing for com-
plete and principal type changes. We express this in the following
theorem.

THEOREM 4 (Complete and principal type changes). Given e and
Γ, there is a typing Γ ` e : φ|∆ such that for any δ if Γ;δ ` e : τ, then
there is some s such that bφcs ≤ τ and ↓s∆≤ δ.

Finally, there is a close relationship between type-change inference
and the HM type system. When type-change inference succeeds
with an empty set of type changes, it produces a non-variational
type that is identical to the one derived by HM. This result is
captured in the following theorem, where we write Γ ` e : τ to
express that expression e has the type τ under Γ in the HM type
system.

THEOREM 5. For any given e and Γ, Γ;∅ ` e : τ⇐⇒ Γ ` e : τ.

Based on Theorem 1, Theorem 2, Theorem 5 and the fact that
↓∅ = ∅, we can infer that when a program is well typed, the type
change-inference system and the HM system produce the same
result.

THEOREM 6. Γ ` e : τ|∅ if and only if Γ ` e : τ.

Note that Γ` e : τ|∅ implies that Γ ` e : φ|∆, φ≡ τ, and ∆ ⇓∅. This
theorem also implies that type-change inference will never assign a
monotype to a type-incorrect program.

5. A Change Inference Algorithm
This section presents an algorithm for inferring type changes. We
will discuss properties of the algorithm as well as strategies to
bound its complexity.

Given the partial type unification algorithm presented in [4],
the inference algorithm is obtained by a straightforward translation
of the typing rules presented in Figure 4. The cases for variable
reference and if statements are shown below. Function application
is very similar to if statements, and the cases for abstractions
and let-expressions can be derived from W by simply adding the
threading of ∆.

infer : Γ× e→ θ×φ×∆

infer(Γ,x) =
φ′← inst(Γ(x)) – returns ⊥ when x is unbound
φ← D〈φ′,α〉 – D and α are fresh
return (∅,φ,{(`(x),φ)})

infer(Γ,if e1 then e2 else e3) =
(θ1,φ1,∆1)← infer(Γ,e1)
(θ′,π′)← vunify(φ1,Bool)
(θ2,φ2,∆2)← infer(θ′θ1(Γ),e2)
(θ3,φ3,∆3)← infer(θ2θ′θ1(Γ),e3)
(θ4,π4)← vunify(θ3(φ2),φ3,)
θ← θ4θ3θ2θ′θ1
return (θ,π′C (π4 Cθ4(φ3)),θ(∆1∪∆2∪∆3))

For variable reference, the algorithm first tries to find the type of
the variable in Γ and either instantiates the found type schema with

fresh type variables or returns ⊥ if the variable is unbound. After
that, a fresh choice containing a fresh type variable is returned. The
variable then has the returned choice type with the inferred type in
the first alternative and the type variable in the second.

For typing if statements, we use an algorithm vunify(φ1,φ2) for
partial unification [4]. In addition to a partial unifier a typing pattern
is generated to describe which variants are unified successfully and
which aren’t (see Section 3). Otherwise, the algorithm follows in a
straightforward way the usual strategy for type inference.

We can prove that the algorithm infer correctly implements the
typing rules in Figure 4, as expressed in the following theorems.

THEOREM 7 (Type-change inference is sound). Given any e and
Γ, if infer(Γ,e) = (θ,φ,∆), then θ(Γ) ` e : φ|∆.

At the same time, the type inference is complete and principal. We
use the auxiliary relation φ1 � φ2 to express that for any s, either
bφ2cs = ⊥ or bφ1cs ≤ bφ2cs. Intuitively, this expresses that either
the corresponding variant in φ1 is more general or more correct.
We also define ∆1 � ∆2 if for any (l,φ1) ∈ ∆1 and (l,φ2) ∈ ∆2 the
condition φ1 ≤ φ2 holds.

THEOREM 8 (Type-change inference is complete and principal).
If θ(Γ) ` e : φ|∆, then infer(Γ,e) = (θ1,φ1,∆1) such that θ = η1θ1
for some η1, ∆1 � ∆, and φ1 � φ.

From Theorems 3 and 8 it follows that our type-change inference
algorithm correctly computes all type changes for a given expres-
sion in one single run.

During the type-change inference process, choice types can
become deeply nested and the size of types can become ex-
ponential in the nesting levels. Fortunately, this occurs only
with deep nestings of function applications where each argu-
ment type is required to be the same. For example, the function
f : α→ α→ . . .→ α is more likely to cause this problem than
the functions g : α1→ α2→ . . .→ αn and h : γ→ γ→ . . .→ γ be-
cause only the function f requires all argument types to be unified,
which causes choice nesting to happen.

To keep the run-time complexity of our inference algorithm
under control, we eliminate choices beyond an adjustable nesting
level that satisfy one of the following conditions: (A) choices whose
alternatives are unifiable, and (B) choices whose alternatives con-
tain errors in the same places. These two conditions ensure that the
eliminated choices are unlikely to contribute to type errors. There
are cases in which this strategy fails to eliminate choices, but this
happens only when there are already too many type errors in the
program, and we therefore stop the inference process and report
type errors and change suggestions found so far.

This strategy allows us to maintain choices whose correspond-
ing locations are likely sources of type errors and discard those that
aren’t. Note, however, that this strategy sacrifices the completeness
property captured in Theorem 8. We have evaluated the running
time and the precision of error diagnosis against the choice nesting
levels (see Section 7). We observed that only in very rare cases will
the choice nesting level reach 17, a value that variational typing is
able to deal with decently [5].

Finally, we briefly describe a set of simple heuristics that define
the ranking of type and expression changes. (1) We prefer places
that have deduced expression changes (see Section 6) because
these changes reflect common editing mistakes [18]. (2) We favor
changes that are lower in the abstract syntax trees because changes
at those places have least effect on the context and are least likely to
introduce exotic results. (3) We prefer changes that have minimal
shape difference between the inferred type and the expected type.
For example, a change that doesn’t influence the arities of function
types is ranked higher than a change that does change arities.

6. Deducing Expression Changes
While it is generally impossible to deduce expression changes
from type changes, there are several idiosyncratic situations in
which type changes do point to likely expression changes. These
situations can be identified by unifying both types of a type change
where the unification is performed modulo a set of axioms that
represent the pattern inherent in the expression change.

As an example, consider the following expression.11

zipWith (\(x,y) -> x+y) [1,2] [3,4]

Our type change inference suggests to change zipWith from its
original type (a -> b -> c) -> [a] -> [b] -> [c] to something
of type ((Int,Int) -> Int) -> [Int] -> [Int] -> d. Given
these two types, we can deduce to curry the first argument to the
function zipWith to remove the type error. (At the same time, we
substitute d in the result type with Int.)

By employing unification modulo different theories,
McAdam [21] has developed a theory and an algorithm to
systematically deduce changes of this sort. We have adopted
this approach (and extended it slightly) for deducing expression
changes, such as swapping the arguments of function calls,
currying and uncurrying of functions, or adding and removing
arguments of function calls.

The extension is based on a simple form of identifying non-
arity-preserving type changes. Such a change is used to modify
the types, then McAdam’s approach is applied, and the result is
then interpreted in light of the non-arity-preserving type change
as a new form of expression change. As an example, here is the
method of identifying the addition or removal of arguments to
function calls. In this case, the differences in the two types to
be unified will lead to a second-level type change that pads one
of the types with an extra type variable. For example, given the
inferred type τ1 → τ3 and the expected type τ1 → τ2 → τ3, we
turn the first type into α→ τ1→ τ3. The application of McAdam’s
approach suggests to swap the arguments. Also, α is mapped to τ2.
Interpreting the swapping suggestion through the second-level type
change of padding, we deduce the removal of the second argument.

Besides these systematic change deductions, we also support
some ad-hoc expression changes. Specifically, we infer changes by
inspecting the expected type only. For example, if the inferred type
for f in f g e is b -> c while the expected type is (a -> b) -> a

-> c, we suggest to change f g e to f (g e).
Another example are situations in which the result type of an

expected type matches exactly one of its (several) argument types.
In that case we suggest to replace the whole expression with the
corresponding argument. This case applies, in fact, to the palin

example, where the type change for (:) is to replace a -> [a]

-> [a] by a -> [b] -> a. We therefore infer to replace (:) z [],
which is [z], by z because the first argument type is the same as the
return type. Another case is when in expression f g h the expected
type for f is (a -> b) -> a -> b. Then we suggest to remove f

from the expression. There are more such ad-hoc changes that are
useful in some situations, but we will not discuss them here.

In Section 8 we will compare our method with McAdam’s
original. Here we only note that the success of the method in our
prototype depends to a large degree on the additional information
provided by type-change inference, specifically, the more precise
and less biased expected types that are used for the unification.

7. Evaluation
To evaluate the usefulness and efficiency of the counter-factual
typing approach, we have implemented a prototype of type-change

11 This example is adapted from [18], where zipWith is called map2.

86 examples with Oracle 35 ambiguous examples
1 2 3 ≥ 4 never complete partial incorrect

CF typing 67.4 80.2 88.4 91.9 8.1 100.0 0.0 0.0
Seminal 47.7 54.7 58.1 59.3 40.7 40.0 25.7 34.3
Helium 61.6 - - 61.6 38.4 0.0 100.0 0.0
GHC 17.4 - - 17.4 82.6 0.0 34.3 65.7

Figure 7: Evaluation results for different approaches over 121 col-
lected examples (in %).

inference and expression-change deduction in Haskell. (In addition
to the constructs shown in Section 4 the prototype also supports
some minor, straightforward extensions, such as data types and
case expressions.) We compare the results produced by our CF
typing tool to Seminal [18, 19], Helium [13, 14], and GHC. There
are several reasons for selecting this group of tools. First, they
provide currently running implementations. Second, these tools
provide a similar functionality as CF typing, namely, locating type
errors and presenting change suggestions, both at the type and the
expression level. We have deliberately excluded slicing tools from
the comparison because they only show all possible locations, and
don’t suggest changes.12

For evaluating the applicability and accuracy of the tools we
have gathered a collection of 121 examples from 22 publications
about type-error diagnosis. These papers include recent Ph.D. the-
ses [14, 21, 27, 29] and papers that represent most recent and older
work [15, 18, 23]. These papers cover many different perspectives
of the type-error debugging problem, including error slicing, expla-
nation systems, reordering of unification, automatic repairing, and
interactive debugging. Since the examples presented in each pa-
per have been carefully chosen or designed to illustrate important
problem cases for type-error debugging, we have included them
all, except for examples that involve type classes since our tool
(as well as Seminal) doesn’t currently support type classes. This
exclusion did not have a significant effect. We gathered 8 unique
examples regarding type classes involved in type errors discussed
in [24, 24, 27]. Both GHC and Helium were able to produce a help-
ful error message in only 1 case. Otherwise, the examples range
from very simple, such as test = map [1,10] even to very com-
plex ones, such as the plot example introduced in [27].

We have grouped the examples into two categories. The first
group (“with Oracle”) contains 86 examples for which the correct
version is known (because it either is mentioned in the paper or is
obvious from the context). The other group (“ambiguous”) contains
the remaining 35 examples that can be reasonably fixed by several
different single-location changes. For the examples in the “with
Oracle” group, we have recorded how many correct suggestions
each tool can find with at most n attempts. For the examples in the
“ambiguous” group, we have determined how often a tool produces
a complete, partial, or incorrect set of suggestions. For example,
for the expression \f g a -> (f a, f 1, g a, g True), which is
given in [2], Helium suggests to change True to something of type
Int. While this is correct, there are also other changes possible, for
example, changing f 1 to f True. Since these are not mentioned,
the result is categorized as partial.

Figure 7 presents the results for the different tools and examples
with unconstrained choice nesting level for CF typing. Note that
GHC’s output is considered correct only when it points to the
correct location and produces an error message that is not simply

12 There are a few interactive approaches that have been proposed [6, 24],
but they do currently not provide running implementations. Moreover,
Chameleon [27] has evolved to focus on typing extensions of the Haskell
type system. Since the tool has switched off its type-debugging facilities, it
is not a viable candidate for comparison.

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

R
u
n
n
in

g

ti
m

e
(s

)

examples%

CF typing

Seminal

Figure 8: Running time for typing x% of the examples 10 times.

reporting a unification failure or some other compiler-centric point
of view. We have included GHC only as a baseline since it is widely
known. The comparison of effectiveness is meant to be between CF
typing, Seminal, and Helium.

The numbers show that CF typing performs overall best. Even
if we only consider the first change suggestion, it outperforms
Helium which comes in second. Taking into account second and
third suggestions, Seminal catches up, but CF typing performs even
better.

In cases where Helium produces multiple suggestions, all sug-
gestions are wrong. For CF typing 21 out of the 58 correct sugges-
tions (that is, 36%) are expression changes. For Seminal the num-
bers are 20 out of 41 (or 51%), and for Helium it is 15 out of 52 (or
29%). This shows that Seminal produces a higher rate of expression
change suggestions at a lower overall correctness rate.

Most of Helium and Seminal’s failures are due to incorrectly
identified change locations. Another main reason for Seminal’s
incorrect suggestions is that it introduces too extreme changes.
In several cases, Seminal’s change suggestion doesn’t fix the type
error.

Most cases for which CF typing fails are caused by missing
parentheses. For example, for the expression print "a" ++ "b"

[18], our approach suggests to change print from the inferred type
a -> IO () to the type String -> String or change (++) from the
expected type [a] -> [a] -> [a] to the inferred type IO () ->

String -> String. Neither of the suggestions allows us to deduce
the regrouping of the expression.

To summarize, since the examples that we used have been de-
signed to test very specific cases, the numbers do not tell much
about how the systems would perform in everyday practice. They
provide more like a stress test for the tools, but the direct compari-
son shows that CF typing performs very well compared with other
tools and thus presents a viable alternative to type debugging.

With the help of variational typing, we can generate all the
potential changes very efficiently. The running time for all the
collected examples is within 2 seconds. Figure 8 shows the running
time for both our approach and Seminal for processing the reported
examples. For each point (x,y) on the curve, it means that x% of
all examples are processed with y seconds. The running time for
our approach is measured on a laptop with a 2.8GHz dual core
processor and 3GB RAM running Windows XP and GHC 7.0.2.
The running time for Seminal is measured on the same machine
with Cygwin 5.1. The purpose of the graph is simply to demonstrate
the feasibility of our approach.

Second, we have evaluated how increasing levels of choice nest-
ings affect the efficiency of the inference algorithm and how putting
a limit on maximum nesting levels as described in Section 5 can re-
gain efficiency at the cost of precision. For this purpose, we have
automatically generated large examples, and we use functions of

14.2

21.3

31.9

47.6

70.7

89.1
94.2 96.3

2.05

3.9

8.53

20.3

46.3

127.7

10

20

30

40

50

60

70

80

90

100

110

1

2

4

8

16

32

64

128

256

512

0 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

o
n
 (

%
)

R
u
n
n
in

g
 t

im
e

(s
)

Choice nesting levels

time

precision

Figure 9: Limits on choice nesting trade efficiency for precision.

types like α→α→ . . .→α to trigger the choice elimination strate-
gies discussed in Section 5. We first generated 200 type correct ex-
amples and then introduced one or two type errors in each example
by changing the leaves, swapping arguments and so on. Each ex-
ample contains about 60000 nodes in its tree representation.

Figure 9 presents the running time and precision against choice
nesting levels for these generated examples. A change suggestion
is considered correct if it fixes a type error and appears among the
first four changes for that example. Precision is measured by divid-
ing the number of examples that have correct change suggestions
over the number of all examples. From the figure we observe that
a nesting level cut-off between 12 and 18 achieves both high preci-
sion and efficiency.

8. Related Work
We have grouped our discussion of related work according to major
features shared by the different approaches.

Reporting single locations Most of the single-error-location ap-
proaches are based on some variant of the algorithm W and report
an error as soon as the algorithm fails. Since the original algorithm
W is biased in the order in which unification problems are solved
(which has a negative impact on locating errors), many approaches
have tried to eliminate this bias. Examples are algorithms M [17],
G [10], W SYM and M SYM [20], and UAE and I EI [30]. All these
algorithms interpret the place of unification failure as the source of
the type error. In contrast, Johnson and Walz [15] and the Helium
tool [13, 14] use heuristics to select the most likely error location
from a set of potential places. Although heuristics often work well
and lead to more accurate locations, they can still get confused due
to the single-location constraint. In contrast, we explore all poten-
tial changes and rank them from most to least likely.

In deducing expression changes from type changes, we have
used (an extension of) McAdam’s technique [21]. Since his ap-
proach is based on the algorithm W , it suffers from the bias of error
locating mentioned above. Moreover, his approach doesn’t have ac-
cess to the precise expected type, which helps in our approach to
ensure that deduced expression changes will not have an impact on
the program as a whole.

Explaining type conflicts Some approaches have focused on
identifying and explaining the causes of type conflicts. Wand [26]
records each unification step so that they can be tracked back to the
failure point. Duggan and Bent [9] on the other hand record the rea-
son for each unification that is being performed. Beaven and Stan-
sifer [1] and Yang [28] produce textual explanation for the cause of
the type errors.

While these techniques can be useful in many cases, there are
also potential downsides. First, the explanation can become quite

verbose and repetitive, and the size grows rapidly as the program
size increases. Second, the explanation is inherently coupled to the
underlying algorithm that performs the inference. Thus, knowledge
about how the algorithms work is often needed to understand the
produced messages. Third, the explanations usually lead to the
failure point, which is often the result of biased unification and not
the true cause of the type error. Finally, although a potential fix for
the type error may lurk in the middle of the explanation chain, it’s
not always clear about how to exploit it and change the program.

Interactive debugging While many tools attempt to improve the
static presentation of type error information, interactive approaches
give users a better understanding about the type error or why certain
types have been inferred for certain expressions. Consequently, sev-
eral approaches to interactive type debugging have been pursued.

The ability to infer types for unbound variables enable a type
debugging paradigm that is based on the idea of replacing a suspi-
cious program snippet by a fresh variable [2]. If such replacement
leads to a type correct program, then the error location has been
identified. However, the original system proposed by Berstein and
Stark requires users to do these steps manually. Later, Braßel [3]
automated this process by systematically commenting out parts of
the program and running the type checker iteratively. Since type
changing is based on unification, it can again introduce the bias
problem. Also, it is unclear how to handle programs that contain
more than one type error.

Through employing a number of different techniques, Chitil [6],
Neubauer and Thiemann [22], and Stuckey [24, 27] have developed
tools that allow users to explore a program and inspect the types
for any subexpression. Chameleon [24, 27] also allows users to
query how the types for specific expressions are inferred. All these
approaches provide a mechanism for users to explore a program
and view the type information. However, none of them provides
direct support for finding or fixing type errors.

Error slicing The main advantage of slicing approaches [12, 23,
25] is that they return all locations related to type errors. The down-
side is that they cover too many locations. Recent improvements in
Chameleon [27] have helped to reduce the number of locations, but
the problem still persists (recall the example in the Introduction).
Moreover, slicing tools do not provide suggestions of how to get
rid of the type error.

Like error slicing approaches, our CF typing approach is com-
plete in not missing any potential change. However, the changes
we presented to users involve fewer locations. Usually, users have
to focus on only one location and its suggestions for type changes.

Embracing type uncertainty Similar to choice types, sum types
can also encode many types. Neubauer and Thiemann [22] devel-
oped a type system based on discriminative sum types to record
the causes of type errors. Specifically, they place two non-unifiable
types into a sum type. Technically, named choice types provide
more fine-grained control over variations in types than discrimina-
tive sum types. While sum types are unified component-wise, this
is only the case for choice types of the same name. Each alternative
in a choice type is unified with all the alternatives in other choices
with different names. Also, their system returns a set of sources
related to type errors. Thus, it can be viewed as an error slicing
approach. However, compared to other slicing approaches, it is not
guaranteed that the returned set of locations is minimal. Moreover,
the approach doesn’t provide specific change locations or change
suggestions.

Typing by searching CF typing and Seminal [18, 19] could both
be called “search based”, although the search happens at different
levels. While CF typing explores changes on the type level, Seminal
works on the expression level directly, which makes it impossible

for Seminal to generate a complete set of type-change suggestions.
Given an ill-typed program, Seminal first has to decide where the
type error is. Seminal uses a binary search to locate the erroneous
place. This way of searching causes Seminal to make mistakes in
locating errors when the first part of the program itself doesn’t
contain a type error but actually triggers type errors because it’s too
constrained. For example, the cause of the type error in the palin

example discussed in Section 1 is the fold function, which is itself
well typed. As a result, Seminal fails to find a correct suggestion.

Once the problematic expression is found, Seminal searches for
a type-corrected program by creating mutations of the original pro-
gram. For example, by swapping the arguments to functions, cur-
rying or uncurrying function calls, and so on. Compared to our
change deduction approach, this has both advantages and disad-
vantages. In some cases, it can find a correct change while our ap-
proach fails to do so, as, for example, in the missing-parentheses
problem discussed in Section 7. On the other hand, its power to
generate arbitrarily complicated changes can lead to bizarre sug-
gestions, such as the suggestion to change xs == (rev xs) to (==)

(xs,(rev xs)).

9. Conclusions
We have presented a new method for debugging type errors. The
approach is based on the notion of counter-factual typing, which is
the idea of systematically varying the types of all atomic program
elements to generate a typing potential for the erroneous program
that can be explored and reasoned about. We have exploited this
typing potential and the associated set of type changes to create a
ranked list of type-change and expression-change suggestions that
can eliminate type errors from programs. A comparison of a pro-
totype implementation with other tools has demonstrated that the
approach works very well and, in fact, outperforms its competitors.

In future work, we plan to investigate other uses of typing po-
tentials and type changes. For example, the integrated choice-based
representation provides opportunities for defining type queries that
can be used to examine programs and also form the basis for sophis-
ticated user interfaces to support more interactive forms of type de-
bugging. We also plan to investigate how well the approach works
for the debugging of type errors in richer type systems.

References
[1] M. Beaven and R. Stansifer. Explaining type errors in polymorphic

languages. ACM Letters on Programming Languages and Systems,
2:17–30, 1994.

[2] K. L. Bernstein and E. W. Stark. Debugging type errors. Technical
report, State University of New York at Stony Brook, 1995.

[3] B. Braßel. Typehope: There is hope for your type errors. In Int.
Workshop on Implementation of Functional Languages, 2004.

[4] S. Chen, M. Erwig, and E. Walkingshaw. An Error-Tolerant Type
System for Variational Lambda Calculus. In ACM Int. Conf. on
Functional Programming, pages 29–40, 2012.

[5] S. Chen, M. Erwig, and E. Walkingshaw. Extending Type Inference to
Variational Programs. ACM Trans. on Programming Languages and
Systems, 2013. To appear.

[6] O. Chitil. Compositional explanation of types and algorithmic debug-
ging of type errors. In ACM Int. Conf. on Functional Programming,
pages 193–204, September 2001.

[7] V. Choppella. Unification Source-Tracking with Application To Diag-
nosis of Type Inference. PhD thesis, Indiana University, 2002.

[8] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In ACM Symp. on Principles of Programming Languages,
pages 207–212, 1982.

[9] D. Duggan and F. Bent. Explaining type inference. In Science of
Computer Programming, pages 37–83, 1995.

[10] H. Eo, O. Lee, and K. Yi. Proofs of a set of hybrid let-polymorphic
type inference algorithms. New Generation Computing, 22(1):1–36,
2004.

[11] M. Erwig and E. Walkingshaw. The Choice Calculus: A Representa-
tion for Software Variation. ACM Trans. on Software Engineering and
Methodology, 21(1):6:1–6:27, 2011.

[12] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-
order languages. In European Symposium on Programming, pages
284–301, 2003.

[13] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning
haskell. In Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, Haskell ’03, pages 62–71, New York, NY, USA, 2003. ACM.

[14] B. J. Heeren. Top Quality Type Error Messages. PhD thesis, Univer-
siteit Utrecht, The Netherlands, Sept. 2005.

[15] G. F. Johnson and J. A. Walz. A maximum-flow approach to anomaly
isolation in unification-based incremental type inference. In ACM
Symp. on Principles of Programming Languages, pages 44–57, 1986.

[16] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type
inference algorithm. ACM Trans. on Programming Languages and
Systems, 20(4):707–723, July 1998.

[17] O. Lee and K. Yi. A generalized let-polymorphic type inference
algorithm. Technical report, Technical Memorandum ROPAS-2000-
5, Research on Program Analysis System, Korea Advanced Institute
of Science and Technology, 2000.

[18] B. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for
type-error messages. In ACM Int. Conf. on Programming Language
Design and Implementation, pages 425–434, 2007.

[19] B. Lerner, D. Grossman, and C. Chambers. Seminal: searching for ml
type-error messages. In Workshop on ML, pages 63–73, 2006.

[20] B. J. McAdam. Repairing type errors in functional programs. PhD
thesis, University of Edinburgh. College of Science and Engineering.
School of Informatics., 2002.

[21] B. J. McAdam. Reporting Type Errors in Functional Programs.
PhD thesis, Larboratory for Foundations of Computer Science, The
University of Edinburgh, 2002.

[22] M. Neubauer and P. Thiemann. Discriminative sum types locate the
source of type errors. In ACM Int. Conf. on Functional Programming,
pages 15–26, 2003.

[23] T. Schilling. Constraint-free type error slicing. In Trends in Functional
Programming, pages 1–16. Springer, 2012.

[24] P. J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging
in haskell. In ACM SIGPLAN Workshop on Haskell, pages 72–83,
2003.

[25] F. Tip and T. B. Dinesh. A slicing-based approach for locating type er-
rors. ACM Trans. on Software Engineering and Methodology, 10(1):5–
55, Jan. 2001.

[26] M. Wand. Finding the source of type errors. In ACM Symp. on
Principles of Programming Languages, pages 38–43, 1986.

[27] J. R. Wazny. Type inference and type error diagnosis for Hind-
ley/Milner with extensions. PhD thesis, The University of Melbourne,
January 2006.

[28] J. Yang. Explaining type errors by finding the source of a type conflict.
In Trends in Functional Programming, pages 58–66. Intellect Books,
2000.

[29] J. Yang. Improving Polymorphic Type Explanations. PhD thesis,
Heriot-Watt University, May 2001.

[30] J. Yang, G. Michaelson, P. Trinder, and J. B. Wells. Improved type
error reporting. In Int. Workshop on Implementation of Functional
Languages, pages 71–86, 2000.

