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Abstract—Comparative visualizations and the comparison
tasks they support constitute a crucial part of visual data analysis
on complex data sets. Existing approaches are ad hoc and often
require significant effort to produce comparative visualizations,
which is impractical especially in cases where visualizations have
to be amended in response to changes in the underlying data.

We show that the combination of parameterized visualizations
and variations yields an effective model for comparative visual-
izations. Our approach supports data exploration and automatic
visualization updates when the underlying data changes. We
provide a prototype implementation and demonstrate that our
approach covers most of existing comparative visualizations.

I. Introduction

To make sense of the fast-growing amounts of data, informa-
tion visualization is getting more and more important. The rate
of data collection in general is growing exponentially, driven by
the rise of technologies such as autonomous vehicles and smart
devices [1]. In turn, this continues to drive the development of
new approaches and techniques in data visualization to explore
and explain the data.

Comparative visualization is one such approach that focuses
specifically on comparison tasks when analyzing data. Com-
parisons tasks feature prominently in all kinds of visualization
history mechanisms [2], uncertainty visualization [3], software
visualization [4], and many more areas.

The widely adopted approach of using small multiples [5]
(roughly, composing the variant visualizations into a grid
containing all possibilities) provides only a partial solution.
Two immediate problems of this approach are how to organize
the charts into a grid and how to ensure they are simple enough
to be read at a small size. More seriously, a grid layout is
inherently only scalable in two dimensions. As the number of
orthogonal parameters in the data grows we need exponentially
many charts to keep up.
Another complication arises from the difficulty of context-

dependent comparison. For example, suppose we are tasked
with an analysis of profits per quarter for a business. During that
process we might need to undertake some semantic zooming
subtasks such as comparing only fourth quarter profits across
years to see the impact of holiday bonuses, or perhaps exploring
the data only for specific geographic regions. Such tasks can of
course always be performed manually by returning to the data,
subsetting or manipulating it, and then re-creating appropriate

visualizations. However, it is highly inefficient to essentially
having to start from scratch with each iteration.

In this work we propose a model for creating, transforming,
and comparing visualizations based on the notion of variation
that helps to systematize how data scientists can approach these
challenges. We begin by revisiting a model for constructing
traditional, non-variational visualizations in Section II. In
Section III we review a model of variation as well as its
application to represent variational pictures. Built on these two
components, we introduce variational visualizations in Section
IV with numerous examples. In Section V we evaluate how
our model of variational visualizations supports comparative
visualization. Section VI discusses related work and Section
VII presents some conclusions. This work makes the following
specific contributions.
• An expressive model of variational visualizations.
• A prototype implementation of the model, used to generate
all of the example figures in this paper.

• An evaluation of the model’s suitability for comparative
visualization tasks.

II. A Model for Data Visualization
We build on the visualization approach presented in [6].

Here we focus on a small subset of visualization types with the
goal of systematizing how we construct and compose them.

A visualization is essentially a composition of marks. Marks
encode primitive shapes implicitly through visual parameter
mappings. Based on Bertin’s visual variable [7], visual param-
eters are any rendered aspects of a mark that can be bound
to a data value, such as color, size, location, orientation, etc.
Marks also contain labeling information.

Mark = VisualParameter∗ × Label

A visualization is essentially given by a composition of marks,
a transformation between coordinate systems or an overlay
of visualizations. For simplicity we employ a simple prefix
notation (allowing binary operations to be written infix).

Visualization ::= Mark
| NextTo Visualization∗
| Above Visualization∗
| Cartesian Visualization
| Polar Visualization
| Overlay Visualization∗
| . . .978-1-5386-4235-1/18/$31.00 © 2018 IEEE
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Fig. 1: A series of non-variational and non-comparative visualizations constructed in our prototype using composition and transformation.
Both (b) and (c) are built from the visualization in (a) as a starting point.

In a Cartesian coordinate system the NextTo and Above
constructs divide space horizontally and vertically, respectively.
In a polar coordinate system they divide the space by angle
and radius, respectively.
For example, to construct a bar chart we need a sequence

of marks in which the height visual parameter of the primitive
rectangles is bound to a data value. We can also set the color
parameter of the marks and attach labels.

m1 = ([height 7→ 6.6, color 7→ green, . . .], “6.6”)
...

m10 = ([height 7→ 8.1, color 7→ green, . . .], “8.1”)

We can then compose these horizontally to generate a simple
chart shown in Figure 1a.1

bars = NextTo [m1, . . . ,mn]

Our model provides many shortcuts to avoid the tedious
construction of the individual marks. For example:

bars = barchart [6.6, . . . , 8.1] ‘colorAll‘ green

Building visualizations from composable parts makes it easy
to transform them. For example, suppose we would like to see
whether a Coxcomb chart (essentially a radial area chart, where
data is bound to the radius of equal-angle wedges) might be
more appropriate than a bar chart. In a typical visualization
tool this would require either starting over or perhaps copying
and modifying the code responsible for generating it.
Instead, our model allows visualizations to be transformed

directly, which avoids the need for managing multiple artifacts
or code snippets. In this particular case, a Coxcomb chart is
simply a bar chart reinterpreted in a polar coordinate system.
The marks are still composed next to one another (because in
a polar environment, horizontal composition corresponds to
the angle), and the data bound to the height does not need to
change (since vertical height corresponds to the radius distance
in the polar system). The rendered output of this transformation
is shown in Figure 1b.

cox = Polar bars

1All visualizations in this paper have been created with a prototype implemen-
tation of a visualization DSL that can be found at: https://github.com/karljs/vis.

If we find the Coxcomb chart too difficult to read, we can turn
it into a pie chart instead. In a typical visualization tool we
again would likely need to start over. But because a pie chart
corresponds closely to a Coxcomb chart, we can produce one
easily using another transformations. We still want to compose
our marks next to one another in a polar environment, but we
want to change the data to map to the angle (or width) instead
of the radius (or height). Since this requires modifying the
visual parameters, we need more than just another composition
operator. For this purpose we provide a series of functions that
modify visualizations, such as reorient, which flips the width
and height parameters of all the marks in a visualization for
us.

reorient : Visualization→ Visualization

Applying the reorient operation gives us the pie chart we were
expecting, but there is one more thing we can do. Pie charts are
often more effective when the individual wedges are colored
distinctly rather than with a single color, to provide some
visual separation. We could choose new colors manually, but
our system also defines some color schemes that can be applied
automatically. We can use the color operation to recolor the
chart, which takes a sequence of colors as a parameter. The
simplest way to use a nice default qualitative color scheme we
can just pass it the built-in defaultColors.

pie = reorient cox ‘color‘ defaultColors

This produces the rendered result shown in Figure 1c. There
are many more useful transformations that are possible; more
detail is provided in [6].

One important feature of the presented visualization model
is its ability to define and apply functions, which allows
visualization to be parameterized. Parameterization provides a
dynamic form of variationalization.

A. Comparative Visualizations Without Variability
It is not always necessary to use variation to compare two

visualization designs. Using the operation of our visualization
model, we can also already generate a limited form of
comparative visualizations using operators such as NextTo
and Above. For example, we could compare a barchart bar
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Fig. 2: Examples of comparative visualizations constructed in our prototype which do not make use of variability.

with its equivalent pie chart by explicitly placing one above
the other, as shown in Figure 2a.

Above [bar, reorient (Polar bar)]

Finally, when using polar charts, such as Coxcomb charts, we
can align wedges in concentric rings, when appropriate. This
makes comparing two polar charts more reasonable than putting
them beside one another.

Polar (Above [cox1, cox2])

Such a chart can be seen in Figure 2b.
Instead of showing visualizations side-by-side, another

possibility for comparison tasks is to show them overlaid. This
can be achieved in the same way as spatial composition by
using Overlay. However, to avoid the occlusion of parts of
visualizations, we can employ transparency to ensure lower
layers are always visible. An example is shown in Figure 2c.

Another approach is to partially offset the marks comprising
the lower layer visualizations in order to prevent them from
being totally obscured. In the following example, we make
use of both approaches simultaneously. The alpha command
configured the level of transparency for a visualization. Setting
RGBA colors directly is also supported. The spacing is slightly
more complicated. The relative spacing model is detailed in
[6], but the important aspect to know here is that when space
is applied it is always sized relative to a particular visualization
or element. For example, if spacing is applied between the
bars of a bar chart, it is specified as a ratio to the width of
the bars. If spacing is inserted between entire visualizations, it
is sized as a ratio of the width of the entire visualizations. In
the following example, we apply spacing both between bars
and on the edges of entire visualizations in order to provide
enough space for all bars to show.

The space function places empty space between the elements
of the visualization to which it is applied. In this case, we
apply it to a composition of bars with the argument 0.25, which
means that it will create a space equivalent to one-quarter the
width of the bars between each pair of bars. The rightSpace and
leftSpace functions behave slightly differently. Those essentially
compose empty space onto one side of an entire visualization.
For example, when we apply rightSpace with the argument
0.02, it produces space equal to 2 percent of the visualization’s

width and composes it on the right. The internal spacing is
unaffected.2
Overlay [bar1 ‘alpha‘ 0.5 ‘space‘ 0.25 ‘rightSpace‘ 0.02,

bar1 ‘space‘ 0.25 ‘leftSpace‘ 0.02]

Since our visualization model allows the definition of functions,
we can identify patterns such as this and capture them in
function definitions. Applying this visualization pattern to all
bars leads to the result shown in Figure 2d.

III. Representing Variation
The choice calculus [8] is a formal model of variation built

on the core concept of choices. Choices attach names, or
dimensions, to a list of alternatives. For example, we can write
a choice in dimension A between two variant numbers as
A〈1, 2〉. Choices can also be nested, as in A〈B〈1, 2〉, 3〉. In this
paper we limit ourselves to binary choices for simplicity, since
it is always possible to represent choices with more alternatives
using a sequence of nested choices.

Each binary dimension D also leads to two selectors, D.l and
D.r. Selectors indicate particular branches in that dimensions
and can be used for selection, which reduces or eliminates
variability. Selection is defined as follows where s ranges over
selectors, vx and vy range over variational values, and x ranges
over plain values.

bD〈vx, vy〉cs =



bvxcs if s = D.l
bvycs if s = D.r
D〈bvxcs, bvycs〉 otherwise

bxcs = x

For example, bA〈B〈1, 2〉, 3〉cB.r = A〈2, 3〉. When multiple
dimensions share choices they are synchronized, meaning that
performing a selection for one automatically performs the same
selection for all choices in that dimension.
Sets of selectors are called decisions and can be used to

eliminate variation with repeated selection. For a decision
δ = {s1, s2, . . . , sn}, we have bvxcδ = bb. . . bvxcs1 . . .csn−1csn .
Note that the order of selection is irrelevant. We employ the
variational type constructor V to distinguish variational values
from non-variational ones. For example, we write 3 : Int for
plain integers and A〈1, 2〉 : V (Int) for variational ones.

2The backquotes allow the writing of binary function as infix operators.



A. Variational Pictures
One application of the choice calculus is for the repre-

sentation of variational pictures [9]. Variational pictures are
structures that encode arbitrarily many different pixel-based
pictures. If a traditional picture is modeled as a function from
pixel grid locations to T values (often colors), PicT = Loc→ T,
then we can understand a variational picture to be a function
form pixel grid locations to variational T values.

VPicT = Loc→ V(T)

This allows us to define variational pictures by wrapping the
pixels that vary in choices. For example, we could construct a
small four-pixel variational picture v = ◦A〈B〈•,?〉,◦〉•A〈◦,◦〉 .

The two left pixels do not vary, while the two right pixels do.
The top-right pixel varies in both the A and B dimensions, while
the bottom-right pixel varies only in the A dimension. Because
we have two dimensions we can be selected independently,
this variational picture encodes four variant pictures (see
below). The semantics of variational pictures is a mapping
from decisions to plain pictures.

[[·]] : VPic→ V (Pic)
[[vp]] = {(δ, (l, x)) | (l, vx) ∈ vp, (δ, x) ∈ vx}

With this definition we can get the variants of the variational
picture v as {({A.l, B.l}, ◦••◦), ({A.l, B.r }, ◦?•◦ ), ({A.r }, ◦◦•◦), }.

We employ the idea behind variational pictures as a model for
representing visualizations that include variation. An important
difference is that we do not represent variational pixels but
apply variation to basic and composed visualization objects.

IV. Variational Visualizations
A variational visualization is a data visualization that encodes

arbitrarily many different plain visualizations and provides a
mechanism to navigate through all of the encoded variants.
The differences among the encoded visualizations could be
aesthetic such as colors or labels, they could be in terms of
how the visual parameters are bound, in terms of the data being
visualized, or some combination of these factors. To reason
about all these possibilities we need to manage the variation
in a systematic way.

A. Understanding Different Variability Designs
The visualization model described in Section II provides only

limited support for comparison tasks. In particular, without
an explicit representation for variation, the opportunities for
navigating and manipulating variational visualizations is rather
limited. On the other hand, the model of variational pictures
in Section III-A is too limited to handle the transformation
of variational visualizations. For that, we need yet another
application of the core ideas in the choice calculus.
To illustrate this, consider using the variational type con-

structor V, introduced in Section III, to make arbitrary types
variational. It might look something like this.

V(a) ::= D〈V(a),V(a)〉
| a

A value of type V(a) is either a plain value, or a choice of two
nested V(a) values. A V(a) value is a binary tree where the
nodes are choices and the leaves are values of type a. This def-
inition allows the top-level application of V to the visualization
type defined in Section II, that is, a variational visualization
would have the type V(Visualization). For example, We can con-
struct the variational chart PickColor〈blueChart, greenChart〉,
which allows the selection between two charts as a whole, but
it does not support comparing parts of two visualizations in
context. This can be important if two visualizations are similar
overall but differ only in a few places.
In addition to this top-level application of variability, there

are two other possibilities to integrate V into structures [10],
namely at the leaves or recursively.

Application of the V type constructor at the leaves involves
moving the variation into the visualization structure, applying
it directly to the marks. We could redefine our visualization
type to be the following.

Visualization ::= V(Mark)
| NextTo Visualization∗
| . . .

Since we likely want to avoid constructing all of our variational
marks manually, we would need to update many of the built-in
operations such as barchart. In order to construct a variational
visualization where the marks are the parts that vary, we need
to provide barchart with variational data as input. That is,
instead of the type

barchart : List(Number) → Visualization

we would have something of the form

barchart : V (List(Number)) → Visualization

This new barchart function would then be responsible for
creating a mark for each variant data value.
By pushing the type constructor down into the marks we

are able to eliminate two of the major drawbacks from the
top-level approach: First, redundant visualization structures
can be avoided because the variation can only occur at the
innermost level, and second, we can also determine exactly
where the variation occurs by observing the marks and their
variation directly.

However, the leaf-level application of V prevents many kinds
of useful variations in visualizations. For example, we are not
able to represent a bar chart that is either a vertically or a
horizontally oriented bar chart depending on the selection.
These have subtly different structures (Above as opposed to
NextTo), and since we only allow marks to vary, and not
the composition operators, this is not possible. Therefore, this
approach is obviously too limited to be useful in the general
case.

A final possibility is to integrate the variability directly into
the recursive structure of the visualizations, allowing it to occur
wherever is most appropriate for the desired effect. We can
add a new case to the visualization definition as follows.

Visualization ::= . . .
| V(Visualization)



The added flexibility of this recursive application of V allows
us to avoid any issue with being unable to represent particular
kinds of variation. Moreover, assuming the variation is allocated
judiciously, we can also avoid unnecessary redundancy.

However, the burden of choosing where to integrate variation
is shifted onto the visualization author. Given such a system,
the user must have a sufficient understanding of its inner
workings to not only know when it is preferable to move
the variability inward or outward in the visualization structure,
but also how to actually achieve this by using and defining
operations. Still, given the the drawbacks of the top-level and
leaf-level approaches, the additional demands on the user seem
to be reasonable.

B. Rendering and Navigating Variational Visualizations
Having found a suitable way to integrate variability into

our visualizations, we still need to decide how they can be
presented to and navigated by users. We have implemented a
prototype, which renders variational visualizations according
to the model of variational pictures described in Section III-A,
that is, it produces a variational picture where each variant
plain picture is one of the variant plain visualizations. All
of the figures used in this paper have been generated by this
prototype.
A tool for displaying variational visualizations must allow

users to navigate among the different variants. For simplicity,
we chose a simple approach based on standard GUI elements.
We extract all of the dimensions that a variational visualization
contains and produce a checkbox for each. This checkbox
toggles the selection in that dimension. When one of the
dimensions is toggled on, radio buttons are shown to select
between either the left or right alternatives. This scheme allows
users to specify any decision, whether partial or total, and see
the rendered result.

When a decision is not total, and variation still exists in the
visualization being rendered, it is not obvious what should be
drawn. One possibility is to draw nothing for the parts that
are unselected and just indicate that a selection must be made
first, such as by a box or outline. Since we are focusing on
comparison tasks, however, we chose an approach in which all
variants of the current visualization are shown at once, side-by-
side, using a small multiples approach. This not only supports
comparison but also gives users the ability to see visually how
much variation remains unselected in their visualization.
We have also used colors to map the navigation interface

to the portions of the rendering canvas that they affect. For
example, if a particular dimension toggles the height of a
bar, we outline that bar’s space with a colored, dashed outline
and color the corresponding UI elements with the same color.
These colors are assigned automatically. A screenshot of the
prototype is shown in Figure 3.

C. Variational Comparative Visualizations
The simplest example of a variational visualization is to

combine two existing visualizations in a choice, as indicated
above with the choice between the green and blue barchart.

Fig. 3: A screen capture of our prototype user interface showing
possible configuration/selection options. On the left is the rendered
visualization currently being constructed and on the right are the
interface elements which allow the user to navigate among the variants.

Recall from Section III that choice expressions can be
simplified by selection. However, if the selection is performed
with a decision that is not total, i.e., that does not map
every choice to a particular alternative, then the variation
is not entirely removed. In our prototype, when variation is
not entirely eliminated with selection, we render all of the
remaining variants in a small multiples grid.
Another use of variation is to control the level of detail

shown for a set of data. For example, suppose we want to
produce a pie chart showing a breakdown of some costs for
geographic regions in the United States. We might want to show
an overview for areas such as West coast, East coast, South,
etc. (Figure 4a). However, we also want to make the details
of the states comprising each region available on demand by
selecting corresponding variants (Figure 4b). We can encode
the zoomed out and zoomed in versions of each pie wedge in
a choice, allowing variation to take care of the exponentially
many different versions.3 The rendered output is shown in
Figure 4.

Polar (NextTo [West〈2.0,NextTo [1.0, 0.4, 0.6]〉
East〈0.8,NextTo [0.2, 0.3, 0.3]〉
South〈3.0,NextTo [1.9, 0.7, 0.4]〉)

Variation is not just useful for comparing aesthetic options,
however. One of the major advantages that an approach based on
variation gives us is the ability to work directly with variational
data. Suppose we want to examine source code that is annotated
with C-preprocessor macros such as #ifdef to chart the number
of lines of code in each block. We could produce each of the 2n
possible configurations (where n is the number of configuration
options), count the relevant lines of code in each, and then
produce a separate chart for each configuration.

3Some details regarding how the relative widths of nested visualization
components are computed and the color assignment are omitted here for
simplicity.
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Fig. 4: Comparative visualizations for exploring visualization de-
tails; (a) Summary visualization that corresponds to the decision
{West.l,East.l, South.l}; (b) Revealing details for the east with decision
{West.l,East.r, South.l}.

This, however, is generally infeasible since large software
projects have hundreds or even thousands of configuration
options [11]. However, if we instead count the number of
lines directly, but encode the values as variational numbers
corresponding to the preprocessor macros, we can perform all
of the work in a single pass. Since the data and the visualization
tool would be making use of the same variation representation,
we can then just chart the results directly. For example, we could
make use of the vbarchart function, which is the variational
equivalent of barchart.

vbarchart : V(Number) → Visualization

The viewer of the visualization can then navigate the different
configurations to compare the results for each.

Finally, we can compute modified versions of visualizations
to compare between. Suppose, for example, we have two bar
charts showing monthly earnings over the past two years for a
business. We would now like to compare the two years directly
by charting the change from the first year to the second for each
month. We can use the zipWith function, which accepts two
visualizations as input, traverses them in parallel, and computes
a new visualization element based on a binary operation. In
this example, we want to subtract the height of the bars in
the second chart from the height of the bars in the first. We
can simply use zipWith together with the (-) function, which
determines which visual parameter(s) are bound to data and
computes their differences. For cases in which several visual
parameters are bound to data, users can specify exactly which
should be acted upon.

zipWith (-) bar1 bar2

An example of this computed visualization, composed next to
the two original charts, is shown in Figure 5a.

Similarly, we can also compute data transformations directly
on visualizations. For example, we may have a set of data
already charted for which we also want to see both the log
transformed version and a square root transformed version.
Moreover, we want to see the original and transformed data
at the same time, overlaid using transparency. We can achieve
the result shown in Figure 5b in the following way. Note that

the figure shows the output when we have not selected either
alternative, meaning both are shown using a small multiples
approach.

MapType〈Overlay[bar1 ‘alpha‘ 0.5,map log bar1]
Overlay[bar1 ‘alpha‘ 0.5,map sqrt bar1]〉

Here we are using the map function to apply a transformation
directly to the visualization elements rather than first transform-
ing the data and only then creating a new visualization.
Finally, we can also perform computations across entire

visualizations, such as when sorting elements. Perhaps, for
example, we have created some donut charts and realize now
that they may be easier to read when sorted. Again, we can
avoid having to copy and paste code or start from scratch by
directly sorting the elements of an existing visualization.

Sorted〈Polar (Above [pie1, pie2]),
Polar (Above [sort pie1, sort pie2])〉

Figure 5c shows the result.

V. Evaluation of Variation for Comparison
To evaluate how well variation and parameterization is able

to serve as a model for comparative visualization, we need to
know what features are required. Gleicher et al. [12] propose
a taxonomy of visual designs used for such comparison tasks.
The taxonomy is validated through a significant survey of work.

Their taxonomy of comparative designs categorizes all of
the work surveyed into three main categories (as well as
pairs of categories) juxtaposition, superposition, and explicit
representation of the relationships. Additionally, there are
hybrid categories which combine two of these approaches
into one design. We explore each of these options in turn and
demonstrate which parts of our model can be used to express
them.

A. Juxtaposition
The core idea of juxtaposition is to support comparison tasks

by placing the objects to be compared into separate spaces. The
objects are always shown independently and in their entirety.
One common form is spatial juxtaposition, also often called
small multiples, in which the objects to be compared are all
shown and arranged (often as a grid) in the available space.
The taxonomy also allows for juxtaposition in time, in which
objects are displayed one after another in sequence.
Our model of variational visualizations supports juxtaposi-

tion in more than one way. The easiest way to achieve it is to
use variation to encode the visualizations we want to compare,
and then rely on the default behavior of our prototype tool. This
renders a small multiples view of all visualization alternatives
that are not explicitly selected. Another approach is to use
the spatial composition operators explicitly, such as Above
and NextTo. These juxtapose visualizations geometrically
by dividing up the available space equally. However, plain
spatial composition does not support the selective display and
navigation of alternatives provided by variations.
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Fig. 5: Examples of comparative visualizations using hybrid designs. In (a) we have two charts on the left which are zipped together to
produce the chart on the right by subtracting the heights of the lower chart from the top one. Note that each chart is scaled independently
and so simply measuring the bars would be misleading. Figure (b) shows a small multiples rendering of a data set overlaid with its log
transformed data on the left and square root transformed data on the right. Finally, (c) shows a variational visualization in which the left
variant shows the original data and the right variant shows the visualizations sorted after their creation.

Finally, juxtaposition can also be temporal, as in an animation
that cycles through a set of visualizations. Our prototype does
not support animation directly, but it is trivial to replicate
this behavior using choices. We simply encode the variants as
part of a variational visualization, as in the first example, and
map each step of the animation to a particular selection. It is
then easy to envision a tool which allows the user to define
an animation by setting a timer which navigates among the
desired selections.

Therefore, we can say that juxtaposition can be modeled by
a combination of variation and spatial composition.

Juxtaposition ≈ V ⊕ SpatialComposition

B. Superposition
The superposition category includes designs in which the

objects being compared all share a single space. In general,
this is realized by composing visualizations via an overlay
operation. Aesthetic tweaks such as transparency and small
shifts to avoid totally obscuring some objects are common.
Superposition also frequently requires some computation to
determine an alignment for different objects. In Section IV-C
we showed examples making use of overlays, transparency, and
spacing directly.

Because our model offers the ability to define functions over
visualizations, realizing a general mechanism for parameter-
ization, we can employ computation at essentially all levels.
We have shown examples that include sorting values. We can
also envision more sophisticated scenarios such as changing
the order of overlaid charts or organizing a small multiples
layout based on some derived value from a set of charts.
It is clear from these examples that superposition can be

modeled by parameterization/computation and Overlay.

Superposition ≈ Parameterization ⊕ Overlay

C. Explicit Representation of Relationships
The final category of the taxonomy includes designs which

encode the relationships among the objects being visualized
directly. One example we have already seen of this is charting

the difference between two ordered data sets (using zipWith) and
visualizing that result rather than showing both original data
sets. A design in this category always involves the extra step
of computing the relationships among objects before anything
can be visualized. In general, visualizations following these
design principles do not require variation techniques in our
model, since we have access to computation. We have also
shown how we can apply data transformations to individual
visualizations, including log and square root transformations.

Finally, in some cases variation can also be used to explicitly
encode relationships. One example of this is the pie chart in
Section IV-C in which the variation controls the visible level
of detail.

Based on these examples, we see that the explicit encoding
approach can be modeled by a combination of variation and
parameterization.

ExplicitEncoding ≈ Parameterization ⊕ V

D. Hybrid Categories
The taxonomy also includes designs that take hybrid

approaches. Combining the three original categories into
pairs results in three new hybrid categories, juxtaposition
and superposition, juxtaposition and explicit encoding, and
superposition and explicit encoding. Each of these is manifested
in designs included in the survey and so are necessary to
include.
Due to our compositional design of visualizations, all of

the functionality discussed so far is essentially orthogonal
and all techniques can be composed. For example, to support
juxtaposition and superposition at the same time, we can use any
of the approaches mentioned above in Section V-B to produce
visualizations making use of superposition. With those results,
we can then compose those charts together (using language
constructs or variation, as described in Section V-A) to produce
a hybrid visualization.
Analogously, for juxtaposition and explicit encoding we

can apply any desired computations to explicitly visualize
relationships among objects and data and then compose



those into larger, hybrid visualizations. One example of this
would be to juxtapose (using variation) two charts which are
themselves variational, as we did with the log and square root
transformation example in Section IV-C.
Finally, for a hybrid approach involving superposition and

explicit encoding we can compute any desired relationships
among objects and then add them to the overlay composition
used in superposition. Conveniently, the same log and square
root transformation example also demonstrates an example of
this category.

E. Evaluation Conclusions
Since our model is intentionally limited to a small subset

of visualization types we do not claim to be able to reproduce
most of the actual designs surveyed to produce the taxonomy.
However, we have shown how an approach based on parameteri-
zation and variation can, in principle, support any combination
of identified comparative designs (see the summary in the
following table).

Spatial
V Parameterization Composition Overlay

Juxtaposition × ×

Superposition × ×

Explicit Repr. × ×

Our prototype implementation is able to handle all of the core
ideas underlying the comparative designs.

VI. Related Work
There is no shortage of visualization tools and models, and

it is beyond the scope of this section to characterize them all.
We therefore mention only on those which directly influenced
this work. While D3 [13] has since supplanted it and gained
widespread adoption, its predecessor Protovis [14] is closer
in design to our model. Protovis was based on a declarative
domain-specific language which separated the specification
of visualizations from the rendering process [15]. Protovis
was superseded by D3 primarily because the authors aspired
to create a tool for web developers to be able to do more
than creating visualizations. D3 is less a visualization tool
than a library for data-driven web content. The cost of this
added flexibility is the elimination of domain-specific constructs.
The change seems to have been motivated by a rethinking of
the goals of the project. We believe that the domain-specific
approach still has value for many users, which is witnessed to
some extent by the creation of many libraries in the community
that abstract over D3.
Both ggplot2 [16] and the grammar of graphics which

underpins it [17] serve as inspiration particularly for visu-
alization transformations, although it is not designed to support
programmability and is therefore generally fixed in what
operations are supported.

The Haskell domain-specific language Diagrams, described
partially by Yorgey [18], supports the creation of diagrams
through composition and relatively spacing and directly informs

many of the concepts used to define our model of visualizations.
Diagrams does not directly support data-driven graphics and
so is not suitable for a general purpose visualization tool.

Comparative visualization is a large and growing field. Over
roughly the past two decades, a number of works in information
and scientific visualization have advocated for and distinguished
deliberate visual comparison designs, including Pagendarm and
Post [19], Woodring and Shen [20], and Roberts [21]. Naturally
Gleicher et al. [12], referred to throughout this work, provides
a thorough overview of the field as well as a taxonomy of
comparative designs.

Comparison tasks are also a core part of visualization history
tools. Interacting with the history of a user-created visualization
artifact is itself too broad of a subject to fully summarize here,
so we refer to Heer et al. [2] which studies and organizes the
design space of graphical history tools.
Finally, another area in which visual comparison tasks

arrive routinely is in uncertainty visualization. Uncertain or
missing data often lead naturally to a large, or even infinite
set of possible visual representations. One example is weather
forecasting with uncertain parameters, which can result in
needing to compare a collection of different results, as described
by Bonneau et al. [3]. That work also effectively summarizes
sources of uncertain data as well as current approaches and
unsolved problems.

To our knowledge, no work has yet tried to apply a systematic
model of variation explicitly to support visual comparison tasks.
However, some work makes implicit use of comparison for
variation-based exploratory tasks. For example, Side Views [22]
and Parallel Paths [23] designed live “what-if” previews for
graphical operations which implicitly relies on comparison.
Hartmann et al. [24] took a variation-based approach to user
interfaces and interactions which require comparison tasks.
As mentioned, the work on variational pictures [9] makes
use of variational area trees to help support comparison and
exploration tasks.

VII. Conclusions & Future Work
We have shown an approach to information visualization

based on parameterization and variability. Through examples,
we have demonstrated the suitability of this approach for
creating not only visualizations in general, but specifically
those that support visual comparison tasks.
We have evaluated our model by showing how it is able

to instantiate visualizations in every category of Gleicher’s
taxonomy of comparative designs [12]. Accordingly, we posit
that parameterized variational visualizations offer an effective
model of comparative visualization more generally.
In future work, we will extend the implementation of our

visualization DSL with general control structures and operators
to introduce, maintain, and consume variational visualizations.
This will offer users an exploratory approach to information
visualization in general.
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