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Abstract. We present guided type debugging as a new approach to quickly and
reliably remove type errors from functional programs. The method works by gen-
erating type-change suggestions that satisfy type specifications that are elicited
from programmers during the debugging process. A key innovation is the incor-
poration of target types into the type error debugging process. Whereas previous
approaches have aimed exclusively at the removal of type errors and disregarded
the resulting types, guided type debugging exploits user feedback about result
types to achieve better type-change suggestions. Our method can also identify
and remove errors in type annotations, which has been a problem for previous
approaches. To efficiently implement our approach, we systematically generate
all potential type changes and arrange them in a lattice structure that can be effi-
ciently traversed when guided by target types that are provided by programmers.

Keywords: Type debugging, type inference, error localization, type error mes-
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1 Introduction

One beauty of the Hindley-Milner type system is the type inference mechanism that
computes principal types for expressions without any type annotation. However, when
type inference fails, it is often difficult to locate the origin of type errors and deliver
precise feedback to the programmer. Despite numerous efforts devoted to improve type
error diagnosis in past three decades [22, 13, 12, 19, 25], every proposed approach be-
haves poorly in certain situations.

A major problem for the localization and removal of type errors is the inherent am-
biguity in this problem. For example, the type error in the expression not 1 can be fixed
by either replacing the function or the argument. Without any additional information it
is not clear what the correct solution is. In such a situation type checkers that produce
suggestions for how to fix a type error have to fall back on some form of heuristics [13,
12, 14, 25, 4] to select or rank their recommendations. These heuristics are often based
on some complexity measure for suggestions (for example, prefer simple changes over
complex ones), or they try to assess the likelihood of any particular suggestion. A prob-
lem with most of these approaches is that while they may work reasonably well in
some cases, they can also go wrong and be misleading. This presents a problem since
lack of precision in tools leads to distrust by users. Moreover, for novices it can add to
confusion and frustration [12].
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rev [] = []
rev (x:xs) = rev xs ++ x

last xs = head (rev xs)
init = rev . tail . rev

rR xs = last xs : init xs

last :: [[a]]->a
(1) Is intended type an instance? (y/n) n

... interactions (2) through (8) omitted

(++) (rev xs) :: [b]->[b]
rev :: a->[b]
xs :: a
(9) Are intended types an instance? (y/n) y
Error located. Wrong expression:
(rev xs) ++ x

Fig. 1: An ill-typed program (left) together with an interaction session between a user
and an algorithmic debugging tool (right) [7] .

As a partial solution to this problem programmers are advised to add type annota-
tions to their program.1 Type annotations can assist type checkers in producing better
error messages, and they also enhance the readability of programs.2

However, type annotations are not without problems. In particular, too much trust in
type annotations can have a negative impact on the precision of error localization. This
happens when type annotations themselves are erroneous. A type checker that assumes
that type annotations are always correct will not only miss the error in the annotation,
but will also produce wrong error messages and misleading suggestions.

Incorrect type annotations are not a fringe phenomenon. Precisely because type
annotations represent a useful form of redundancy in programs, they are widely used,
and thus it may very well happen that, over time, they get out of sync with the rest of
the program. This can happen, for example, when an annotation is not updated after its
corresponding expression is changed or when another part of the program is changed so
that it relies on a more generic form of an expression than expressed by the annotation.
We have investigated a set of over 10,000 Haskell programs, which were written by
students learning Haskell [10]. Of those, 1505 contained type errors (the remaining
programs were well typed or contained parsing errors or unbound variables). We found
that over 20% of the ill-typed programs contained wrong type annotations. We will
discuss the impact of incorrect type annotations on type error messages in Section 5 in
more depth.

We seem to face a dilemma now. To produce better feedback about type errors
we have to rely on some form of user input, and information about the intended type
of expressions is extremely helpful for this. At the same time, type annotations are
not always reliable and sometimes even cause more problems. A solution is to elicit
user input in a systematic and targeted manner. Specifically, we should ask for type
information at the fewest number of possible places and where this information is most
beneficial to our type debugger. This strategy ensures the availability of the latest up-to-
date type information and avoids the potential problems with type annotations discussed
earlier.

1
http://en.wikibooks.org/wiki/Haskell/Type_basics#Type_signatures_in_code

2 Type annotations can also improve the performance of type checkers. They also help make
type inference decidable in richer type systems. A discussion of these aspects is beyond the
scope of this paper.
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What is the expected type of rR?
[a] -> [a]

Potential fixes:
1 change x from type a to type [a].
2 change ++

from type [a] -> [a] -> [a]
to type [a] -> a -> [a]

There are no other one-change fixes.
Show two-change fixes? (y/n)

What is the expected type of rR?
[[a]] -> [a]

Potential fixes:
1 change rev (in tail. rev)

from type [[a]] -> [a] to type [a] -> [a]
2 change tail (in tail . rev)

from type [a] -> [a] to type [a] -> [[a]]
Show more one-change fixes? (y/n)

Fig. 2: Guided Type Debugging. The target type for rR is [a] -> [a] (left) and [[a]]

-> [a] (right). User inputs are shown in italics.

The idea of systematically eliciting user input for debugging (type) errors is not
new [7, 20]. To illustrate our approach and compare it with these previous systems
we present in Figure 1 an ill-typed program, taken from [7] (with some of the names
changed). The error is attributed to the expression rev xs ++ x, and x should be re-
placed by [x]. We also show part of an interaction session between a user and the
algorithmic debugger [7]. (Of the omitted seven questions, five are similar to (1), ask-
ing questions about variables, whereas two are similar to (9), asking questions about
subexpressions and the relationships between their types.) The general strategy of this
method is to systematically inquire about the correctness of each subexpression once an
expression has been identified as ill typed (rR in the example). The first question is thus
about the function last. If users respond “yes” to the question about a subexpression,
then no more questions about that subexpression will be asked. Otherwise, the algorith-
mic debugger will switch the focus to that subexpression and ask questions about its
subexpressions. From the debugging session, we can observe the following.

– To find the source of an error, the debugger has to work through chains of function
calls and fragments of function definitions.

– The debugger interacts with users in typing jargon. Moreover, users have to track
and connect information when the same type variable appears at different places
(as, for example, the type variable a in the types for rev and xs).

– The length of a debugging trace depends on the distance between the origin of a
type error and where it manifests itself. This distance can be large.

– The type debugger works in a linear fashion, and it is unclear how to support cases
in which there is more than one type error.

– The final change suggestion delivered by the debugger still leaves some work for
users to figure out what exactly the cause of the type error is and how to fix it.

The interactive type debugger [20] follows the same strategy and thus suffers from
similar problems. We argue that even with the assistance of such debuggers, locating
and removing type errors is still a nontrivial and arduous task.

In contrast, the guided type debugging (GTD) approach developed in this paper
asks programmers to provide simple type signatures only. Moreover, most of the time,
only one signature is needed to lead to a suggestion for how to fix the type error. More
specifically, for a single expression, exactly one signature is needed. For a program
with multiple function definitions and expressions containing type errors, we have to



4 Sheng Chen and Martin Erwig

distinguish between several cases. First, if only one expression is ill typed, GTD solicits
a type annotation for that expression. In case there are more expressions that are ill
typed, GTD asks for a type annotation for the first ill-typed expression. In case the
program still contains ill-typed expressions after the user has fixed the first one, GTD
again asks for a type annotation for the next ill-typed expression. This process repeats
until the whole program becomes well typed. Note that the expression for which GTD
requests a type annotation is not necessarily the cause of the type error, and GTD will
point to the most likely cause of the type error in the program.

Figure 2 shows two examples. Here the debugger first asks the programmer for the
intended type of the ill-typed expression rR. If the target type is [a] -> [a], the debug-
ger infers that there are exactly two potential suggestions with only one change to the
program. The first suggestions is to change x, whose inferred type is a, to something of
type [a]. The second suggestion is to change ++ of type [a] -> [a] -> [a] to some-
thing of type [a] -> a -> [a]. There are, of course, other changes that can lead the
expression rR to the target type, but each such suggestion requires changes in at least
two places. (The right half of Figure 2 shows the suggestions in case the target type is
[[a]] -> [a].)

With a user interface, we can envision a more flexible way of how GTD may be
used. First, GTD type checks the program and marks all expressions that are ill typed.
The user can go to any expression and specify the intended result type. GTD will then
suggest a most likely change that satisfies the user’s intention. Note that the user may
even specify an intended type for a well-typed expression. For example, if the user
specifies [[a]] -> [[a]] as an expected type for foldr (:) [], which is well typed,
GTD will suggest to change (:) of type a -> [a] -> [a] to something of type [a] ->

[a] -> [a].

In summary, GTD will ask programmers significantly fewer questions than algo-
rithmic type debugging. GDT will then work out the details and show exact change
locations and suggestions. Moreover, GTD supports changes involving multiple loca-
tions.

To work as indicated, the GTD method has to find all potential changes that can
in principle fix a particular type error. Moreover, it must be able to select among all
changes those that satisfy the user-provided intended types of expressions. At the same
time, all these tasks have to be done efficiently.

We employ counter-factual typing [4] (CF typing for short) to realize the first task.
CF typing computes all potential type changes for fixing type errors by typing expres-
sions once. For each change, it returns the information about change locations, the ex-
pected type for each location, and the result type of applying the change. We describe
the concept of variational types as the underlying representation in Section 2 and the
method of CF typing in Section 3.

To implement the second task efficiently, we exploit the instance-of relationship
among result types of change suggestions. Specifically, we can arrange all changes
in a lattice because changes involving more locations always produce more general
result types than changes involving fewer locations. Given a user-provided target type,
we can search through this lattice efficiently and narrow down the set of changes to a
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manageable size. We describe the idea of type-change lattices and how they can help to
find good type-change suggestions in Section 4.

The question of how GTD can deal with erroneous type annotations is discussed in
Section 5. Section 6 discusses related work, and Section 7 concludes the paper.

2 Representing Type Errors by Variational Types

A type error results when the rules of a type system require an expression to have two
conflicting (that is, non-unifiable) types. This happens, for example, when a function
is applied to an argument of the wrong type or when branches of a conditional have
different types. One of the simplest examples of a type error is a conflicting type an-
notation, as in the expression e = 3::Bool. Now the problem for a type checker is to
decide whether to consider the annotation or the type of the value to be correct. With-
out any further information this is impossible to know. Therefore, we should defer this
decision until more context information is available that indicates which one of the two
is more compatible with the context.

To represent conflicting type for expressions we employ the concept of choice
types [6]. A choice type D⟨ϕ1,ϕ2⟩ has a dimension D and contains two alternative types
ϕ1 and ϕ2. For example, we can express the uncertainty about the type of the expression
e with the choice type D⟨Int,Bool⟩. Choice types may be combined with other type
constructors to build variational types, in which choices may be nested within type
expressions, as in D⟨Int,Bool⟩ → Int.

We can eliminate choices using a selection operation, which is written as ⌊ϕ⌋s. Here
ϕ is a variational type, and s is a selector, which is of form D.1 or D.2. Selection re-
places all occurrences of D⟨ϕ1,ϕ2⟩ with its ith alternative. Choice types with different
dimensions are independent of one another and require separate selections to be elimi-
nated, whereas those with the same dimension are synchronized and are eliminated by
the same selection. For example, A⟨Int,Bool⟩ → A⟨Bool,Int⟩ encodes two function
types, but A⟨Int,Bool⟩ → B⟨Bool,Int⟩ encodes four function types. We use δ to range
over decisions, which are sets of selectors (usually represented as lists). The selection
operation extends naturally to decisions through ⌊ϕ⌋s:δ = ⌊⌊ϕ⌋s⌋δ. In this paper, when
we select δ from a type ϕ, we assume that selection eliminates all choices in ϕ.

The idea of CF typing is to systematically generate all changes (for variables and
constants) that could fix a type inconsistency. Each such change is represented as a
choice between the current and the new type. In the example, the choice type A⟨Int,α1⟩
is created for 3.3 The first alternative denotes the current type of 3, and the second
alternative denotes a type that can make 3 well typed within its context. We can think of
the first alternative as the type 3 should have when it is not the cause of type errors and
the second alternative as the type 3 ought to have when it is. Similarly, the annotation
Bool may also be the cause of the type error. We thus create the choice type B⟨Bool,α2⟩,
which says that if the type annotation is correct, it has the type Bool, otherwise it has
the type α2, an arbitrary type that makes the context well typed.

3 One might wonder why a type variable is chosen and not just the type Bool. The reason is that
when we are typing 3, we have no knowledge about its context yet. We thus use α1 to allow it
to acquire any type that its context dictates.
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But what should be the type of e? Usually, when we have two sources of type infor-
mation for one expression, we unify the two types. Thus we would expect the unification
result of A⟨Int,α1⟩ and B⟨Bool,α2⟩ to be the result type of e. However, the two choice
types are not unifiable because Bool and Int fail to unify. (This is not surprising since
the expression contains a type error.)

We address this problem through the introduction of error types [5], written as ⊥,
to represent non-unifiable parts of choice types. Specifically, we have developed a uni-
fication algorithm that computes a substitution for two variational types that is (a) most
general and (b) introduces as few error types as possible. Because of the possibility of
error types we call such substitutions partial unifiers. For the two types A⟨Int,α1⟩ and
B⟨Bool,α2⟩, the algorithm computes the following partial unifier.

θ = {α1 7→ A⟨α4,B⟨Bool,α3⟩⟩,α2 7→ B⟨α5,A⟨Int,α3⟩⟩}

The algorithm also computes a typing pattern that captures the choice structure of the
result type and represents, using error types, those variants that would lead to a type
error. In our example, the typing pattern is π= A⟨B⟨⊥,⊤⟩,⊤⟩. It indicates that the types
at [A.1,B.1] fail to unify (⊥) and all other variants unify successfully (⊤). The typing
pattern is used to mask the result type that can be obtained from the partial unifier. From
θ and π we obtain the type ϕ = A⟨B⟨⊥,Int⟩,B⟨Bool,α3⟩⟩ for e. Finally, from θ and ϕ
we can derive following changes to potentially eliminate the type error in e.

– If we don’t change e, that is, if we select [A.1,B.1] from ϕ, there is a type error.
– If we change 3 but don’t change the annotation Bool, that is, if we select δ =
[A.2,B.1] from ϕ, we get the type Bool. Moreover, by selecting δ from θ(α1), we
get Bool, which is the type that 3 should to be changed to.

– If we change the annotation Bool but don’t change 3, that is, if we select δ =
[A.1,B.2] from ϕ, we get the result type Int. Moreover, by selecting δ from θ(α2)
we get Int as the type the annotation Bool ought to be changed to.

– If we change both 3 and Bool, that is, if we select [A.2,B.2] from ϕ, we get a more
general type α3. This means that e can be changed to some arbitrary value of any
type. Note that α3 will be very likely refined to a more concrete type if e occurs as
a subexpression within some other context.

3 Counter-Factual Typing

In this section we describe the CF typing method [4], extended to handle type annota-
tions. We work with the following syntax for expressions and types.

Expressions e, f ::= c | x | λx.e | e e | let x = e in e | e::τ
Monotypes τ ::= γ | α | τ → τ
Variational types ϕ ::= τ | ⊥ | D⟨ϕ,ϕ⟩ | ϕ → ϕ
Type schemas σ ::= ϕ | ∀α.ϕ
Choice environments ∆ ::= ∅ | ∆,(l,D⟨ϕ,ϕ⟩)
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CON
c is of type γ D fresh

Γ ⊢ c : D⟨γ,ϕ⟩|{(ℓ(c),D⟨γ,ϕ⟩)}

VAR
Γ(x) = ∀α.ϕ1 D fresh ϕ = {α 7→ ϕ′}(ϕ1)

Γ ⊢ x : D⟨ϕ,ϕ2⟩|{(ℓ(x),D⟨ϕ,ϕ2⟩)}

UNBOUND
x /∈ dom(Γ) D fresh

Γ ⊢ x : D⟨⊥,ϕ⟩|{(ℓ(x),D⟨⊥,ϕ⟩)}

ANT
Γ ⊢ e : ϕ1|∆ D fresh ϕ2 = D⟨τ,ϕ′⟩

π1 = ϕ1 ▷◁ ϕ2 ϕ3 = π1 ◁ϕ1

Γ ⊢ (e::τ) : ϕ3|∆∪{(ℓ(τ),ϕ2)}

ABS
Γ,x 7→ ϕ ⊢ e : ϕ′|∆
Γ ⊢ λx.e : ϕ → ϕ′|∆

LET
Γ,x 7→ ϕ ⊢ e : ϕ|∆

α = FV(ϕ)−FV(Γ) Γ,x 7→ ∀α.ϕ ⊢ e′ : ϕ′|∆′

Γ ⊢ let x = e in e′ : ϕ′|∆∪∆′

APP
Γ ⊢ e1 : ϕ1|∆1 Γ ⊢ e2 : ϕ2|∆2 ϕ′2 → ϕ′ = ↑(ϕ1) π = ϕ′2 ▷◁ ϕ2 ϕ = π◁ϕ′

Γ ⊢ e1 e2 : ϕ|∆1 ∪∆2

Fig. 3: Rules for counter-factual typing

We use c, γ, and α to range over value constants, type constants, and type variables,
respectively. We have seen error types ⊥ and choice types D⟨ϕ,ϕ⟩ in Section 2. To
simplify the discussion, we assume that type annotations are monotypes. However, this
will not limit the expressiveness of the type system. We use η to denote substitutions
mapping from type variables to variational types. We use the special symbol θ to denote
substitutions that are partial unifiers. We use Γ to store the type assumptions about
variables and treat Γ as a stack.

We use FV to denote free type variables in types, type schemas, and typing environ-
ments. The application of a substitution to a type schema, written as η(σ), replaces free
type variables in σ with the bindings in η. For presentation purposes, we assume we can
determine the location of any given f in e with the function ℓe( f ); the exact definition
doesn’t matter here. We may drop the subscript e when the context is clear.

We show the typing rules in Figure 3. The typing relation Γ ⊢ e : ϕ|∆ expresses that
under the assumptions in Γ the expression e has the result type ϕ. All choice types that
were generated during the typing process are stored (together with their locations) in ∆.
Note that, due to the presence of choice types, the result type ϕ represents a whole set
of possible result types that may be obtained by changing the types of certain parts of
the expression. The information about what change leads to what type can be recovered
from ϕ and ∆. For example, in the case of 3::Bool we obtain the typing

∅ ⊢ (3::Bool) : A⟨B⟨⊥,Int⟩,B⟨Bool,α3⟩⟩|∆
where ∆ = {ℓ(3) 7→ A⟨Int,B⟨Bool,α3⟩⟩, ℓ(Bool) 7→ B⟨Bool,A⟨Int,α3⟩⟩}

We create choices in rules CON, VAR, UNBOUND, and ANT. The first alternative of each
choice contains the type under normal typing, and the second alternative contains any
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type to enable a change that is as general as the context allows. In rules ABS, LET, and
APP, we collect generated choices from the typing of its subexpressions.

Most of the typing rules are self-explanatory. As one example let us consider the
typing rule ANT for type annotations in more detail since it is new and introduces two
operations that are crucial for typing applications. To type an expression e::τ we have
to reconcile the inferred type ϕ1 and the choice type ϕ2 created for the annotation τ into
one result type for e, which is achieved by using a common type ϕ3. For the variants
where ϕ1 and ϕ2 agree, ϕ3 has the same type as ϕ1. For other variants, ϕ3 contains the
error types ⊥s. We use operations ▷◁ and ◁ to realize this process.

The operation ▷◁ computes how well two types match each other. We use typing
patterns introduced in Section 2 to formalize this notion.

ϕ ▷◁ ϕ = ⊤
⊥ ▷◁ ϕ = ⊥
ϕ ▷◁ ⊥ = ⊥
ϕ ▷◁ ϕ′ = ⊥

D⟨ϕ1,ϕ2⟩ ▷◁ D⟨ϕ3,ϕ4⟩ = D⟨ϕ1 ▷◁ ϕ3,ϕ2 ▷◁ ϕ4⟩
D⟨ϕ1,ϕ2⟩ ▷◁ ϕ = D⟨ϕ1 ▷◁ ϕ,ϕ2 ▷◁ ϕ⟩
ϕ ▷◁ D⟨ϕ1,ϕ2⟩ = D⟨ϕ1 ▷◁ ϕ,ϕ2 ▷◁ ϕ⟩

ϕ1 → ϕ2 ▷◁ ϕ′1 → ϕ′2 = (ϕ1 ▷◁ ϕ′1)⊗ (ϕ2 ▷◁ ϕ′2)

Note that the definition contains overlapping cases and assumes that more specific cases
are applied before more general ones. The matching of two plain types either succeeds
with ⊤ or fails with ⊥, depending on whether they have the same syntactic represen-
tation. Matching two choice types with the same choice name reduces to a matching
of corresponding alternatives. Matching a type with some choice type reduces to the
matching of that type with both alternatives in the choice type.

The matching of two arrow types is more involved. For a variant to be matched suc-
cessfully, both the corresponding argument types and result types of that variant have to
be matched successfully. The ⊗ operation captures this idea. The definition can be in-
terpreted as defining a logical “and” operation by viewing ⊤ as “true” and ⊥ as “false”.
For example, when computing Int→ A⟨Bool,Int⟩ ▷◁ B⟨Int,⊥⟩→ Bool, we first obtain
B⟨⊤,⊥⟩ and A⟨⊤,⊥⟩ for matching the argument and return types, respectively. Next,
we use ⊗ to derive the final result as A⟨B⟨⊤,⊥⟩,⊥⟩. From the result, we know that only
matching the first alternative of A and first alternative of B will succeed.

⊤⊗π = π ⊥⊗π =⊥ D⟨ϕ1,ϕ2⟩⊗π = D⟨ϕ1 ⊗π,ϕ2 ⊗π⟩

The masking operation π◁ϕ replaces all occurrences of ⊤ in π with ϕ and leaves all
occurrences of ⊥ unchanged. It is defined as follows [5].

⊥◁ϕ =⊥ ⊤◁ϕ = ϕ D⟨π1,π2⟩◁ϕ = D⟨π1 ◁ϕ,π2 ◁ϕ⟩

To type function applications in APP, we need a further operation ↑(ϕ) to turn ϕ into
an arrow type when possible and introduce error types when necessary. We need this
operation because the type of an expression may be a choice between two function
types, in which case we have to factor arrows out of choices. For example, given
(succ,Int → Int) ∈ Γ, we can derive Γ ⊢ succ : ϕ|∆ with ϕ = D⟨Int → Int,Int →
Bool⟩ and ∆ = {(ℓ(succ),ϕ)}. Thus, we have to turn ϕ into D⟨Int,Int⟩→ D⟨Int,Bool⟩
if we apply succ to some argument.

We can observe that the rules CON, VAR, UNBOUND, and ANT introduce arbitrary
types in the second alternative of result types. Thus, given e and Γ we have an infinite
number of typings for e.
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The following theorem expresses that there is a best typing (in the sense that it
produces most general types with the fewest number of type errors) and that this is the
only typing we need to care about. To compare the relation between different typings,
we assume the same location at different typings generate the same fresh choice, and
we write ϕ1 ⊑ ϕ2 if there is some η such that η(ϕ1) = ϕ2.

Theorem 1 (Most general and most defined typing). Given e and Γ, there is a unique
best typing Γ ⊢ e : ϕ1|∆1 such that for any other typing Γ ⊢ e : ϕ2|∆2, ∀δ : (⌊ϕ1⌋δ =⊥⇒
⌊ϕ2⌋δ =⊥)∨⌊ϕ1⌋δ ⊑ ⌊ϕ2⌋δ.

In [4] we have presented a type inference algorithm that is sound, complete, and com-
putes the most general result type (that is, at least as general as the result type of the
best typing).

4 Climbing the Type-Change Lattice

The idea of guided type debugging is to narrow down the number of suggestions for
how to remove a type error based on targeted user input. More specifically, given an
ill-typed expression e for which CF typing has produced the variational type ϕ and the
location information about changes ∆, we elicit from the programmer a target type τ
and then want to identify the changes from ϕ and ∆ that cause e to have type τ.

However, if the inference process produces a set of n choices with dimensions D ,
which means that n potential changes have been identified, it seems that we have to
check all 2n combinations to find the right combination of changes that has the desired
property. Fortunately, the structure of ϕ reveals some properties that we can exploit to
significantly reduce the complexity of this process.

First, some of the created choices may not be needed at all. As the rules in Figure 3
show, the second alternative of created choice types can be any type. In many cases the
best typing requires the second alternative to be identical to the first alternative, which
means that no change is required. For example, when typing the expression succ 1 +

True, the choice created for 1 is always B⟨Int,Int⟩. Thus, we can remove choice B.
However, even after removing such non-relevant choices, the search space can still

be exponential in the number of remaining choices. We can address this problem by
searching, in a systematic way, only through some of the changes. To do this, we con-
ceptually arrange all sets of changes in a type-change lattice (TCL). Note that we don’t
ever actually construct this lattice; it is a conceptual entity that helps to explain the al-
gorithm for identifying type-change suggestions guided by a user-provided target type.

Each node in the lattice is identified by a subset of dimensions C ⊆ D that indicates
which changes to apply, and each C determines a decision δC , defined as follows.

δC = {D.2 | D ∈ C}∪{D.1 | D ∈ D −C}

With δC we can determine the result type for e by ⌊ϕ⌋δC
for the case when the changes

indicated by C are to be applied. Usually, we attach ⌊ϕ⌋δC
to the node C in TCLs.

A TCL comprises n+1 levels, where level k contains an entry for each combination
of k individual changes. The bottom of this lattice (level 0) consists of a single node ∅,
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Fig. 4: Type-change lattices for the expressions 3::Bool (left), id (3::Bool) (middle),
and rR (right). The function id is assumed to have the type α1 → α1, which could be a
cause of the type error and thus a choice type is created for id. For the second example,
the dimensions A, B, and C represent the changes for id, 3, and Bool, respectively. For
the rR example, B and C are created for locations x and (++), respectively.

which produces the result type ⌊ϕ⌋δ∅ = ⊥. Level 1 consists of n entries, one for each
single change D ∈ D . The next level consists of all two-element subsets of D, and so on
The top-most level has one entry D , which represents the decision to apply all changes.
We show three example TCLs in Figure 4.

To find a change suggestion we traverse the TCL in a breadth-first manner from the
bottom up.4 For each entry C under consideration we check whether the type produced
by it covers the target type as a generic instance, that is, ⌊ϕ⌋δC

⊑ τ. Once we have found
such an entry, we can present the programmer with a corresponding suggestion. In case
there are several suggestions with k changes that satisfy the condition, we employ the
heuristics developed in CF typing [4] to order them and present them to programmers
in this order. If the programmer selects a suggested change, we’re done. Otherwise, we
continue the search by including the next level in the lattice and offer suggestions with
one more change.

We illustrate how the algorithm works with the two earlier examples e = 3::Bool

and rR (recall Figures 1 and 2). The TCLs are shown in Figure 4. Expression e is trivial
since the algorithm will ask the user for the type of this expression and correspondingly
suggest to either change the value or the annotation. To make this example more inter-
esting, consider the slightly more general expression id (3::Bool). For this expression,
CF typing produces the following result, and the TCL is in the middle of Figure 4.

ϕ = A⟨B⟨C⟨⊥,Int⟩,C⟨Bool,α1⟩⟩,B⟨C⟨⊥,α2⟩,α2⟩⟩
∆ = {(ℓ(id),A⟨α1 → α1,B⟨Int→ α2,C⟨Bool→ α2,α3 → α2⟩⟩⟩)

(ℓ(3),B⟨Int,C⟨Bool,A⟨α1,α3⟩⟩⟩)
(ℓ(Bool),C⟨Bool,B⟨Int,A⟨α1,α3⟩⟩⟩)}

Suppose the user-provided target type is Bool. The first of the changes on level 1
({A},⊥) will be dismissed since the application of change A cannot remove the type
error. Since the result type of the next entry ({B},Bool) matches exactly the target type,

4 Again, the algorithm for finding change suggestions constructs part of this lattice on the fly as
needed. The lattice is not represented explicitly.
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this change will be suggested. We will look at the third entry as well, but it is dismissed
since the target type Bool is not an instance of the result type Int for that entry. Thus,
we will present the suggestion of change B (that is, location ℓ(3)) to the programmer.
From ∆ we infer that the place should be changed to something of type Bool. Thus, the
generated suggestion is to change 3 from type Int to type Bool.

If this suggestion is accepted, the debugger terminates. If, however, the program-
mer asks for more suggestions, we check change suggestions in two steps. First, we
remove all the nodes in the lattice that are above the node that produced the previous
suggestion. In this example, we remove all the nodes in the lattice above {B} because
the programmer doesn’t want to apply any change that includes the B change, yielding a
smaller lattice with only four nodes. Then we continue the search on the higher level. In
this case the only node that remains on the second level is ({A,C},α2). To get the result
Bool, we derive the substitution η = {α2 7→ Bool}. By selecting [A.2,B.1,C.2] from the
variational type ∆(ℓ(id)), we derive that id should be changed from type α1 → α1 to
something of type η(Int → α2), which is Int → Bool. By making the same selection
[A.2,B.1,C.2] from ∆(ℓ(Bool)), we derive that Bool should be changed to Int.

For the example rR we apply the same strategy. If the programmer provides the
target type [a] -> [a], only two of the 13 entries on level 1 qualify since their result
types can be instantiated to the target type.

Despite the exponential size that TCLs can have in the worst-case and the corre-
sponding worst-case time complexity to explore TCLs exhaustively, GTD search turns
out to be very efficient in almost all cases for the following reasons.

– The change suggestions to be presented first will be encountered and found first
during the search process.

– If a presented suggestion is rejected by the programmer, the lattice can be trimmed
down by removing all the nodes higher in the lattice that are reachable from the
node representing the rejected suggestion.

– The lattice narrows quickly toward the top since after a few layers the result types
tend to become free type variables, which can be unified with the user-provided
target type successfully, ending the search.

The first point is substantiated by following theorem, which states that generality of
result types increases with the number of changes. We want to find suggestions that
consist of as few as possible changes and whose result type is closest to the target
type. This theorem ensures that when we traverse a TCL from the bottom up, we will
encounter changes that have fewest locations first.

Theorem 2 (More change locations lead to more general types). Given the best typ-
ing Γ ⊢ e : ϕ|∆, if C1 ⊆ C2, then ⌊ϕ⌋δC2

⊑ ⌊ϕ⌋δC1
.

Proof. The proof is shown in Appendix A.

Guided type debugging can improve the precision of suggesting type changes for ill-
typed programs at a low cost. We have tested the method and compared it with CF
typing on 86 programs, which were collected from 22 publications (see [4] for details).
Since many programs we collected were written in ML [9] and in OCaml [14], we
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have translated them into the programs written in the calculus presented in the paper
plus operations stored in the initial type environment. The following table shows the
percentage of the programs a correct change suggestion could be provided for after n
attempts. In all cases in which GTD helped to remove the type error, only one target
type had to be supplied.

Method No. of Attempts
1 2 3 ≥ 4 never

CF Typing 67% 80% 88% 92% 8%
GTD 83% 90% 92% 92% 8%

With GTD we can now find the correct suggestions with the first attempt in 83% of the
cases. We can fix 90% of the cases with at most two attempts. At the same time GTD
adds never more than 0.5 seconds to the computing time.

5 Reporting Type Errors in Type Annotations

We use following example, which was written by a student learning Haskell [10], to
compare the behaviors of different tools on reporting type errors in type annotations.
We copied the code literally except for removing the type definition of Table, which
is [[String]] and the definition of the function collength, whose type is Table->Int.
Both are irrelevant to the type error.

buildcol :: Table->[String]

buildcol [] = [""]

buildcol (x:xs) = [" " ++ (replicate n ’-’)," " ++ (spaceout n (head x))]

where n = collength (x:xs)

spaceout :: String->String

spaceout n str = str ++ replicate (n-(length str)) ’ ’

The type annotation of spaceout contains one argument, but the function definition
has two arguments. Based on the same student’s follow-up programs we know that the
annotation is incorrect. Note that this is also the only type error in the program because
removal of the type annotation of spaceout restores type correctness of the program.

For this program, the Glasgow Haskell Compiler (GHC) 7.6.3 reports the following
four type errors. The first two point to the use of spaceout in buildcol, and the other
two point to the definition of spaceout.

– The first blames that spaceout is applied to two arguments while it takes only one.
– The second complains that the first argument type of spaceout should be String,

but something of Int is given.
– The third reports that the definition of spaceout has two arguments while its type

has only one.
– The fourth complains that n is of type String, but it should have type Int because

it is used as the first argument to the operation -.
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GHC reports these errors because it always trusts type annotations, and it pushes down
type information from type annotations to expressions. In the definition spaceout,
the parameters n and str both get the type String. When type annotation is correct,
this scheme makes type checking more efficient and helps make type inference decid-
able [18]. However, when type annotation is incorrect, this leads to poor error messages.

Helium5, a research tool with high quality error messages developed to assist stu-
dents in learning Haskell, reports two type errors. The first reported error is similar to
GHC’s first error message. Moreover, Helium suggests to remove the first argument.
Helium’s second error message is almost the same as GHC’s third message, blaming
the definition of spaceout, but not the annotation. Type annotations were not supported
in CF typing [4].

In contrast to previous tools, our guided type debugger is the first approach that can
find errors in type annotations. In this example it directly suggests to change the type
annotation String -> String to Int -> String -> String, which fixes all type errors
in the program.

6 Related Work

The challenge of accurately reporting type errors and producing helpful error messages
has received considerable attention in the research community. Improvements for type
inference algorithms have been proposed that are based on changing the order of uni-
fication, suggesting program fixes, interactive debugging, and using program slicing
techniques to find all program locations involved in type errors. We will focus our dis-
cussion on debugging and change-suggesting approaches. Since this problem has been
extensively studied, summaries of the work in this area are also available elsewhere [12,
23, 24, 15, 4].

The idea of debugging type errors was first proposed by Bernstein and Stark [2].
Their work was based on the observation that type inference is able to infer types for
unbound variables, which allows programmers to replace suspicious program fragments
with unbound variables. If a replacement leads to a type correct program, the type er-
rors have been located. The original work requires programmers to manually locate
suspicious fragments and replace them with unbound variables. Braßel [3] has later
automated this process.

By employing the idea of algorithmic debugging developed in debugging Prolog
errors, Chitil [7] proposed an approach for debugging type errors. Chitil developed
principal typing, where type inference is fully compositional by inferring also type as-
sumptions, for building explanation graphs. Each node is a combination of the typings
of its children. The idea of algorithmic debugging is to navigate through the graphs and
ask questions about the correctness of each node. Each question is of form “Is the in-
tended type of a specific function an instance of the type inferred?”, and programmers
will respond “yes” or “no”. In Chameleon, Stuckey at al. [20, 21] presented a debugging
approach that is similar to algorithmic debugging. Chameleon also allows programmers
to ask why an expression has a certain type. There are other tools that don’t allow user

5
http://www.cs.uu.nl/wiki/bin/view/Helium/WebHome
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inputs but allow programmers to navigate through the programs and view their types,
such as Typeview [8] and the Haskell Type Browser [17].

While previous debugging approaches are operational in the sense that program-
mers have to be involved in the details of the debugging process, our approach is more
declarative in the sense programmers only have to specify the intended result type.
Moreover, we provide more precise change suggestions, such as the change location
and the types expressions should be changed to. Moreover, in some cases we can be
even more specific and suggest specific program edit actions, such as swapping func-
tion arguments (see [4] for some examples). In contrast, previous approaches can only
locate a program fragment or a set of possible places as the cause of type errors, and
thus often leave much work for programmers after the debugging is finished.

Researchers have paid considerable attention to the problem of making change sug-
gestions when type inference fails. For such methods to work, however, the most likely
error location has to be determined. Since there is seldom enough information to make
this decision, approaches have resorted to various kinds of heuristics. For example, in
the earliest work along this line, Johnson and Walz [13] used a heuristic of “usage vot-
ing”, that is, when a variable has to be unified with many different types, the variable is
chosen to have the type that is unified most often. Locations that require that variable
to have a different type are then reported as problematic.

Seminal [14] uses the difference between the original (ill-typed) program and the
changed (well-typed) programs as a heuristic. Top [12] uses more sophisticated heuris-
tics [11], such as a participation-ratio heuristic, a trust-factor heuristic, and others. CF
typing [4] uses heuristics, such as preferring expression changes to other places, fa-
voring changes at lower places in the tree representations, and preferring simpler type
changes over more complex ones. The most recent work by Zhang and Myers [25]
employs Bayesian principles to locate type errors, but they don’t make suggestions.

While previous approaches involve programmers only in a very limited way and
allow them to accept or reject a suggestion, guided type debugging gives programmers
the opportunity to provide more meaningful input and explicitly specify some of their
goals. This is not complicating matters much since it requires only the formulation of
type annotations. On the other hand, the input can be effectively exploited to shorten
the debugging process considerably. The strategy of steering the derivation of changes
by target types elicited from users is inspired by a technique to guide the debugging of
spreadsheets by user-provided target values [1].

The idea of choice types seems to be similar to the concept of discriminative sum
types [16, 17], in which two types are combined into a sum type when an attempt to
unify them fails. However, there are several important differences. Choice types are
named and thus provide more fine-grained control over the grouping of types, unifica-
tion, and unification failures. Sum types are always unified component-wise, whereas
we do this only for choice types under the same dimension. For choice types with
different dimensions, each alternative of a choice type is unified with all alternatives
of the other choice type. Other differences between guided type debugging and the
error-locating method developed in [16] are as follows. First, their method extracts all
locations involved in type errors and is thus essentially a type-error slicing approach,
whereas our method always blames the most likely error location. Second, guided type
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debugging provides change suggestions in all cases, whereas their method, like all error-
slicing approaches, does not. Finally, error locations reported by their method may con-
tain program fragments that have nothing to do with type errors. For example, a variable
used for passing type information will be reported as a source of type errors only if it is
unified once with some sum types during the type inference process. In our method, on
the other hand, only locations that contribute to type errors are reported.

An additional contribution of guided type debugging is a better treatment of type
annotations. We have investigated the reliability of type annotations and studied the
problem of locating type errors in annotations, a problem that hasn’t received much
attention from the research community so far.

7 Conclusions

We have developed guided type debugging as an approach to produce better change sug-
gestions faster in response to type errors in functional programs. Our approach differs
from previous tools by incorporating programmer intentions more directly by asking
targeted questions about types. This strategy is efficient and can effectively increase the
precision of type-change suggestions. A further contribution our method is the effective
identification and removal of inconsistent type annotations.

In future work, we plan to investigate the possibility of minimizing programmer
input by exploiting the information about the evolution of programs. For example, the
knowledge about which part of the program was changed last may in many cases allow
the automatic derivation of the target types. Another question we will investigate is how
to locate type errors in type annotations when omitting them will lead to undecidable
type inference.
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A Proof of Theorem 2

To prove the theorem, we need a relation between the application of a change and
the corresponding result type. This idea is formally captured in the typing relation in
Figure 5. Note that we omit the rules for abstractions and let expressions because they
can be obtained by simply adding χ to the left of turnstile, as we did for the rule for
applications.

The rule system defines the judgment Γ;χ ⊢ e : τ, where χ is a mapping that maps
the location to the type that location will be changed to. In the rules, we use the notation
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VAR-C
Γ;χ ⊢ x : χ(x)||{α 7→ τ}(Γ(x))

ANT-C
Γ;χ ⊢ (e::τ) : χ(τ)||τ

CON-C
c is of type γ

Γ;χ ⊢ c : χ(c)||γ

APP-C
Γ;χ ⊢ e1 : τ1 → τ Γ;χ ⊢ e2 : τ1

Γ;χ ⊢ e1 e2 : τ

Fig. 5: Rules for the type-update system

χ(e)||τ to decide whether we should use the information in χ to override the type τ for
the atomic expression e. More precisely, if (ℓ(e),τ′) ∈ χ, then χ(e)||τ yields τ′, and
otherwise τ.

Given a decision δ and a change environment ∆, we can obtain the corresponding χ
through the operation ↓δ∆, defined as follows.

↓δ∆ = {l 7→ ⌊ϕ2⌋δ | (l,D⟨ϕ1,ϕ2⟩) ∈ ∆∧D.2 ∈ δ}

We have proved that if Γ ⊢ e : ϕ|∆, then for any decision δ, we have Γ;↓δ∆ ⊢ e : ⌊ϕ⌋δ [4].
Thus, the proof of Theorem 2 reduces to a proof of the following lemma.

Lemma 1 (More change locations lead to more general types). Given Γ ⊢ e : ϕ|∆
and two decisions δ1 and δ2, let χ1 = ↓δ1∆ and χ2 = ↓δ2∆. If dom(χ1)⊆ dom(χ2), then
Γ;χ1 ⊢ e : τ1 and Γ;χ2 ⊢ e : τ2 with τ2 ⊑ τ1.

Proof. The proof is by induction over the typing derivations. Since Γ;χ1 ⊢ e : τ1 and
Γ;χ2 ⊢ e : τ2 are typing the same expression e, and since we are using the same set of
rules, the derivation trees for them have the same structure. We show the proof for the
cases of variable reference and application. The proof for other cases is similar.

– Case VAR. There are several subcases to consider.
(1) ℓ(x) /∈ dom(χ1) and ℓ(x) /∈ dom(χ2). In this case, χ1(x) and χ2(x) are both given
by Γ(x). Therefore, τ1 = τ2 = Γ(x), and τ2 ⊑ τ1 trivially holds.
(2) ℓ(x) /∈ dom(χ1) and ℓ(x) ∈ dom(χ2). We can formally prove that τ2 ⊑ τ1 by an
induction over the structure of expressions. An intuitive argument is that when we
can change the original type (τ1) to a new arbitrary type (τ2) that makes its context
well typed, the definition of the typing relation in Figure 3 maintains generality and
doesn’t make τ2 more specific than τ1.
(3) ℓ(x) ∈ dom(χ1) but ℓ(x) /∈ dom(χ2). This case is not possible.
(4) ℓ(x) ∈ dom(χ1) and ℓ(x) ∈ dom(χ2). The proof for this case is similar to the
one for case (2).

– Case APP. The induction hypotheses are Γ;χ1 ⊢ e1 : τ3 → τ1, Γ;χ1 ⊢ e2 : τ3,
Γ;χ2 ⊢ e1 : τ4 → τ2, Γ;χ2 ⊢ e2 : τ4, with τ4 → τ2 ⊑ τ3 → τ1 and τ4 ⊑ τ3. From
τ4 → τ2 ⊑ τ3 → τ1, we derive τ4 ⊑ τ3 and τ2 ⊑ τ1, which completing the proof for
this case.


