Varying Domain Representations in Hagl

Extending the Expressiveness of a DSL for
Experimental Game Theory

Eric Walkingshaw and Martin Erwig

School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97331, USA

Abstract. Experimental game theory is an increasingly important re-
search tool in many fields, providing insight into strategic behavior
through simulation and experimentation on game theoretic models. Un-
fortunately, despite relying heavily on automation, this approach has not
been well supported by tools. Here we present our continuing work on
Hagl, a domain-specific language embedded in Haskell, intended to dras-
tically reduce the development time of such experiments and support a
highly explorative research style.

In this paper we present a fundamental redesign of the underlying
game representation in Hagl. These changes allow us to better utilize do-
main knowledge by allowing different classes of games to be represented
differently, exploiting existing domain representations and algorithms. In
particular, we show how this supports analytical extensions to Hagl, and
makes strategies for state-based games vastly simpler and more efficient.

1 Introduction

Game theory has traditionally been used as an analytical framework. A game is a
formal model of a strategic situation in which players interact by making moves,
eventually achieving a payoff in which each player is awarded a value based on
the outcome of the game. Classical game theorists have derived many ways of
solving such situations, by mathematically computing “optimal” strategies of
play, usually centered around notions of stability or equilibrium [IJ.

The derivation of these optimal strategies, however, almost always assumes
perfectly rational play by all players—an assumption which rarely holds in prac-
tice. As such, while these methods have many practical uses, they often fair
poorly at predicting actual strategic behavior by humans and other organisms.

One striking example of sub-optimal strategic behavior is the performance of
humans in a class of simple guessing games [2]. In one such game, a group of
players must each guess a number between 0 and 100 (inclusive). The goal is to
guess the number closest to 1/2 of the average of all players’ guesses. Traditional
game theory tells us that there is a single equilibrium strategy for this game,
which is to choose zero. Informally, the reasoning is that since each player is
rational and assumes all other players are rational, any value considered above
zero would lead the player to subsequently consider 1/2 of that value. That is, if

W.M. Taha (Ed.): DSL 2009, LNCS 5658, pp. 310-[334] 2009.
© IFIP International Federation for Information Processing 2009

Varying Domain Representations in Hagl 311

a player initially thinks the average of the group might be 50 (based on randomly
distributed guesses), 25 would initially seem a rational guess. However, since all
other players are assumed to be rational, the player would assume that the others
came to the same conclusion and would also choose 25, thereby making 12.5 a
better guess. But again, all players would come to the same conclusion, and after
halving their guesses once again it quickly becomes clear that an assumption
of rationality among all players leads each to recursively consider smaller and
smaller values, eventually converging to zero, which all rational players would
then play.

It has been demonstrated experimentally, however, that most human players
choose values greater than zero [3]. Interestingly, a nonzero guess does not nec-
essarily imply irrationality on the part of the player, who may be rational but
assumes that others are not. Regardless, it is clear that the equilibrium strategy
is sub-optimal when playing against real opponents.

Experimental game theory attempts to capture, understand, and predict
strategic behavior where analytical game theory fails or is difficult to apply.
The use of game theoretic models in experiments and simulations has become
an important research tool for economists, biologists, political scientists, and
many other researchers. This shift towards empirical methods is also supported
by the fact that game theory’s formalisms are particularly amenable to direct
execution and automation [4]. Interactions, decisions, rewards, and the knowl-
edge of players are all formally defined, allowing researchers to conduct concise
and quantifiable experiments.

Perhaps surprisingly, despite the seemingly straightforward translation from
formalism to computer automation, general-purpose tool support for experimen-
tal game theory is extremely low. A 2004 attempt to recreate and extend the
famous Axelrod experiments on the evolution of cooperation [5] exemplifies the
problem. Experimenters wrote a custom Java library (IPDLX) to conduct the ex-
periments [6]. Like the original, the experiments were structured as tournaments
between strategies submitted by players from around the world, competing in
the iterated form of a game known as the prisoner’s dilemma. Excluding user
interface and example packages, the library used to run the tournament is thou-
sands of lines of Java code. As domain-specific language designers, we knew we
could do better.

Enter Hagﬂ, a domain-specific language embedded in Haskell designed to
make defining games, strategies, and experiments as simple and fun as possible.
In Hagl, the Axelrod experiments can be reproduced in just a few lines.

data Cooperate = C | D
dilemma = symmetric [C, D] [2, 0, 3, 1]
axelrod players = roundRobin dilemma players (times 100)

In our previous work on Hagl [7] we have provided a suite of operators and
smart constructors for defining common types of games, a combinator library

! Short for “Haskell game language”.
Available for download at: http://web.engr.oregonstate.edu/ walkiner/hagl/

312 E. Walkingshaw and M. Erwig

for defining strategies for playing games, and a set of functions for carrying out
experiments using these objects. Continuing the example above, we provide a
few example players defined in Hagl below, then run the Axelrod experiment on
this small sample of players.

At each iteration of the iterated prisoner’s dilemma, each player can choose to
either cooperate or defect. The first two very simple players just play the same
move every time.

mum = "Mum" ‘plays‘ pure C
fink = "Fink" ‘plays‘ pure D

A somewhat more interesting player is one that plays the famous “Tit for Tat”
strategy, winner of the original Axelrod tournament. Tit for Tat cooperates in
the first iteration, then always plays the previous move played by its opponent.

tft = "Tit for Tat" ‘plays‘ (C ‘initiallyThen‘ his (prev move))

With these three players defined, we can carry out the experiment. The following,
run from an interactive prompt (e.g. GHCi), plays each combination of players
against each other 100 times, printing out the final scores.

> axelrod [mum,fink,tft]
Final Scores:
Tit for Tat: 699.0
Fink: 602.0
Mum: 600.0

Since this original work we have set out to add various features to the lan-
guage. In this paper we primarily discuss two such additions, the incorporation
of operations from analytical game theory, and adding support for state-based
games, which together revealed substantial bias in Hagl’s game representation.

1.1 Limitations of the Game Representation

The definition of the prisoner’s dilemma above is nice since it uses the terminol-
ogy and structure of notations in game theory. Building on this, we would like
to support other operations familiar to game theorists. In particular, we would
like to provide analytical functions that return equilibrium solutions like those
mentioned above. This is important since experimental game theorists will often
want to use classically derived strategies as baselines in experiments. Unfortu-
nately, algorithms that find equilibria of games like the prisoner’s dilemma rely
on the game’s simple structure. This structure, captured in the concrete syntax
of Hagl’s notation above, is immediately lost since all games are converted into
a more general internal form, making it very difficult to provide these operations
to users. This is an indication of bias in Hagl—the structure inherent in some
game representations is lost by converting to another. Instead, we would like all
game representations to be first-class citizens, allowing games of different types
to be structured differently.

Varying Domain Representations in Hagl 313

The second limitation is related to state-based games. A state-based game is
a game that is most naturally described as a series of transformations over some
state. As we’ve seen, defining strategies for games like the prisoner’s dilemma is
very easy in Hagl. Likewise for the extensive form games introduced in
Section Unfortunately, the problem of representational bias affects state-
based games as well, making the definition of strategies for these kinds of games
extremely difficult.

In Section we present a means of supporting state-based games within the
constraints of Hagl’s original game representation. The match game is a simple
example of a state-based game that can be defined in this way. In the match game
n matches are placed on a table. Each player takes turns drawing some limited
number of matches until the player who takes the last match loses. The function
below generates a two-player match game with n matches in which each player
may choose some number from ms matches each turn. For example, matches 15
[1,2,3] would generate a match game in which 15 matches are placed on the
table, and each move consists of taking away 1, 2, or 3 matches.

matches :: Int -> [Int] -> Game Int
matches n ms = takeTurns 2 end moves exec pay n
where end n _ = n <=0
moves n _ = [m | m <- ms, n-m >= 0]
execn _m=n-m
pay - 1 = [1,-1]
pay _ 2 = [-1,1]

The takeTurns function is described in Section 2.3l Here it is sufficient to under-
stand that the state of the game is the number of matches left on the table and
that the game is defined by the series of functions passed to takeTurns, which
describe how that state is manipulated.

Defining the match game in this way works fairly well. The problem is en-
countered when we try to write strategies to play this game. In Section 3.2 we
show how state-based games are transformed into Hagl’s internal, stateless game
representation. At the time a strategy is run, the game knows nothing about the
state. This means that a strategy for the match game has no way of seeing
how many matches remain on the table! In Section we provide an alterna-
tive implementation of the match game using the improved model developed in
Section Ml Using this model, which utilizes type classes to support games with
diverse representations, we can write strategies for the match game, an example
of which is also given in Section

1.2 Outline of Paper

In the following section we provide an interleaved introduction to Hagl and game
theory. This summarizes our previous work and also includes more recent addi-
tions such as preliminary support for state-based games, improved dimensioned
list indexing operations, and support for symmetric games. Additionally, it pro-
vides a foundation of concepts and examples which is drawn upon in the rest of

314 E. Walkingshaw and M. Erwig

the paper. In Section Bl we discuss the bias present in our original game represen-
tation and the limitations it imposes. In Sectiond we show how we can overcome
this bias, generalizing our model to support many distinct domain representa-
tions. In Section Bl we utilize the new model to present solutions to the problems
posed in Section [3

2 A Language for Experimental Game Theory

In designing Hagl, we identified four primary domain objects that must be repre-
sented: games, strategies, players, and simulations/experiments. Since this paper
is primarily concerned with game representations, this section is correspondingly
heavily skewed towards that subset of Hagl. Sections 2.1l 222, and all focus
on the definition of different types of games in Hagl, while Section [2.4] provides
an extremely brief introduction to other relevant aspects of the language. For
a more thorough presentation of the rest of the language, please see our earlier
work in [7].

Game theorists utilize many different representations for different types of
games. Hagl attempts to tap into this domain knowledge by providing smart con-
structors and operators which mimic existing domain representations as closely
as possible given the constraints of Haskell syntax. The next two subsections
focus on these functions, while Section 2.3 introduces preliminary support for
state-based games. Each of these subsections focuses almost entirely on concrete
syntax, the interface provided to users of the system. The resulting type and in-
ternal representation of these games, Game mv, is left undefined throughout this
section but will be defined and discussed in depth in Section Bl

2.1 Normal Form Game Definition

One common representation used in game theory is normal form. Games in
normal form are represented as a matrix of payoffs indexed by each player’s
move. Fig. [[lshows two related games which are typically represented in normal
form. The first value in each cell is the payoff for the player indexing the rows
of the matrix, while the second value is the payoff for the player indexing the
columns.

C | D C | D
2,210,3 cl|3,3]0,2
D|30]|1,1 D|20]1,1
(a) Prisoner’s dilemma (b) Stag hunt

Fig. 1. Normal form representation of two related games

Varying Domain Representations in Hagl 315

The first game in Fig.[lis the prisoner’s dilemma, which was briefly introduced
in Section [I} the other is called the stag hunt. These games will be referred to
throughout the paper. In both games, each of two players can choose to either
cooperate (C) or defect (D). While these games are interesting from a theoretical
perspective and can be used to represent many real-world strategic situations,
they each (as with many games in game theory) have a canonical story associated
with them from which they derive their names.

In the prisoner’s dilemma the two players represent prisoners suspected of
collaborating on a crime. The players are interrogated separately, and each can
choose to cooperate with his criminal partner by sticking to their fabricated story
(not to be confused with cooperating with the interrogator, who is not a player
in the game), or they can choose to defect by telling the interrogator everything.
If both players cooperate they will be convicted of only minor crimes—a pretty
good outcome considering their predicament, and worth two points to each player
as indicated by the payoff matrix. If both players defect, they will be convicted of
more significant crimes, represented by scoring only one point each. Finally, if one
player defects and the other cooperates, the defecting player will be pardoned,
while the player who sticks to the fabricated story will be convicted of the more
significant crime in addition to being penalized for lying to the investigators.
This outcome is represented by a payoff of 3,0, getting pardoned having the
best payoff, and being betrayed leading to the worst.

In the stag hunt, the players represent hunter-gathers. Each player can choose
to either cooperate in the stag hunt, or defect by spending their time gathering
food instead. Mutual cooperation leads to the best payoff for each player, as the
players successfully hunt a stag and split the food. This is represented in the
payoff matrix by awarding three points to each player. Alternatively, if the first
player cooperates but the second defects, a payoff of 0,2 is awarded, indicating
zero points for the first player, who was unsuccessful in the hunt, and two points
for the second player, who gathered some food, but not as much as could have
been acquired through a hunt. Finally, if both choose to gather food, they will
have to split the food that is available to gather, earning a single point each.

Hagl provides the following smart constructor for defining normal form games.

normal :: Int -> [[mv]] -> [[Float]] -> Game mv

This function takes the number of players the game supports, a list of possible
moves for each player, a matrix of payoffs, and returns a game. For example, the
stag hunt could be defined as follows.

stag = normal 2 [[C,D],[C,D]] [I[3,3],[0,2],
[2,01,[1,111]

The syntax of this definition is intended to resemble the normal form notation
in Fig. [l By leveraging game theorists’ existing familiarity with domain repre-
sentations, we hope to make Hagl accessible to those within the domain.

Since two-player games are especially common amongst normal form games,
game theorists have special terms for describing different classes of two-player,

316 E. Walkingshaw and M. Erwig

normal form games. The most general of which is a bimatriz game, which is
simply an arbitrary two player, normal form game.

bimatrix = normal 2

Somewhat more specialized are matriz games and symmetric games. A matrix
game is a two-player, zero-sum game. In these games, whenever one player wins,
the other player loses a corresponding amount. Therefore, the payoff matrix for
the matrix function is a simple list of floats, the payoffs for the first player, from
which the payoffs for the second player can be derived.

matrix :: [mv] -> [mv] -> [Float] -> Game mv

The traditional game rock-paper-scissors, defined below, is an example of such
a game. When one player wins (scoring +1) the other loses (scoring —1), or the
two players can tie (each scoring 0) by playing the same move.

data RPS =R | P | S

rps = matrix [R,P,S] [R,P,S] [0,-1, 1,
1, 0,-1,
-1, 1, 0]

Symmetric games are similar in that the payoffs for the second player can be
automatically derived from the payoffs for the first player. In a symmetric game,
the game appears identical from the perspective of both players; each player has
the same available moves and the payoff awarded to a player depends only on the
combination of their move and their opponent’s, not on whether they are playing
along the rows or columns of the grid.

symmetric :: [mv] -> [Float] -> Game mv

Note that all of the games discussed so far have been symmetric. Below is an
alternative, more concise definition of the stag hunt, using this new smart con-
structor.

stag = symmetric [C,D] [3, 0, 2, 1]

Recall that the definition of the prisoner’s dilemma given in Section [utilized
this function as well.

Although it is theoretically possible to represent any game in normal form, it
is best suited for games in which each player plays simultaneously from a finite
list of moves. For different, more complicated games, game theory relies on other
representations. One of the most common and general of which is eztensive form,
also known as decision or game trees.

2.2 Extensive Form Game Definition

Extensive form games are represented in Hagl by the following data type, which
makes use of the preceding set of type synonyms.

Varying Domain Representations in Hagl 317

type PlayerIx = Int

type Payoff = ByPlayer Float
type Edge mv = (mv, GameTree mv)
type Dist a = [(Int, a)]

data GameTree mv = Decision PlayerIx [Edge mv]
| Chance (Dist (Edge mv))
|

Payoff Payoff

Payoff nodes are the leaves of a game tree, containing the score awarded to
each player for a particular outcome. The type of a payoff node’s value, ByPlayer
Float, will be explained in Section 2.4l but for now we’ll consider it simply a
type synonym for a list of Float values.

Internal nodes are either Decision or Chance nodes. Decision nodes represent
locations in the game tree where a player must choose to make one of several
moves. Each move corresponds to an Edge in the game tree, a mapping from a
move to its resulting subtree. The player making the decision is indicated by a
PlayerIxz. The following example presents the first (and only) player of a game
with a simple decision; if he chooses move A, he will receive zero points, but if
he chooses move B, he will receive five points.

easyChoice = Decision 1 [(A, Payoff [0]), (B, Payoff [5])]

Finally, Chance nodes represent points where an external random force pushes
the game along some path or another based on a distribution. Currently, that
distribution is given by a list of edges prefixed with their relative likelihood;
e.g. given [(1,a),(3,b)], the edge b is three times as likely to be chosen as a.
However, this definition of Dist could easily be replaced by a more sophisticated
representation of probabilistic outcomes, such as that presented in [§]. A ran-
dom die roll, while not technically a game from a game theoretic perspective,
is illustrative and potentially useful as a component in a larger game. It can be
represented as a single Chance node where each outcome is equally likely and the
payoff of each is the number showing on the die.

die = Chance [(1, (n, Payoff [n])) | n <- [1..6]]

The function extensive, which has type GameTree mv -> Game mv is used to
turn game trees into games which can be run in Hagl. Hagl also provides oper-
ators for incrementally building game trees, but those are not presented here.

2.3 State-Based Game Definition

One of the primary contributions of this work is the addition of support for
state-based games in Hagl. While the normal and extensive forms are general
in the sense that any game can be translated into either representation, games
which can be most naturally defined as transitions between states seem to form
a much broader and more diverse class. From auctions and bargaining games,
where the state is the highest bid, to graph games, where the state is the location
of players and elements in the graph, to board games like chess and tic-tac-toe,

318 E. Walkingshaw and M. Erwig

where the state is the configuration of the board, many games seem to have
natural notions of state and well-defined transitions between them.

The preliminary support provided for state-based games described here has
been made obsolete by the redesign described in Section @ but presenting our
initial design is valuable as a point of reference for future discussion.

As with other game representations, support for state-based games is provided
by a smart constructor, whose type is given below.

stateGame :: Int -> (s -> PlayerIx) -> (s -> PlayerIx -> Bool) ->
(s -> PlayerIx -> [mv]) -> (s -> PlayerIx -> mv -> s) ->
(s -> PlayerIx -> Payoff) -> s -> Game mv

The type of the state is determined by the type parameter s. The first argument
to stateGame indicates the number of players the game supports, and the final
argument provides an initial state. The functional arguments in between describe
how players interact with the state over the course of the game. Each of these
takes the current state and (except for the first) the current player, and returns
some information about the game. In order, the functional arguments define:

— which player’s turn it is,

— whether or not the game is over,

— the available moves for a particular player,
the state resulting from executing a move on the given state, and
— the payoffs for some final state.

The result type of this function is the same Game mv type as the other games
described in previous sections. Notice that s, the type of the state, is not reflected
in the type signature of the resulting game. This is significant, reflecting the fact
that the notion of state is completely lost in the generated game representation.

Since players alternate in many state-based games, and tracking which player’s
turn it is can be cumbersome, another smart constructor, takeTurns, is provided
which manages this aspect of state games automatically. The takeTurns function
has the same type as the stateGame function above minus the second argument,
which is used to determine whose turn it is.

takeTurns :: Int -> (s -> PlayerIx -> Bool) -> (s -> PlayerIx -> [mv]) ->
(s => PlayerIx -> mv -> s) -> (s -> PlayerIx -> Payoff) ->
s -> Game mv

The match game presented in Section [Tl is an example of a state-based game
defined using this function.

The definition of players, strategies, and experiments are less directly relevant
to the contributions of this paper than the definition of games, but the brief
introduction provided in the next subsection is necessary for understanding later
examples. The definition of strategies for state-based games, in particular, are
one of the primary motivations for supporting multiple domain representations.

2.4 Game Execution and Strategy Representation

All games in Hagl are inherently iterated. In game theory, the iterated form of
a game is just the original game played repeatedly, with the payoffs of each

Varying Domain Representations in Hagl 319

iteration accumulating. When playing iterated games, strategies often rely on
the events of previous iterations. Tit for Tat, presented in Section [[L1] is one
such example.

Strategies are built from a library of functions and combinators which, when
assembled, resemble English sentences written from the perspective of the player
playing the strategy (i.e. in Tit for Tat, his corresponds to the other player in
a two player game). Understanding these combinators requires knowing a bit
about how games are executed.

In Hagl, all games are executed within the following monad.

data ExecM mv a = ExecM (StateT (Exec mv) IO a)

This data type wraps a state transformer monad, and is itself an instance of
the standard Monad, MonadState and MonadIO type classes, simply deferring to the
monad it wraps in all cases. The inner StateT monad transforms the I0 monad,
which is needed for printing output and obtaining random numbers (e.g. for
Chance nodes in extensive form games).

The state of the ExecM monad, a value of type Exec mv, contains all of the
runtime information needed to play the game, including the game itself and the
players of the game, as well as a complete history of all previous iterations. The
exact representation of this data type is not given here, but the information is
made available in various formats through a set of accessor functions, some of
which will be shown shortly.

A player in Hagl is represented by the Player data type defined below. Values
of this type contain the player’s name (e.g. “Tit for Tat”), an arbitrary state
value, and a strategy which may utilize that state.

data Player mv = forall s. Player Name s (Strategy mv s)

The type Name is simply a synonym for String. More interestingly, notice that
the s type parameter is existentially quantified, allowing players with different
state types to be stored and manipulated generically within the ExecM monad.

The definition of the Strategy type introduces one more monadic layer to
Hagl. The StratM monad adds an additional layer of state management, allowing
players to store and access their own personal state of type s.

data StratM mv s a = StratM (StateT s (ExecM mv) a)

The type Strategy mv s found in the definition of the Player data type, is simply
a type synonym for StratM mv s mv, an execution in the StratM monad which
returns a value of type mv, the move to be played.

Since many strategies do not require additional state, the following smart
constructor is provided which circumvents this aspect of player definition.

plays :: Name -> Strategy mv () -> Player mv
plays n s = Player n () s

This function reads particularly well when used as an infix operator, as in the
definition of Tit for Tat.

320 E. Walkingshaw and M. Erwig

Hagl provides smart constructors for defining simple strategies in game the-
ory, such as the pure and mixed strategies discussed in Section Bl but for
defining more complicated strategies we return to the so-called accessor func-
tions mentioned above. The accessors extract data from the execution state and
transform it into some convenient form. Since they are accessing the state of the
ExecM monad, we would expect their types to have the form ExecM mv a, where
a is the type of the returned information. Instead, they have types of the form
GameM m mv => m a, where GameM is a type class instantiated by both ExecM and
StratM. This allows the accessors to be called from within strategies without
needing to be “lifted” into the context of a StratM monad.

A few sample accessors are listed below, with a brief description of the infor-
mation they return. The return types of each of these rely on two data types,
ByGame a and ByPlayer a. Each is just a wrapper for a list of as, but are used
to indicate how that list is indexed. A ByPlayer list indicates that each element
corresponds to a particular player, while a ByGame list indicates that each element
corresponds to a particular game iteration.

— move :: GameM m mv => m (ByGame (ByPlayer mv))

A doubly nested list of the last move played by each player in each game.
— payoff :: GameM m mv => m (ByGame Payoff)

A doubly nested list of the payoff received by each player in each game.
— score :: GameM m mv => m (ByPlayer Float)

The current cumulative scores, indexed by player.

The benefits of the ByGame and ByPlayer types become apparent when we
start thinking about how to process these lists. First, they help us keep index-
ing straight. The two different types of lists are organized differently, and the
two indexing functions, forGame and forPlayer, perform all of the appropriate
conversions and abstract the complexities away. Second, the data types provide
additional type safety by ensuring that we never index into a ByPlayer list think-
ing that it is ByGame, or vice versa. This is especially valuable when we consider
our other class of combinators, called selectors, which are used to process the
information returned by the accessors.

While the accessors above provide data, the selector functions constrain data.
Two features distinguish Hagl selectors from generic list operators. First, they
provide the increased type safety already mentioned. Second, they utilize infor-
mation from the current execution state to make different selections depending
on the context in which they are run. Each ByPlayer selector corresponds to a
first-person, possessive pronoun in an effort to maximize readability. An example
is the his selector used in the definition of Tit for Tat above.

his :: GameM m mv => m (ByPlayer a) -> m a

This function takes a monadic computation that returns a ByPlayer list and
produces a computation which returns only the element corresponding to the
opposing player (in a two player game). Other selectors include her, a synonym
for his, my, which returns the element corresponding to the current player, and
our, which selects the elements corresponds to all players.

Varying Domain Representations in Hagl 321

Similar selectors exist for processing ByGame lists, except these have names
like prev, for selecting the element corresponding to the previous iteration, and
every, for selecting the elements corresponding to every iteration.

While this method of defining strategies with a library of accessor and selector
functions and other combinators has proven to be very general and extensible,
we have run into problems with our much more rigid game representation.

3 A Biased Domain Representation

In Sections 2.1, 2.2, and 2.3 we introduced a suite of functions and operators for
defining games in Hagl. However, we left the subsequent type of games, Game mv,
cryptically undefined. It turns out that this data type is nothing more than an
extensive form GameTree value, plus a little extra information.

data Game mv = Game { numPlayers :: Int,
info :: GameTree mv -> InfoGroup mv,
tree :: GameTree mv }

Thus, all games in Hagl are translated into extensive form. This is nice since
it provides a relatively simple and general internal representation for Hagl to
work with. As we’ll see, however, it also introduces a substantial amount of
representational bias, limiting what we can do with games later.

In addition to the game tree, a Hagl Game value contains an Int indicating the
number of players that play the game, and a function from nodes in the game
tree to information groups. In game theory, information groups are an extension
to the simple model of extensive form games. The need for this extension can
be seen by considering the translation of a simple normal form game like the
stag hunt into extensive form. A straightforward translation would result in
something like the following.

Decision 1 [(C, Decision 2 [(C, Payoff (ByPlayer [3,3]1)),
(D, Payoff (ByPlayer [0,2]1))1),

[(D, Decision 2 [(C, Payoff (ByPlayer [2,0])),
(D, Payoff (ByPlayer [1,1]1))1)]

Player 1 is presented with a decision at the root of the tree; each move leads to
a decision by player 2, and player 2’s move leads to the corresponding payoff,
determined by the combination of both players’ moves.

The problem is that we’ve taken two implicitly simultaneous decisions and
sequentialized them in the game tree. If player 2 examines her options, the
reachable payoffs will reveal player 1’s move. Information groups provide a solu-
tion by associating with each other a set of decision nodes for the same player,
from within which a player knows only the group she is in, not the specific node.

An information group of size one implies perfect information, while an infor-
mation group of size greater than one implies imperfect information. In Hagl,
information groups are represented straightforwardly.

data InfoGroup mv = Perfect (GameTree mv)
| Imperfect [GameTree mv]

322 E. Walkingshaw and M. Erwig

Therefore, the definition of a new game type in Hagl must not only be trans-
lated into a Hagl GameTree but must also provide a function for returning the
information group corresponding to each Decision node. As we can see from the
definition of the smart constructor for normal form games introduced earlier,
this process is non-trivial.

normal :: Int -> [[mv]] -> [[Float]] -> Game mv
normal np mss vs = Game np group (head (level 1))
where level n | n > np = [Payoff (ByPlayer v) | v <- vs]
| otherwise = let ms = mss !! (n-1)
bs = chunk (length ms) (level (n+1))
in map (Decision n . zip ms) bs
group (Decision n _) = Imperfect (level n)
group t = Perfect t

Herein lies the first drawback of this approach—defining new kinds of games
is difficult due to the often complicated translation process. Until this point in
Hagl’s history, we have considered the definition of new kinds of games to be part
of our role as language designers. This view is limiting for Hagl’s use, however,
given the incredible diversity of games in game theory, and that the design of
new games is often important to a game theorist’s research.

A more fundamental drawback of converting everything into a decision tree,
however, is that it introduces representational bias. By converting from one rep-
resentation to another we at best obscure, and at worst completely lose important
information inherent in the original representation. The next two subsections
demonstrate both ends of this spectrum.

3.1 Solutions of Normal Form Games

As mentioned in the introduction, classical game theory is often concerned with
computing optimal strategies for playing games. There are many different defini-
tions of optimality, but two particularly important definitions involve computing
Nash equilibria and finding Pareto optimal solutions [I].

A Nash equilibrium is defined as a set of strategies for each player, where each
player, knowing the others’ strategies, would have nothing to gain by unilaterally
changing his or her own strategy. More colloquially, Nash equilibria describe
stable combinations of strategies—even if a player knows the strategies of the
other players, he or she would still not be willing to change.

Nash equilibria for normal form games can be pure or mized. A pure equi-
librium is one where each player plays a specific move. In a mixed equilibrium,
players may play moves based on some probability. A good example of a game
with an intuitive mixed equilibrium is rock-paper-scissors. If both players ran-
domly play each move with equal probability, no player stands to gain by chang-
ing strategies. Going back to our examples from Section 2.1l the stag hunt has
two pure Nash equilibria, (C, C) and (D, D). If both players are cooperating,
they are each earning 3 points; a player switching to defection would earn only
2 points. Similarly, if both players are defecting, they are each earning 1 point;

Varying Domain Representations in Hagl 323

switching to cooperation would cause the switching player to earn 0 points. The
prisoner’s dilemma has only one Nash equilibrium, however, which is (D, D). In
this case, mutual cooperation is not stable because a player unilaterally switching
to defection will earn 3 points instead of 2.

While the focus of Nash equilibria are on ensuring stability, Pareto optimality
is concerned with maximizing the benefit to as many players as possible. A Pareto
improvement is a change from one solution (i.e. set of strategies) to another that
causes at least one player’s payoff to increase, while causing no players’ payoffs
to decrease. A solution from which no Pareto improvement is possible is said to
be Pareto optimal. The only Pareto optimal solution of the stag hunt is mutual
cooperation, since any other solution can be improved by switching to pure
cooperation. In the prisoner’s dilemma (C, D) and (D, C) are also both Pareto
optimal, since any change would cause the defecting player’s payoff to decrease.

Nash equilibria and Pareto optimal solutions are guaranteed to exist for every
game, but they are hard to compute, in general. Finding a Nash equilibrium for
an arbitrary game is known to be PPAD-complete (computationally intractable)
[9], and even the much more constrained problem of deciding whether a game
has a pure Nash equilibrium is NP-hard [10]. There do exist, however, simpler
algorithms for certain variations of these problems on highly constrained games.
Finding pure Nash equilibria and Pareto optimal solutions on the kinds of games
typically represented in normal form is comparatively easy [IT].

While Hagl’s primary focus is experimental game theory, we would like to
begin providing support for these kinds of fundamental, analytical operations.
Unfortunately, the bias in Hagl’s game representation makes this very difficult.
We would like to add functions for finding pure Nash equilibria and Pareto
optimal solutions, and have them only apply to simple normal form games, but
this is impossible since all games have the same type. Additionally, although the
structure of a game’s payoff matrix is available at definition time, it is instantly
lost in the translation to a decision tree.

While this subsection demonstrated how representational bias can obscure the
original structure of a game, the next provides an example where the structure
is completely and irrecoverably lost.

3.2 Loss of State in State-Based Games

Section 2.3l introduced preliminary support for games defined as transformations
of some state. The smart constructor stateGame takes an initial state and a series
of functions describing how to manipulate that state, and produces a standard
Hagl game tree representation. Below is the implementation of this function.

stateGame np who end moves exec pay init = Game np Perfect (tree init)
where tree s | end s p = Payoff (pay s p)
| otherwise = Decision p [(m, tree (exec s p m))
| m <- moves s p]
where p = who s

The most interesting piece here is the tree function, which threads the state
through the provided functions to generate a standard, stateless decision tree.

324 E. Walkingshaw and M. Erwig

Haskell’s laziness makes this viable for even the very large decision trees often
generated by state-based games. But there is still a fundamental problem with
this solution: we’ve lost the state.

At first this way of folding the state away into a game tree was very appealing.
The solution is reasonably elegant, and seemed to emphasize that even the most
complex games could be represented in our general form. The problem is first
obvious when one goes to write a strategy for a state-based game. Because
the state is folded away, it is forever lost immediately upon game definition;
strategies do not and cannot have access to the state during game execution.
Imagine trying to write a strategy for a chess player without being able to see
the board!

Of course, there is a workaround. Since players are afforded their own per-
sonal state, as described in Section 2.4l each player of a state-based game could
personally maintain his or her own copy of the game state, modifying it as other
players make their moves. In addition to being wildly inefficient, this makes defin-
ing strategies for state-based games much more difficult, especially considering
strategies may have their own additional states to maintain as well.

This limitation of strategies for state-based games is perhaps the most glar-
ing example of representational bias. The translation from a state-based repre-
sentation to a stateless extensive form representation renders the game nearly
unusable in practice.

4 Generalizing Game Representations

In setting about revising Hagl’s game representation, we established four primary
goals, listed here roughly in order of significance, from highest to lowest.

1. Better accommodate state in games. Many kinds of games are very naturally
represented as transitions between states. The inability of strategies to di-
rectly access these states, as described in Section 3.2, was the most egregious
instance of representational bias in the language.

2. Lessen representational bias in general by allowing for multiple different
game representations. Although dealing with the state issue was a pressing
need, we sought a more general solution to the underlying problem. This
would also help us overcome the problems described in Section [3.1}

3. Lower the barrier to entry for defining new classes of games. Having one
general game representation is nice, but requiring a translation from one
representation to another is difficult, likely preventing users of the language
from defining their own game types.

4. Minimize impact on the rest of the language. In particular, high-level game
and strategy definitions should continue to work, with little to no change.

In the rest of this section we will present a design which attempts to realize these

goals, touching briefly on the motivations behind important design decisions.
From the goals stated above, and the second goal in particular, it seems clear

that we need to introduce a type class for representing games. Recall the game

Varying Domain Representations in Hagl 325

representation given in Section Bl A game is represented by the Game data type
which contains the number of players that play the game, an explicit game tree
as a value of the GameTree data type, and a function for getting the informa-
tion group associated with a particular node. One approach would be to simply
redefine the Game data type as a type class as shown below.

class Game g where

type Move g

numPlayers :: g -> Int

gameTree :: g -> GameTree (Move g)

info :: g —-> GameTree (Move g) -> Info (Move g)

Note that this definition uses associated types [12], an extension to Haskell 98
[13] available in GHC [14], which allow us to use type classes to overload types
in the same way that we overload functions. Move g indicates the move type
associated with the game type g and is specified in class instances, as we’ll see
later.

In effect, the use of a type class delays the translation process, maintaining
diverse game representations and converting them into game trees immediately
before execution. However, this solution still does not support state-based games,
nor does it make defining new types of games any easier since we must still
provide a translation to a game tree. Enabling state-based games would be fairly
straightforward; we could simply add a state value to each node in the game
tree, making it trivial to retain the state that was previously folded away, and
to provide easy access to it by strategies. Making game definition easier, on the
other hand, requires a more radical departure from our original design.

4.1 Final Game Representation

Ultimately, we decided to abandon the game tree representation altogether and
define games as arbitrary computations within the game execution monad. The
final definition of the Game type class is given below.

class Game g where
type Move g
type State g
initState :: g -> State g
runGame :: ExecM g Payoff

Note that we provide explicit support for state-based games by adding a new
associated type State and a function initState for getting the initial state of the
game. This state is then stored with the rest of the game execution state and
can be accessed and modified from within the monadic runGame function, which
describes the execution of the game.

Also note that we have removed the numPlayers method from the previous
type class. This change eliminates another small source of bias, reflecting the
fact that many games support a variable number of players, violating the func-
tional relationship between a game and a constant number of players that was

326 E. Walkingshaw and M. Erwig

previously implied. Game instances should now handle this aspect of game def-
inition on their own, as needed.

To ease the definition of new types of games, we also provide a library of
game definition combinators. These combinators provide a high-level interface for
describing the execution of games, while hiding all of the considerable minutiae
of game execution briefly discussed in Section[2.4l Some of these combinators will
be introduced in the next subsection, but first we discuss some of the trade-offs
involved in this design change.

Perhaps the biggest risk in moving from an explicit representation (game
trees) to an implicit representation (monadic computations) is the possibility
of overgeneralization. While abstraction helps in removing bias from a repre-
sentation, one has to be careful not to abstract so far away from the domain
that it is no longer relevant. After all, we initially chose game trees since they
were a very general representation of games. Does a monadic computation really
capture what it means to be a game?

Another subtle drawback is that, with the loss of an explicit game representa-
tion, it is no longer possible to write some generic functions which relied on this
explicitness. For example, we can no longer provide a function which returns the
available moves for an arbitrary game. Such functions would have to be provided
per game type, as needed. For games where an explicit representation is more
suitable, another type class is provided, similar to the initial type class suggested
in Section M that defines a game in terms of a game tree, as before.

These risks and minor inconveniences are outweighed by many substantial
benefits. First and foremost, the monadic representation is much more flexible
and extensible than the tree-based approach. Because games were previously
defined in terms of a rigid data type, they were limited to only three types of
basic actions, corresponding to the three constructors in the GameTree data type.
Adding a fundamentally new game construct required modifying this data type,
a substantial undertaking involving the modification of lots of existing code.
Adding a new construct in the new design, however, is as easy as adding a new
function.

Another benefit of the new design is that games can now vary depending on
their execution context. One could imagine a game which changes during exe-
cution to handicap the player with highest score, or a game where the payoff
of a certain outcome depends on past events, perhaps to simulate diminishing
returns. These types of games were not possible before. Since games now de-
fine their execution directly and have complete access to the execution context
through the ExecM monad, we can define games which change as they play.

Finally, as the examples given in Section Bl demonstrate, defining game execu-
tion in terms of the provided combinators is substantially easier than translating
game representations into extensive form. This lowers the barrier to entry for
game definition in Hagl, making it much more reasonable to expect users of
the system to be able to define their own game types as needed. In the next
subsection we provide an introduction to some of the combinators in the game
definition library.

Varying Domain Representations in Hagl 327

4.2 Game Definition Combinators

Game execution involves a lot of bookkeeping. Various data structures are main-
tained to keep track of past moves and payoffs, the game’s current state, which
players are involved, etc. The combinators introduced in this section abstract
away all of these details, providing high-level building blocks for describing how
games are executed.

The first combinator is one of the most basic and will be used in most game
definitions. This function executes a decision by the indicated player.

decide :: Game g => PlayerIx -> ExecM g (Move g)

This function retrieves the indicated player, executes his or her strategy, updates
the historical information in the execution state accordingly, and returns the
move that was played.

The allPlayers combinator is used to carry out some action for all players
simultaneously, returning a list of the accumulated results.

allPlayers :: Game g => (PlayerIx -> ExecM g a) -> ExecM g (ByPlayer a)

Combining these first two combinators as allPlayers decide, we define a com-
putation in which all players make a simultaneous (from the perspective of the
players) decision. This is used, for example, in the definition of normal form
games in Section 511

While the allPlayers combinator is used for carrying out simultaneous ac-
tions, the takeTurns combinator is used to perform sequential actions. It cycles
through the list of players, executing the provided computation for each player,
until the terminating condition (second argument) is reached.

takeTurns :: Game g => (PlayerIx -> ExecM g a) -> ExecM g Bool -> ExecM g

This combinator is used in the revised definition of the match game given in
Section [5.2

There are also a small number of functions for constructing common payoff
values. One example is the function winner, whose type is given below.

winner :: Int -> PlayerIx -> Payoff

When applied as winner n p, this function constructs a payoff value (recall that
Payoff is a synonym for ByPlayer Float) where the winning player p receives 1
point, and all other players, out of n, receive —1 point. There is a similar function
loser, which gives a single player —1 point and all other players 1 point, and a
function tie which takes a single Int and awards all players 0 points.

5 Flexible Representation of Games

In this section we demonstrate the improved flexibility of the game representation
by solving some of the problems posed earlier in the paper. Section (5.1l demon-
strates the new representation of normal form games and provides functions for
computing analytical solutions. Section provides a new implementation of
the match game and a strategy that can access its state in the course of play.

328 E. Walkingshaw and M. Erwig

5.1 Representing and Solving Normal Form Games

The fundamental shortcoming of the original game representation with regard
to normal form games was that the structure of the games was lost. Now, we
can capture this structure explicitly in the following data type.

data Normal mv = Normal Int (ByPlayer [mv]) [Payoff]

Note that the arguments to this data constructor are almost exactly identical
to the normal form smart constructor introduced in Section [ZIl A second data
type resembles another smart constructor from the same section, for constructing
two-player, zero-sum games.

data Matrix mv = Matrix [mv] [mv] [Float]

Even though these games are closely related, we represent them with separate
data types because some algorithms, such as the one for computing saddle point
equilibria described below, apply only to the more constrained matrix games.
To tie these two data types together, we introduce a type class that represents
all normal form games, which both data types implement.

class Game g => Norm g where

numPlayers :: g -> Int
payoffFor :: g -> Profile (Move g) -> Payoff
moves :: g -> PlayerIx -> [Move g]

This type class allows us to write most of our functions for normal form games
in a way that applies to both data types. The Profile type here refers to a
strategy profile, a list of moves corresponding to each player. This is reflected
in the definition of Profile mv, which is just a type synonym for ByPlayer mv.
The payoffFor method returns the payoff associated with a particular strategy
profile by looking it up in the payoff matrix. The moves method returns the
moves available to a particular player.

Using the type class defined above, and the combinators from Section 2] we
can define the execution of normal form games as follows.

runNormal :: Norm g => ExecM g Payoff
runNormal = do g <- game
ms <- allPlayers decide
return (g ‘payoffFor‘ ms)

Contrast this definition with the smart constructor in Section [} that trans-
lated normal form to extensive form. We think that this dichotomy is extremely
compelling motivation for the generalized representation. Defining new types of
games is now a much simpler process.

Finally, in order to use normal form games within Hagl, we must instantiate
the Game type class for both data types. This is very straightforward using the
runNormal function above, and we show only one instance here since the other is
nearly identical.

Varying Domain Representations in Hagl 329

instance Eq mv => Game (Normal mv) where
type Move (Normal mv) = mv
type State (Normal mv) = ()
initState _ = ()
runGame = runNormal

Since normal form games do not require state, the associated state type of is
just the unit type (). Similarly, for any normal form game, the initial state value
is the unit value.

Now we can run experiments on, and write strategies for, normal form games
just as before. And with the addition of some very straightforward smart con-
structors, we can directly reuse our earlier definitions of the prisoner’s dilemma
and stag hunt. We can also, however, write the analytical functions which we
previously could not. Below are type definitions for functions which return the
pure Nash equilibria and Pareto optimal solutions of normal form games.

nash :: (Norm g, Eq (Move g)) => g -> [Profile (Move g)]
pareto :: (Norm g, Eq (Move g)) => g -> [Profile (Move g)]

Using these we can define a function to find Pareto-Nash equilibria, solutions
which are both Pareto optimal and a Nash equilibrium, and which represent
especially desirable strategies to play [15].

paretoNash g = pareto g ‘intersect nash g

Applying this new analytical function to the stag and hunt and prisoner’s
dilemma provides some interesting results.

> paretoNash stag
[ByPlayer [C,CI]
> paretoNash pd
0

This likely demonstrates why prisoner’s dilemma is a far more widely studied
game than the stag hunt. The stag hunt is essentially solved—a strategy which is
both Pareto optimal and a Nash equilibria is a truly dominant strategy. Compare
this to the following analysis of the prisoner’s dilemma.

> nash pd

[ByPlayer [D,D]]

> pareto pd

[ByPlayer [C,C],ByPlayer [C,D],ByPlayer [D,C]]

In the prisoner’s dilemma, the only Nash equilibrium is not Pareto optimal, while
all other solutions are. This makes for a much more subtle and complex game.

Saddle points represent yet another type of equilibrium solution, but one that
only applies to matrix games. Essentially, a saddle point of a matrix game is
strategy profile which corresponds to a value which is both the smallest value
in its row and the largest value in its column [II]. Such a value is ideal for
both players, and thus we would expect two rational players to always play a
strategy corresponding to a saddle point, if one exists. Hagl provides the following
function for finding saddle points in matrix games.

330 E. Walkingshaw and M. Erwig

saddle :: Eq mv => Matrix mv -> [Profile mv]

A key feature of this function is that the type system prevents us from applying
it to a normal form game which is not of the right form. Being able to better
utilize the type system is another advantage of the more flexible representation
enabled by type classes.

5.2 Representing and Playing the Match Game

In Section [Tl we presented a definition of the match game only to discover that
we could not write a strategy for it. In this subsection we present a redefinition
of the game with the improved representation, and an unbeatable strategy for
playing it.

First, we create a data type to represent an instance of the match game. As
with our normal form game definition in Section [5.I] this data type resembles
the original smart constructor for building match games.

data Matches = Matches Int [Int]

Here, the first argument indicates the number of matches to set on the table,
while the second argument defines the moves available to the players (i.e. the
number of matches that can be drawn on a turn).

Instantiating the Game type class for the match game is mostly straightforward,
with only the implementation of runGame being non-trivial.

instance Game Matches where
type Move Matches = Int
type State Matches = Int
initState (Matches n _) = n
runGame = ...

The associated Move type of the match game is Int, the number of matches to
draw; the State type is also Int, the number of matches remaining on the table;
and the initial state of the match game is just extracted from the data type. To
define the execution of the match game, we build up a series of helper functions.

First we define two simple functions which make manipulating the state of
the match game a little nicer.

matches = gameState
draw n = updateGameState (subtract n)

Both the gameState and updateGameState functions are part of the game definition
combinator library. gameState is used to return the current game state, while
updateGameState updates the current game state by applying a provided function.
These functions have the following types.

gameState :: (Game g, GameM m g) => m (State g)
updateGameState :: Game g => (State g -> State g) -> ExecM g (State g)

Varying Domain Representations in Hagl 331

Note that, the type of gameState is somewhat more general than the type of
updateGameState. The type variable m in the type of gameState ranges over the
monadic type constructors ExecM and StratM, which are both instances of GameM,
while updateGameState applies only to computations in the ExecM monad. This
means that access to the game’s state is available from within both game def-
initions (ExecM) and strategy definitions (StratM), whereas modifying the game
state is only possible from within game definitions—strategies may only manip-
ulate the state indirectly, by playing moves.

Thus, the matches function returns the current number of matches on the
table, while the draw function updates the state by removing the given number
of matches from the table.

From here we can define a computation which determines when the game is
over, that is, when there are no matches remaining on the table.

end = do n <- matches
return (n <= 0)

And a function which executes a turn for a given player.

turn p = decide p >>= draw >> return p

On a player’s turn, the player makes a decision and the move indicates how many
matches to draw from the table. The reason this function returns the player’s
index will be seen in a moment. First, we define a computation which returns
the payoff for the game, given the player who draws the last match.

payoff p = do n <- numPlayers
return (loser n p)

The player who draws the last match loses, earning —1 point, while other players
win 1 point.

We now have everything we need to define the execution of the match game.
Recall the takeTurns function introduced in Section which takes two argu-
ments, the first of which represents a player’s turn, and the second is a function
indicating when to stop looping through the players, applying the turn functions.
We have just shown the definition of both of these functions for the match game,
turn and end.

instance Game Matches where

runGame = takeTurns turn end >>= payoff

The result of the takeTurns function is the value produced on the last player’s
turn, in this case, the player’s index, which is passed to the payoff function
indicating that the player taking the last match lost.

With the match game now defined, and with a representation that allows
easy access to the state of state-based games, we can look towards defining
strategies. First, we define two helper functions. The first returns the moves
that are available to player.

332 E. Walkingshaw and M. Erwig

moves = do n <- matches
(Matches _ ms) <- game
return [m | m <- ms, n-m >= 0]

This function extracts the available moves from the game representation, and
filters out the moves that would result in a negative number of matches. Second,
we define a function which returns a move randomly.

randomly = moves >>= randomlyFrom

The randomlyFrom function is part of Hagl’'s strategy combinator library, and
returns a random element from a list.

Finally, a strategy for playing the match game is given below. The two-player
match game is solvable for the first player, which means that the first player to
move can always win if he or she plays correctly. The following player demon-
strates one such solution.

matchy = "Matchy" ‘plays‘
do n <- matches
ms <- moves
let winning m = mod (n-1) (maximum ms + 1) ==m
in maybe randomly return (find winning ms)

The winning function, defined in this strategy, takes a move and returns true
if it is a move that leads to an eventual win. The strategy plays a winning
move if it can find one (which it always will as the first player), and plays
randomly otherwise. While a proof that this player always wins when playing
first is beyond the scope of this paper, we can provide support for this argument
by demonstrating it in action against another player. The following player simply
plays randomly.

randy = "Randy" ‘plays‘ randomly

We now run an experiment with these two players playing the match game
against each other. The following command runs the game 1000 times consecu-
tively, then printing the accumulated score.

> execGame (Matches 15 [1,2,3]) [matchy,randy] (times 1000 >> printScore)
Score: Matchy: 1000.0
Randy: -1000.0

This shows that, when playing from the first position, the optimal strategy won
every game. Even from the second position Matchy is dominant, since it only
takes one poor play by Randy for Matchy to regain the upper hand.

> execGame (Matches 15 [1,2,3]) [randy,matchy] (times 1000 >> printScore)
Score: Randy: -972.0
Matchy: 972.0

These types of simple experiments demonstrate the potential of Hagl both as
a simulation tool, and as a platform for exploring and playing with problems
in experimental game theory. By providing support for the large class of state-
based games, and making it easier for users to define their own types of games,
we greatly increase its utility.

Varying Domain Representations in Hagl 333

6 Conclusions and Future Work

Hagl provides much needed language support to experimental game theory. As
we extended the language, however, we discovered many problems related to
bias in Hagl’s game representation. In this work we fundamentally redefine the
concept of a Hagl game in a way that facilitates multiple underlying representa-
tions, eliminating this bias. In addition, we provide a combinator library which
drastically simplifies the process of defining new classes of games, enabling users
of the language to define new games and new game constructs as needed. Finally,
we added explicit support for the broad class of games defined as transitions be-
tween states, resolving one of the primary weaknesses of earlier versions of the
language.

In Section[dIlwe briefly introduced the idea of games which vary depending on
their execution context. This represents a subset of a larger class of games which
vary depending on their environment. Examples include games where the payoffs
change based on things like the weather or a stock market. Since we have access
to the I0 monad from with execution monad, such games would be possible in
Hagl. Other games, however, change depending on the players that are playing
them. Auctions are a common example where, since each player may value the
property up for auction differently, the payoff values for winning or losing the
game will depend on the players involved. While it would be possible to simply
parameterize a game definition with valuation functions corresponding to each
player, it would be nice if we could capture this variation in the representation of
the players themselves, where it seems to belong. Since auctions are an important
part of game theory, finding an elegant solution to this problem represents a
potentially useful area for future work.

Another potential extension to Hagl is support for human-controlled players.
This would have many possible benefits. First, it would support more direct
exploration of games; often the best way to understand a game is to simply play
it yourself. Second, it would allow Hagl to be used as a platform for experiments
on humans. Experimenters could define games which humans would play while
the experimenters collect the results. Understanding how people actually play
games is an important aspect of experimental game theory, and a significant
niche which Hagl could fill.

This project is part of a larger effort to apply language design concepts to
game theory. In our previous work we have designed a visual language for defin-
ing strategies for normal form games, which focused on the explainability of
strategies and on the traceability of game executions [16]. In future work we
hope to utilize ideas from both of these projects to make game theory accessible
to a broader audience. One of the current limitations of Hagl, common in DSELs
in general, is a presupposition of knowledge of the host language, in this case,
Haskell. Our visual language is targeted at a much broader audience, but has a
correspondingly smaller scope than Hagl. Somewhere in between there is a sweet
spot. One possibility is using Hagl as a back-end for an integrated game theory
tool which incorporates our visual language as part of an interface for defining,
executing and explaining concepts in game theory.

334 E. Walkingshaw and M. Erwig
References
1. Fudenberg, D., Tirole, J.: Game Theory, xvii—xx, pp. 11-23. MIT Press, Cambridge

10.

11.

12.

13.

14.
15.

16.

(1991)

Nagel, R.: Unraveling in Guessing Games: An Experimental Study. American Eco-
nomic Review 85, 1313-1326 (1995)

Ho, T., Camerer, C., Weigelt, K.: Iterated Dominance and Iterated Best-response
in p-Beauty Contests. American Economic Review 88(4), 947-969 (1998)
Crawford, V.: Introduction to Experimental Game Theory. Journal of Economic
Theory 104(1), 1-15 (2002)

Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
Kendall, G., Darwen, P., Yao, X.: The Prisoner’s Dilemma Competition (2005),
http://www.prisoners-dilemma.com

Walkingshaw, E., Erwig, M.: A Domain-Specific Language for Experimental Game
Theory. Under consideration for publication in the Journal of Functional Program-
ming (2008)

Erwig, M., Kollmansberger, S.: Functional Pearls: Probabilistic functional pro-
gramming in Haskell. Journal of Functional Programming 16(01), 21-34 (2005)
Papadimitriou, C.: The Complexity of Finding Nash Equilibria. Algorithmic Game
Theory, 29-52 (2007)

Gottlob, G., Greco, G., Scarcello, F.: Pure Nash Equilibria: Hard and Easy Games.
In: Proceedings of the 9th conference on Theoretical aspects of rationality and
knowledge, pp. 215-230. ACM, New York (2003)

Straffin, P.: Game Theory and Strategy, pp. 7-12, 65-80. The Mathematical Asso-
ciation of America, Washington (1993)

Chakravarty, M., Keller, G., Jones, S., Marlow, S.: Associated types with class.
In: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, vol. 40, pp. 1-13. ACM, New York (2005)

Peyton Jones, S.L.: Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge (2003)

GHC: The Glasgow Haskell Compiler (2004), http://haskell.org/ghc

Groves, T., Ledyard, J.: Optimal Allocation of Public Goods: A Solution to the
Free Rider Problem. Econometrica 45(4), 783-809 (1977)

Erwig, M., Walkingshaw, E.: A Visual Language for Representing and Explaining
Strategies in Game Theory. In: IEEE Int. Symp. on Visual Languages and Human-
Centric Computing, pp. 101-108 (2008)

http://www.prisoners-dilemma.com
http://haskell.org/ghc

	Varying Domain Representations in Hagl
	Introduction
	Limitations of the Game Representation
	Outline of Paper

	A Language for Experimental Game Theory
	Normal Form Game Definition
	Extensive Form Game Definition
	State-Based Game Definition
	Game Execution and Strategy Representation

	A Biased Domain Representation
	Solutions of Normal Form Games
	Loss of State in State-Based Games

	Generalizing Game Representations
	Final Game Representation
	Game Definition Combinators

	Flexible Representation of Games
	Representing and Solving Normal Form Games
	Representing and Playing the Match Game

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

