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Abstract

Many errors in spreadsheet formulas can be avoided if
spreadsheets are built automatically from higher-level mod-
els that can encode and enforce consistency constraints.
However, designing such models is time consuming and re-
quires expertise beyond the knowledge to work with spread-
sheets. Legacy spreadsheets pose a particular challenge to
the approach of controlling spreadsheet evolution through
higher-level models, because the need for a model might be
overshadowed by two problems: (A) The benefit of creating
a spreadsheet is lacking since the legacy spreadsheet al-
ready exists, and (B) existing data must be transferred into
the new model-generated spreadsheet.

To address these problems and to support the model-
driven spreadsheet engineering approach, we have devel-
oped a tool that can automatically infer ClassSheet mod-
els from spreadsheets. To this end, we have adapted a
method to infer entity/relationship models from relational
database to the spreadsheets/ClassSheets realm. We have
implemented our techniques in the HAEXCEL framework
and integrated it with the ViTSL/Gencel spreadsheet gener-
ator, which allows the automatic generation of refactored
spreadsheets from the inferred ClassSheet model. The re-
sulting spreadsheet guides further changes and provably
safeguards the spreadsheet against a large class of for-
mula errors. The developed tool is a significant contribu-
tion to spreadsheet (reverse) engineering, because it fills
an important gap and allows a promising design method
(ClassSheets) to be applied to a huge collection of legacy
spreadsheets with minimal effort.

1. Introduction

Spreadsheets are one of the most popular programming
systems, especially concerning business applications. Ev-
ery year, hundreds of millions of spreadsheets are created
by business users, and numerous studies show that this high
rate of production is accompanied by an alarming high rate
of errors [8, 12, 13]. Some studies report that up to 90% of

real-world spreadsheets contain errors [14].
Spreadsheet systems offer users a high level of flex-

ibility, making it easier for people to get started work-
ing with spreadsheets. The downside is that this freedom
also offers ample opportunity to create erroneous spread-
sheets. Errors during creation of a spreadsheet are made
as well as when modified by other users. The problem
gets exacerbated when the people who use or modify the
spreadsheet do not fully understand its functionality. This
situation arises because spreadsheet systems do not offer
any higher-level abstractions like modern programming lan-
guages do. Moreover, data and computation are not sep-
arated in spreadsheets, and the immediate visual feedback
mechanism makes traditional coding and program com-
pilation/execution steps indistinguishable from each other.
These factors make widespread reuse of spreadsheets diffi-
cult and prone to errors.

In recent years the spreadsheet research community has
recognized the need to support end-user, model-driven soft-
ware development, and to provide spreadsheet develop-
ers and end users with methodologies, techniques and the
necessary tool support to improve their productivity. In
fact, several techniques have been proposed to allow end
users to safely edit spreadsheets, like, for example, the use
of spreadsheet templates [2], ClassSheets [6], and the in-
clusion of visual objects to provide editing assistance in
spreadsheets [5]. All these approaches aim at a form of
model-driven software development: First, a spreadsheet
business model is defined, from which then a customized
spreadsheet application is generated that guarantees the
consistency of the spreadsheet with the underlying model.

Despite of its huge benefits, model-driven software de-
velopment is sometimes difficult to realize in practice. For
example, in the context of spreadsheets, the use of model-
driven software development requires that the developer is
familiar both with the spreadsheet domain (business logic)
and with model-driven software development. As some
studies suggest, defining the business model of a spread-
sheet can be a complex task for end users [1]. As a result,
end users are unable (or reluctant) to follow this spread-
sheet development discipline. Things get even more com-
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Figure 1. A spreadsheet representing a sales system for dishes.

plex when end users need to modify a large (legacy) spread-
sheet developed by others and whose functionality they do
not understand.

In this paper we propose reverse engineering techniques
to derive ClassSheet models from existing spreadsheet data.
We use data mining techniques to reason about spreadsheet
data and to infer functional dependencies among columns.
Functional dependencies and a relational schema derived
from them are the building blocks to infer the spreadsheet
business model.

The rest of this paper is organized as follows. In Sec-
tion 2 we present a motivating example. The algorithm for
the automatic inference of ClassSheets from spreadsheets is
explained in Section 3. An evaluation of the techniques pre-
sented can be found in Section 4. Related work is discussed
in Section 5, and Section 6 concludes the paper.

2. An Example

Consider the example spreadsheet shown in Figure 1,
taken from [13]. This spreadsheet represents a sales sys-
tem for detergents for dishwashers. The abbreviated labels
have the following meanings: Label com code stands for
commercial code, upc for universal product code, case for
number of cases, move for sales quantity, qty is a transac-
tion quantity (which in this dataset is always set to 1), ok is
a confirmation code, and profit is the profit and is calculated
using the formula =I2*K2*0.2 (for the first row).

The business logic that underlies this spreadsheet is not
immediately clear and is quite difficult to infer for a non-
expert in this domain. In this section we will informally
describe a strategy to infer such a business logic from the
spreadsheet data.

Objects that are contained in such a spreadsheet and the
relationships between them are reflected by the presence
of functional dependencies between spreadsheet columns.
A functional dependency between a column C and another
column C′ means that the values in column C determine the
values in column C′, that is, there are no two rows in the
spreadsheet that have the same value in column C but differ
in their values in column C′. This idea can be extended to
multiple columns, that is, when any two rows that agree in

the values of columns C1, . . . ,Cn also agree in their value in
columns C′1, . . . ,C

′
m, then C′1, . . . ,C

′
m are said to be function-

ally dependent on C1, . . . ,Cn.
It is possible to construct a relational model from a set

of observed functional dependencies. Such a model con-
sists of a set of relation schemas (each given by a set of
column names) and expresses the basic business model
present in the spreadsheet. Each relation schema of such
a model basically results from grouping functional depen-
dencies together. For example, for the spreadsheet in Figure
1 we could infer the following relational model (underlined
column names indicate those columns on which the other
columns are functionally dependent).
StoreWeek (store,week)
Dish (upc,com code,description,size,case,nitem)
Sale (upc,store,week,move,profit,price,onsale,qty,ok)

The model has three relations: StoreWeek contains the data
of stores and weeks of sale; Dish contains all the informa-
tion about dishes; Sale stores the information on sales, that
is, for a particular dish, in a certain store and week how
much was sold, the profit, the price, if it was on sale or not,
the quantity, and a confirmation code.

Although a relational model is very expressive, it is not
quite suitable for spreadsheets since spreadsheets need to
have a layout specification. In contrast, the ClassSheet
modeling framework offers high-level, object-oriented for-
mal models to specify spreadsheets and thus present a
promising alternative [6]. ClassSheets allow users to ex-
press business object structures within a spreadsheet using
concepts from the UML (Unified Modeling Language). A
spreadsheet application consistent with the model can be
automatically generated, and thus, a large variety of errors
can be prevented.

We therefore employ ClassSheet as the underlying mod-
eling approach for spreadsheets and transform the inferred
relational model into a ClassSheet model. In Figure 2 we
present a new spreadsheet generated from the ClassSheet
modeling our running example.

The underlying ClassSheet model can be divided in two
main parts: the bottom one (rows 9 to 12) corresponds to
the relation Dish. It is a class composed of its name Dish,
by a row of labels corresponding to the attributes in the re-
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Figure 2. A spreadsheet generated from the
ClassSheet modeling the running example.

lational model, and a row with default values. For example,
the first column has the label Upc. Since it is marked as
vertically expandable (by the empty gray row labeled with
the vertical ellipsis), new rows can be added (two are shown
in this case).

The top part (rows 1 to 7) represents the sales relation.
Since Sale is a relationship between two other relations, it
is represented as a cell class (blue1 tables) and the two re-
lated classes Dish and StoreWeek. In fact, the table Dish
was already represented, and so only its key is used here.
The table Dish was factored out in this way to avoid up-
date anomalies, which occur when data is changed in one
place and not changed in other places in the exactly same
way [15]. This spreadsheet has two entries for sales.

ClassSheets carry information rich enough that allows
the automatic generation of UML class diagrams from
them. Figure 3 shows the UML class diagram that is de-
rived from the ClassSheet from Figure 2.

upc : string=""
com_code : string=""
description : string=""
size : int=0
case : int=0
nitem : string=""

Dish

store : string=""
week : string=""

StoreWeek

move : int=0
price : int=0
profit : int
onsale : string=""
qty : int=0
ok : string=""

Sale
* *

move*price*0.2

Figure 3. A UML class diagram representing
the business logic for the running example.

In this section, we have described our approach to de-
rive ClassSheets for spreadsheets through an example. In
fact, the ClassSheet and the UML class diagram were au-
tomatically produced by the tool that we have implemented
based on our approach. In the coming sections we describe

1We assume that through the use of PDF this is visible to the reader.

the steps and algorithms to infer ClassSheets in detail. The
architecture of our approach is sketched in Figure 4.

A ⇀	 B
C	 D	 ⇀	 E	 	 

are provided through a tool, called Gencel, which is an ex-
tension to MS Excel that restricts the definition and pos-
sible evolution of a concrete spreadsheet according to the
specification given by the template. Thus, illegal update
operations like a partial copying or moving of vertical (vex)
or horizontal (hex) recurring groups are prevented. Further-
more, formulas are updated correctly and automatically. For
example, in the case of inserting new instances of vex or hex
groups in a concrete generated spreadsheet. For details on
the type system and spreadsheet generation, we refer to [12].

Figures 2 and 3 demonstrate a somewhat more involved
example of a Vitsl template and a corresponding Gencel
spreadsheet application for a budget calculation. We will
use this application to illustrate some limitations of the
Vitsl/Gencel approach as a motivation for the proposed
ClassSheet model.

Figure 2 shows that a hex group has been defined by clus-
tering columns C, D, and E. The underlying problem domain
requirement was that for each year (and for each category)
the values Qnty, Cost and their product form a logical unit
and should occur in the spreadsheet. The only way to ex-
press this logical clustering of three cells within Vitsl is by
the omission of layout-oriented notations as the two small
vertical bars in the header row between C, D, and E. In Gen-
cel, this grouping causes the corresponding insertion and
deletion of groups of three columns as blocks.2

Now imagine that the Vitsl designer would have grouped
only the cells D and E, which would solely be visible in
Vitsl by an additional bar within the header row between
the columns C and D. This notationally minimally differ-
ent Vitsl model would have resulted in a completely differ-
ent spreadsheet application, in which the horizontal repeti-
tion would have been restricted to the two columns D and
E. This different grouping would express that the quantity
value is fixed for all years, while only the cost value might
vary yearly.

Another possible source for an error-prone spreadsheet
model is due to the indication of references in formu-
las by means of cell-oriented addresses like C4*D4. Here,
once more, the use of business logic-oriented notations like
Qnty*Cost helps to prevent the design of incorrect data com-
putations.

Therefore, since Vitsl is limited to the support of layout-
oriented clustering constraints and cannot express problem-
domain-oriented logical clustering according to business ob-
jects explicitly, the semantic gap between problem domain
requirements and a spreadsheet application still forms a ma-
jor obstacle to yield trustable spreadsheet applications.

3. CLASS SHEETS

In this section, we will introduce our approach of a high-
level, object-oriented model for spreadsheet applications. A
formalization of the approach is presented in the three sub-
sequent sections.

In order to motivate the introduction of a business
application-oriented structure on top of a layout-oriented
Vitsl template structure, we discuss in the following three
simple example spreadsheet applications. The first one (see
Figure 5, left), the so-called income sheet, consists of a list

2Note that when merging cells in MS Excel all but the first
cell entries are lost, so that this groupwise operation is not
possible at all in MS Excel.

of data values, which are summed up and the sum of which
is shown in a separate cell. From an object-oriented point
of view, one can see a summation object, which aggregrates
a list of objects bearing single data values. Looking at the
layout structure, the list of single value objects, consisting
of a header Item and a list of value objects, is embedded into
the layout of the summation object, consisting of a header
entry Income and a footer with the label Total and an ag-
gregation formula assigned to an attribute named total. We
call such an object-oriented extended template a ClassSheet
since it defines classes together with their attributes and
aggregational relationships.

1

A

Income

2

3

Item

value = 0

4 Total

5 total = SUM(Item.value)

...

total : Int

Income

value : Int = 0

Item

*

SUM(Item.value)

IncomeˆItemˆ0↓ˆTotalˆSUM((0,−2))

Figure 5: A simple one-dimensional ClassSheet.

Thus, ClassSheets consists of a list of attribute definitions
grouped by classes and are arranged on a two dimensional
grid. Additional labels are used to annotate the concrete
representation. Class names are set in boldface in contrast
to attribute names and labels, which are set in normal face.
In addition, colored borders are used to depict the different
classes within a ClassSheet.3

Class parts may be spread over header and footer en-
tries, which results in a bracket-like structure indicated by a
square-bracket-like notation of (open) class rectangles. For
example, in Figure 5, the red class Income is split into a
header and footer part that surrounds the blue class Item.
References to other entries, being expressed in Vitsl by co-
ordinates, are defined by using attribute names, as shown in
the SUM formula in the example. Summarizing, ClassSheets
subsume all the information of an equivalent Vitsl template
and can thus easily be translated into an equivalent abstract
Vitsl expression (see Figure 5, bottom). Similarly, a UML-
like representation may be derived from a ClassSheet (see
Figure 5, right) by forgetting all layout information. Ag-
gregation formulas are added as notes to the correspond-
ing attribute definition. Those attributes, called derived
attributes in UML, are tagged by a spreadsheet symbol on
the right of the attribute definition. All other attributes the
values of which are shown in a spreadsheet are tagged by a
spreadsheet symbol on the left of the attribute definition.

Within a spreadsheet design process, it is intended that
the designer works in the first place with a sophisticated
ClassSheet editor. In addition, within a fully-fledged design
environment, the UML class diagram presentation might be
offered to the (expert) designer, who is knowledgeable in
UML, to illustrate her design decisions. In the following we

3We assume in the following that through the use of PDF
this is visible to the reader
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paradigms

Figure 4. An overview of the process to infer
a ClassSheet and a UML class diagram.

3. Inferring ClassSheets

In this section we explain in detail the steps to automat-
ically extract a ClassSheet model from a spreadsheet. Es-
sentially, our method involves the following steps:

(1) Detect all functional dependencies and identify model-
relevant functional dependencies

(2) Determine relational schemas with candidate, foreign,
and primary keys

(3) Generate and refactor a relational graph
(4) Translate the relational graph into a ClassSheet

In the following we will explain the steps 1, 3, and 4. Step 2
is a standard inference procedure borrowed from relational
database theory [3].

3.1. Detecting Functional Dependencies

Knowledge about the functional dependencies in a
spreadsheet provides the basis for identifying tables and
their relationships in the data, which form the basis for
ClassSheet models. The more accurate we can make this in-
ference step, the better the inferred ClassSheet models will
reflect the actual business models. In this subsection we will
therefore first repeat some definitions regarding relational
models and functional dependencies and then describe a set
of heuristics that are key to infer valid dependencies.

A (relational) schema is a finite set of attributes. In the
context of spreadsheets an attribute corresponds to the la-
bel of a column, such as upc and week. A (relational) table
over a schema is given by a finite set of tuples, where tu-
ples correspond to (contiguous parts of) spreadsheet rows
(or columns). Our example includes the tables Dish and
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StoreWeek. Each tuple is uniquely identified by a set of at-
tributes called primary key. For example, in the Dish table
this set is {upc}. If a table has more than one set of at-
tributes that can serve as primary key, called candidate keys,
one of those has to be chosen as the primary key. A foreign
key is a set of attributes within one table that matches the
primary key of some other table.

A functional dependency between two sets of attributes
A and B, written A ⇀ B, holds in a table if for any two tuples
t and t ′ in that table t[A] = t ′[A] =⇒ t[B] = t ′[B] where t[A]
yields the (sub)tuple of values for the attributes in A. In
other words, if the tuples agree in the values for attribute set
A, they agree in the values for attribute set B. For instance,
in our running example the dependency upc ⇀ description
exists, meaning that the values in column upc determine the
values in column description.

Our goal is to use the data in a spreadsheet to identify
functional dependencies. Depending on the data, it can hap-
pen that many “accidental” functional dependencies are de-
tected, that is, functional dependencies that do not reflect
the underlying model. For example, in our example we can
identify the following dependency that is just happens to
be fulfilled for this particular data set, but that does cer-
tainly not reflect a constraint that should hold in general:
size ⇀ com code case qty ok. In fact, the data contained in
the spreadsheet example supports over 30 functional depen-
dencies. Here are a few more.
store ⇀ qty ok
com code ⇀ qty ok
nitem ⇀ com code size case qty ok
upc ⇀ com code description size case nitem qty ok
move price ⇀ profit

It should be noticed that the last functional dependency is
induced by the formula =I2*K2*0.2, as described in [4].

The next step is therefore to filter out as much as pos-
sible those functional dependencies that are just accidental
and keep the ones that are indicative of the underlying data
model. These can then be used to infer tables with primary
and foreign keys.

The process of identifying the “valid” functional depen-
dencies is, of course, ambiguous in general. Therefore, we
employ a series of heuristics for evaluating dependencies.

Note that several of these heuristics are possible only in
the context of spreadsheets. This observation supports the
contention that end-user software engineering can benefit
greatly from the context information that is available in a
specific end-user programming domain. In the spreadsheet
domain rich context is provided, in particular, through the
spatial arrangement of cells and through labels [7].

In the following we describe the employed heuristics.
Each of these can add support to a functional dependency.

Label semantics This heuristic is used to classify an-
tecedents in functional dependencies. Most keys are labeled

as “code” or “number” or are a combination of these la-
bels with a label more related to the subject. For exam-
ple, in a spreadsheet to store movies, a label “movie id”
could exist to uniquely identify a movie. We consider la-
bels “id”, “code”, “number”, “nr”, “no” and combinations
of them with other labels. A functional dependency with an
antecedent of this kind receives high support.

Label arrangement If the functional dependency re-
spects the original order of the attributes, this counts in favor
of this dependency since very often key attributes appear to
the left of non-key attributes.

Antecedent size Good primary keys often consist of a
small number of attributes. Therefore, the smaller the num-
ber of antecedent attributes, the higher the support for the
functional dependency.

Ratio between antecedent and consequent sizes In gen-
eral, functional dependencies with smaller antecedents and
larger consequents are stronger and thus more likely to be a
reflection of the underlying data model. Therefore, a func-
tional dependency receives the more support, the smaller
the ratio of the number of consequent attributes is compared
to the number of antecedent attributes.

Single value columns It sometimes happens that spread-
sheets have columns that contain just one and the same
value. In our example, the columns ok and qty are like this.
Such columns tend to appear in almost every functional de-
pendency’s consequent, which causes them to be repeated
in many relations. Since in almost all cases, such depen-
dencies are simply a consequence of the limited data (or
represent redundant data entries), they are most likely not
part of the underlying data model and will thus be ignored.

After having gathered support through these heuristics,
we aggregate the support for each functional dependency
and sort them from most to least support. We then select
functional dependencies from that list in the order of their
support until all the attributes of the schema are covered.

Based on these heuristics, our algorithm produces the
following functional dependencies for the Dish application:
price ⇀ onsale
store week profit ⇀ move
upc ⇀ com code description size case nitem

One of the objectives of creating a ClassSheet model based
on a relational model is to avoid update anomalies. To elim-
inate such problems, the dependencies must be normalized,
for which we use an algorithm presented by Maier in [11].

Skipping over the details of that algorithm, we just note
that in our example we obtain tables with only one candi-
date key each as shown in Table 1.

The final relational schema that we obtain is as follows.
Price (price,onsale)
StoreWeek (store,week,profit,move)
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Candidate Key Att. Foreign Key Att.
Schema Attribute Schema Attribute

Price price Sale price
Dish upc Sale upc
StoreWeek store Sale store
StoreWeek week Sale week
StoreWeek profit Sale profit

Table 1. Foreign keys for the Dish application.

Dish (upc,com code,description,size,case,nitem)
Sale (upc,store,week,qty,price,profit,ok)

Our tool currently assigns single letters as table names as
default values. These can then be changed by the user (as
we have done in this example) before the ClassSheet model
is completed. Note that the relational model generated is not
equal to the one presented in Section 2. From a data point of
view the differences are not significant and the model serves
the same purpose.

3.2. The Relational Intermediate Directed
Graph

The next step in the reverse engineering process is to pro-
duce a Relational Intermediate Directed (RID) Graph [3].
This graph includes all the relationships between a given set
of schemas. Nodes in the graph represent schemas and di-
rected edges represent foreign keys between those schemas.
For each schema, a node in the graph is created, and for
each foreign key, an edge with cardinality “*” at both ends
is added to the graph.

Sale

Price

*

*

StoreWeek

*

Dish

* *

*

Figure 5. RID graph for the Dish application.

Figure 5 represents the RID graph for the Dish sales sys-
tem. This graph can generally be improved in several ways.
For example, the information about foreign keys may lead
to additional links in the RID graph. If two relations ref-
erence each other, their relationship is said to be symmet-
ric [3]. One of the foreign keys can then be removed. In our
example there are no symmetric references.

Another improvement to the RID graph is the detection
of relationships, that is, whether a schema is a relationship
connecting other schemas. In such cases, the schema is

transformed into a relationship. The details of this algo-
rithm are not so important and left out for brevity.

Since the only candidate key of the schema Sale is the
combination of all the other schemas’ primary keys, it is a
relationship between all the other schemas and is therefore
transformed into a relationship. The improved RID graph
can be seen in Figure 6.

Sale

Price

*

StoreWeek Dish

* *

Figure 6. Refactored RID graph.

3.3. Generating ClassSheets

The RID graph generated in Section 3.2 can be directly
translated into a ClassSheet diagram. By default, each node
is translated into a class with the same name as the node and
a vertically expanding block. In general, for a schema/node
A with attributes A1, . . . ,An and default values da1, . . . ,dan,
a ClassSheet table as shown in Figure 7 is generated. (We
omit here the column labels, whose names depend on the
number of columns in the generated table.)

Figure 7. Generated class for a node A.

This ClassSheet represents a spreadsheet “table” with
name A. For each attribute, a column is created labeled with
the attribute’s name. The default values depend on the at-
tribute’s domain. This table expands vertically.

A special case occurs when there is a foreign key from
one relation to another. The two relations are created basi-
cally as described above but the attributes that compose the
foreign key do not have default values, but references to the
corresponding attributes in the other class.

Relationships are treated differently and will be trans-
lated into cell classes. We distinguish between two cases:
(1) Relationships between two schemas, and (2) relation-
ships between more than two schemas. For the first case, let
us consider the following set of schemas.

M(M1, ...,Mr,Mr+1, ...,Ms)
N(N1, ...,Nt ,Nt+1, ...,Nu)
R(M1, ...,Mr,N1, ...,Nt ,R1, ...,Rx,Rx+1, ...,Ry)

The corresponding RID graph is shown in Figure 8.
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Figure 8. RID graph for a binary relationship.

The ClassSheet that is produced by the translation is
shown in Figure 9. For both nodes M and N a class is cre-
ated as explained before (lower part of the ClassSheet). The
top part of the ClassSheet is divided in two classes and one
cell class. The first class, NKey, is created using the key at-
tributes from the N class. All its values are references to N.
For example, n1 = N.N1 references the value dn1 in class N.
This makes the spreadsheet easier to maintain while avoid-
ing update anomalies. Class Mkey is created using the key
attributes of the class M and the rest of the key attributes of
the relation R. The cell class (with blue border) is created
using the rest of the attributes of the relation R.

Figure 9. ClassSheet for a relationship.

In principle, the positions of M and N are interchange-
able and we have to choose which one expands vertically
and which one expands horizontally. We choose whichever
combination minimizes the number of empty cells created
by the cell class, that is, the number of key attributes from M
and R should be similar to the number of non-key attributes
of R. Three special cases can occur with this configuration.

First, one of the relations M or N might have only key at-
tributes. In this case, and since all the attributes of that class
are already included in the cell class R, no separated class
is created for it. The resultant ClassSheet would be similar
to the one presented in Figure 9, but a separated class would
be omitted for M or for N or for both.

The second case occurs when the key of the relation R is
only composed by the keys of M and N, that is, R is defined
as follows: R(M1, ...,Mr,N1, ...,Nt ,R1, ...,Rx). (Part of) the
resultant ClassSheet is shown in Figure 10.

The difference between this ClassSheet model and the
general one is that the MKey class on the top does not con-

Figure 10. ClassSheet for a relationship.

tain any attribute from R: all its attributes are contained in
the cell class. (Although in this figure classes M and N do
not appear, they are generated in the same way as before.)

The third case occurs when the relationship is composed
only of key attributes. Thus, the attributes that appear in
the cell class are the non-key attributes of N and no class is
created for N. This is the case of our running example where
N corresponds to StoreWeek, M to Dish and R to Sale.

Finally, with more than three classes, we choose between
the candidates to span the cell class using the following cri-
teria: (1) M and N should have small keys; (2) the number
of empty cells created by the cell class should be minimal.
After having chosen the three relations, the generation pro-
ceeds as described above. The remaining relations are cre-
ated in as explained in the beginning of this section.

In Figure 11 we present the ClassSheet model that is gen-
erated by our tool for the Dish application.

Figure 11. The ClassSheet generated by our
algorithm to the running example.

We can observe that this model is different from the one
that we have used for the spreadsheet instance in Figure 2,
which illustrates that ClassSheet models are not unique, and
which also raises the question about the quality of models
inferred by our tool. We address this question next.

4. Evaluation

In order to evaluate the applicability of our approach, we
have performed an experiment on the spreadsheets that are
made available (through a CD) with [13]. This set consists
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of 27 spreadsheets, each containing between 1 and 16 work-
sheets, with a total of 121 worksheets2. More than half of
worksheets, 66 out of the 121, contain formulas.

With this experiment we want to test whether the
ClassSheet inference approach works in practice. Specifi-
cally, we want to know how well the system is able to iden-
tify table and relationship structures and for which kinds of
spreadsheets it works and when it fails. We also want to
know the quality of the ClassSheet models generated.

More precisely, we seek to answer the following research
questions:

RQ1: In how many cases is ClassSheet inference appli-
cable?

RQ2: How many of the table and relationship structures
that can be identified in the data can be successfully cap-
tured by ClassSheets inferred by our tool?

RQ3: In which cases does ClassSheet inference fail?

4.1. Test Results

To answer the first two research questions we manually
inspected all the spreadsheets to see how many tables could
be identified and what relationships exist.

We present in Table 2 the results of this evaluation.
Four of the tables in spreadsheet “c9/Options.xls” contained
spreadsheet errors (reported by Excel); these tables were ex-
cluded from the further analysis.

Through manual inspection of the spreadsheets, we were
able to identify 176 tables. In the best case, ClassSheet in-
ference would be able to identify all 176 tables and create a
ClassSheet representation for them.

The results in Table 2 show that the tool could identify all
but 13 tables. The tool failed mainly in those cases when no
layout in the spreadsheets was available. Although through
manual inspection we could recognize a table structure, the
tool was unable to derive sufficient constraints from lay-
out to support the heuristics for the successful detection of
functional dependencies. Note that the heuristics used are
the same for all the spreadsheets.

Inspection of the 163 successfully produced ClassSheet
models suggested that they should be classified into three
different levels of quality: bad, acceptable, and good.

A ClassSheet model is classified as bad if the underly-
ing relational model is not realistic. In some cases it is not
possible to infer a model that is similar to the one an ex-
pert would create. Although from a data point of view it is
correct and normalized, we consider that an expert would
produce a better model. We found that 12 ClassSheet mod-
els fall under this classification.

The classification acceptable was given to ClassSheet
models that do not completely characterize the correspond-
ing table or relationship; while capturing many or most of

2One spreadsheet, c6/Adbudget6.xls, was unreadable.

Spreadsheet sheets/tables fail bad acc good

c4/SS Kuniang.xls 1 2 2
c5/AdBudget.xls 8 13 6 7
c5/Delta.xls 5 5 2 3
c7/Bundy.xls 10 44 2 42
c7/Forecasting.xls 7 10 6 4
c7/Analgesics.xls 3 5 1 4
c7/Applicants.xls 6 6 2 1 3
c7/Dish.xls 2 2 2
c7/Executives.xls 6 11 2 1 8
c7/Population.xls 3 4 4
c7/Tissue.xls 1 1 1
c8/AdBudget8.xls 8 8 2 2 4
c8/IP.xls 7 1 1
c8/LP.xls 16 7 2 5
c8/NLP.xls 5 5 5
c9/AdBudget9.xls 7 6 1 1 4
c9/Butson.xls 2 4 4
c9/Data.xls 2 10 10
c9/Diffusion.xls 2 4 1 3
c9/Hastings1.xls 3 4 2 2
c9/Hastings2.xls 2 1 1
c9/Netscape.xls 5 8 7 1
c9/Options.xls 8 4 1 3
c9/Plants.xls 2 10 10
c9/Portfolio.xls 3 1 1
c9/Veerman.xls 1 0

Total 121 176 13 12 27 124

Table 2. Results of our evaluation.

its essential aspects, it left out some important parts. We
classified 27 ClassSheet models as acceptable.

Finally, a good ClassSheet model is a model that closely
represents the tables and relationships under consideration.
The relational model inferred is very realistic, and the pro-
duced ClassSheet model is well structured. From the 163
tables that ClassSheet inference was able to process, the tool
produced 124 good ClassSheet models.

4.2. Discussion

The test results are quite encouraging: With our tech-
niques we are able to produce ClassSheet models for more
then 92% of the existing tables. Of these models, more then
76% are classified as good.

The failure to generate good models in about 1/4th of
the cases was mostly due to two facts: (1) lack of layout
to inform the heuristics and (2) some dependencies that do
hold for the models did not appear in the data.

Although our process is completely automatic, we be-
lieve that the above observations point to the fact that the
method could be much more effective if it was helped by a
human. For example, if additional dependencies or headers
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were explicitly provided by the user, the generated models
could be improved. Therefore, an extension of our tool al-
lowing users to interact and provide input about the models
seems to be the most important direction for future work.

5. Related Work

The process of inferring models from existing spread-
sheets has been proposed before. Extracting templates from
existing spreadsheets was described in [1]. That technique
is based on similarity of groups of cells and depends on the
discovery of repeating patterns in spreadsheets. This tech-
nique works very well for spreadsheets that do exhibit such
repeating blocks. Our approach is more suitable when rela-
tionships exist between data. Another difference is that the
target modeling languages are not the same.

Hermans et al. describe a technique to automatically in-
fer class diagrams for existing spreadsheets matching them
with a set of pre-defined spreadsheet patterns [9]. This tech-
nique works very well for spreadsheets following the pre-
defined patterns. This approach does not consider other
type of patterns (like the data dependencies we compute),
and the derived model is not as reach as the ClassSheet one.

Isakowitz et al. proposed a methodology to infer a logi-
cal layer of existing spreadsheets [10]. This process in not
completely automatic and sometimes requires human inter-
vention. The reverse process is also presented: to build a
spreadsheet application reusing the logical models inferred.
To separate the model from the data is a concern of both
Isakowitz and our work.

ClassSheets and entity-relationship (ER) diagrams are
closely related. There have been proposed several algo-
rithms to infer ER diagrams from databases. We have
reused some algorithms proposed by Alhajj in [3] to help
us construct an intermediate model of a spreadsheet.

A transformation of spreadsheets to the relational setting
was proposed by Cunha et al. in [4]. Based on functional
dependencies a schema is generated and a new spreadsheet
based on that model is produced. The model is based only
on database techniques and is not well adapted to spread-
sheets, in particular, the identification of dependencies ig-
nores the peculiarities of spreadsheets.

6. Conclusions

We have developed a technique and a tool that can auto-
matically infer ClassSheets from spreadsheets. These mod-
els can be of great help for the maintenance of spreadsheets
since knowledge about the underlying model can, for exam-
ple, prevent erroneous operations. We have adapted and ex-
tended a method to infer entity/relationship models from re-
lational databases to work with spreadsheets. The exploita-
tion of layout information that is specific to spreadsheets

was instrumental in the successful working of the tool. An
evaluation of our tool on real-world spreadsheets showed
encouraging results and demonstrated that the approach is
viable and should be pursued further in future work.
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