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Abstract

The principle of causation is fundamental to science and
society and has remained an active topic of discourse in phi-
losophy for over two millennia. Modern philosophers often
rely on “neuron diagrams”, a domain-specific visual lan-
guage for discussing and reasoning about causal relation-
ships and the concept of causation itself. In this paper we
formalize the syntax and semantics of neuron diagrams. We
discuss existing algorithms for identifying causes in neuron
diagrams, show how these approaches are flawed, and pro-
pose solutions to these problems. We separate the standard
representation of a dynamic execution of a neuron diagram
from its static definition and define two separate, but related
semantics, one for the causal effects of neuron diagrams
and one for the identification of causes themselves. Most
significantly, we propose a simple language extension that
supports a clear, consistent, and comprehensive algorithm
for automatic causal inference.

1 Introduction

Identifying causal relationships is a central concern in
scientific research, the judicial system, and our everyday
lives. Understanding cause and effect helps us to understand
the world around us, to change it, and to assign praise or
blame to each others’ actions. But how do we determine
which events are causes of others? And what exactly does
this even mean? Philosophers have studied these questions
for over two millennia, dating back at least to Plato [15],
and it remains an active area of research even today.

Modern philosophers have developed several different
notations for discussing causation and analyzing causal re-
lationships. The most widely used of these are neuron di-
agrams [12], which are created using a domain-specific vi-
sual language for concisely representing causal structures.
Although philosophers rely on this language for precise rea-
soning, it has never been described in a formal way. A
significant contribution of this work is therefore a formal
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definition of the syntax and semantics of neuron diagrams.
We also discuss methods for inferring causes from neuron
diagrams, demonstrate known flaws in these approaches, in-
troduce solutions, and motivate a simple language extension
to neuron diagrams. Finally, we provide a causal semantics
for extended neuron diagrams, a new cause inference algo-
rithm that performs better than existing algorithms.

In the next section we introduce the visual notation of
neuron diagrams. In Section 3 we introduce the philosoph-
ical tool of counterfactual reasoning, which forms the basis
of most modern theories of causation, and discuss its limita-
tions. In Section 4 we discuss the transitivity of causation,
where it is problematic, and how our language extension
can help. We formalize the syntax and execution semantics
of neuron diagrams in Section 5, and provide our causal se-
mantics in Section 6. In Section 7 we compare our causal
semantics to existing strategies when applied to some well-
known causation problems. We discuss other related work
in Section 8, and offer conclusions in Section 9.

2 Neuron Diagrams
Philosophers frequently structure their research around

thought experiments in the form of simple (and usually mor-
bid) stories. In this spirit, consider the well-known desert
traveler problem. A traveler goes on a trip through the
desert and takes a bottle of water. Two people try to kill the
traveler: the first poisons the water while the second pokes
a hole in the bottle. On the trip the traveler gets thirsty,
tries to drink from the bottle, finds it empty, and dies of de-
hydration. The problem, of course, is what is the cause of
the traveler’s death? Who is guilty of murder? A neuron
diagram for the desert traveler problem is given in Figure 1.

A neuron diagram is a directed, acyclic graph (DAG),

Dead§

Drink§

Thirst§

Poison

Poke

Figure 1. Desert traveler problem.
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where each node is called a neuron. A neuron can either
fire or not, which is indicated visually by the color of the
node: either gray or white, respectively. Neurons are highly
abstract and do not generally represent biological neurons.
They are frequently used to represent all sorts of other real
world entities, however, from events—where firing indi-
cates the occurrence of the event and non-firing indicates
its failure to occur—to the (binary) state of various objects.
In our example, the Poison neuron can be interpreted ei-
ther as the action of poisoning the water, or as the existence
of poison in the water (in which case, the act of poison-
ing is implied but not explicitly represented). The § symbol
adorning some neurons is related to our language extension
described in Section 4; they can be safely ignored for now.

Neurons in a diagram can be separated into two groups.
A neuron with no incoming edges (a source node in the
DAG) is called exogenous, and its value (whether or not it
fires) is predefined. A neuron that is not exogenous is said
to be endogenous, and its value is determined by the val-
ues of its predecessors, according to some function. In our
example, the Poison and Poke neurons are exogenous and
all other neurons are endogenous. If we were to change the
value of either or both of the exogenous neurons, the values
of downstream neurons could potentially change as well.

Neurons can be connected by two different types of
edges. Edges with triangular arrowheads are stimulating
edges, those with circular arrowheads are inhibiting edges.
A typical endogenous neuron fires if and only if it is stimu-
lated by at least one firing neuron, and inhibited by zero fir-
ing neurons. In our example, the Dead neuron fires since it
is stimulated by the firing Thirst neuron and is not inhibited
by any neurons. Although the Drink neuron is stimulated by
the Poison neuron, it is also inhibited by the Poke neuron,
preventing it from firing (poking the bottle drains the liquid
from the bottle, preventing it from being drunk). Note that
any number of stimulating neurons can be overridden by the
firing of a single inhibiting neuron.

While the informal firing semantics described above ap-
plies unless otherwise noted, it is common for creators of
neuron diagrams to use or invent neurons which implement
other functions as well. To demonstrate this, we present the
two doctors problem, taken from [9]. In this problem, a
patient is seriously ill and will die unless two different doc-
tors, A and B, administer a treatment. Unfortunately, only
doctor A administers the treatment, and so the patient dies.
A possible neuron diagram for this problem is given in Fig-
ure 2. In this example, a thick-bordered neuron is a neuron
that will fire only if two or more stimulating neurons fire.
So the Cure neuron will fire (and the Dead neuron will be
inhibited) only if both the A and B neurons fire.

It seems clear that doctor B’s inaction is the cause of
death of the patient, but how do we describe this intuition
more precisely? In the next section we discuss counterfac-
tual reasoning as a foundation for identifying causation.

Dead§

Sick§

Cure§

A

B

Figure 2. Two doctors problem.

3 Counterfactual Reasoning
The essence of counterfactual reasoning is considering

what might have happened had things been different. In the
case of the two doctors problem, we know that if doctor B
had administered the treatment, the patient would not have
died, so we conclude that B’s failure to administer the treat-
ment is a cause of the patient’s death. This simple idea was
first explored by philosopher David Lewis [11], and forms
the basis of many modern theories of causation [16, 4, 14].

Extending counterfactual reasoning to neuron diagrams
is easy. To determine if the value of neuron c is the cause
of the value of a downstream neuron e, simply change the
value of c and see if the value of e also changes. If so, the
original value of c is a cause of the original value of e. For
example, the value of neuron B in Figure 2 is false (non-
firing). If we change the value to true (firing), the value of
Cure changes from false to true, and Dead changes from
true to false. Thus, the non-firing of neuron B is a cause of
the non-firing of Cure and the firing of Dead.

This approach breaks down relatively rapidly, however,
and there are a few standard classes of philosophical prob-
lems that demonstrate this. The first is called (symmetric)
overdetermination, and can be seen by considering a variant
of the two doctors problem given in Figure 3. In this vari-
ant, neither doctor administers the cure, and the patient still
dies. Intuitively, it seems that doctor A and doctor B are both
at fault, and that each doctor’s failure to administer the cure
is a cause of the patient’s death. However, notice that if we
apply our basic counterfactual strategy by changing either
neuron A or neuron B, the result of Dead is unchanged. Get-
ting Dead to change requires altering both neurons A and B.
In our formal description of causation in Section 6, we ex-
tend counterfactual reasoning to identify sets of neurons as
counterfactual dependencies, solving the overdetermination
problem. This also leads to a richer cause structure, where
causes are boolean expressions of neurons. We call this ex-
tended approach structured counterfactual reasoning. This
form is known in the philosophy literature [8, 6], but so-
called “token” counterfactual reasoning is preferred for its
simplicity.

A more fundamental limitation of counterfactual reason-
ing is revealed by the desert traveler problem from Sec-
tion 2. Recall that the desert traveler died of thirst on the
journey because of the hole poked in the bottle. Thus, it
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Figure 3. Overdetermined variant of the two
doctors problem.

seems that only the hole-poker and not the poisoner should
be considered the cause of the traveler’s death. However, we
can see that the Dead neuron is not counterfactually depen-
dent on Poke alone, but only on the set including both the
Poke and Poison neurons. This problem is called asymmet-
ric overdetermination, or more commonly, preemption—
the poking of the bottle preempts or “trumps” the poisoning,
and so should be considered the sole cause of the traveler’s
death. Counterfactual reasoning, however, cannot distin-
guish this relationship from the symmetric overdetermina-
tion found in the two doctors variant described above.

In the next section we describe Lewis’s definition of cau-
sation based on “causal chains”, which gracefully copes
with the problem of preemption, and forms the basis of our
causal semantics presented in Section 6.

4 Transitivity of Causation

The failure of counterfactual reasoning in cases of pre-
emption stems from a disregard for the internal structure of
neuron diagrams. Twiddling inputs and observing outputs
reduces neuron diagrams to black-box boolean functions,
when in fact they provide much more causal information.
When adapted to neuron diagrams, Lewis’s causal chain de-
scription of causation [11] utilizes this information to iden-
tify causes in preemption problems that are more consistent
with intuition. For example, it identifies Poke as a cause of
Dead in the desert traveler problem, but not Poison.

According to Lewis, given events c, d, and e, if e is coun-
terfactually dependent on d, and d is counterfactually de-
pendent on c, then c is a cause of e, regardless of whether
or not e is counterfactually dependent on c. In other words,
Lewis considers causation to be fundamentally transitive.
The events c, d, and e are said to form a causal chain. Look-
ing again at the desert traveler problem, we see that Dead is
counterfactually dependent on Thirst, Thirst is counterfac-
tually dependent on Poke, and so we conclude that Poke is
a cause of Dead, even though Dead is not counterfactually
dependent on Poke. Further, we do not identify Poison as a
cause of Dead; since the firing of Dead is not counterfactu-
ally dependent on the non-firing of Drink, there is no causal
chain leading from Dead to Poison.

Dead§Boulder

Duck

Figure 4. Boulder problem.

The causal chain approach is not without flaws. Since
identifying the causes of each neuron/event relies on to-
ken counterfactual reasoning, it does not handle symmetric
overdetermination well. This can be resolved by adding a
logical structure to causes, which we do in our own causal
semantics. More troubling for the causal chain approach, is
that our intuitive sense of causation does not always seem to
be transitive. A classic example of this is the boulder prob-
lem, shown in Figure 4. In this problem a boulder falls off
a ledge toward a hiker below. The hiker sees the boulder
crashing down, ducks, and is unharmed. Had the hiker not
ducked, she would have been killed. Applying the causal
chain method we see that the non-firing of Dead is coun-
terfactually dependent on the firing of Duck. Thus, ducking
is a cause of surviving—so far so good. However, Duck is
also counterfactually dependent on Boulder; since Boulder,
Duck, and Dead form a causal chain, the falling of the boul-
der is also identified as a cause of surviving. It seems very
odd to say that the very thing which threatened the life of
the hiker is a cause of the hiker’s survival. In this case, it
seems that causation is not transitive.

Hitchcock argues that examples like this demonstrate
that causation is fundamentally not transitive, and reveal a
fundamental flaw in Lewis’s causal chains [8]. Hall takes a
different approach, arguing that causation only sometimes
seems to be transitive because there are really two differ-
ent kinds of causation that are conflated in current research:
counterfactual causation, which is not transitive, and pro-
ductive causation, which is [4]. In the boulder problem, the
falling of the boulder is a productive cause of the hiker’s sur-
vival (essentially by the causal chain analysis), but it is not
a counterfactual cause (by basic counterfactual reasoning).

The structural equations model developed by Halpern
and Pearl [6, 14] retains a single definition of causation and
copes gracefully with almost (see Section 7) every problem
presented so far, including transitivity. In many ways, it can
be considered the state of the art with regard to formal cau-
sation analysis. The structural equations approach places a
much greater emphasis on problem modeling, which Hall
complains ultimately amounts to little more than building
the solution into the model [5]. We agree with Halpern and
Pearl’s claim that this is a feature and not a bug—causation
is complicated and depends crucially and subtly on the in-
ternal structure of causal stories; it is therefore important to
have a language which can capture this structure explicitly.

Unfortunately, the richness of structural equations does
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not map well onto neuron diagrams, and the structural equa-
tion notation itself can be quite opaque. While structural
equations support superior causation analyses, neuron dia-
grams are simpler, more concise, and easier to understand.
In particular, determining if two events are related corre-
sponds to looking for an edge between neurons in a neu-
ron diagram vs. scanning for co-occurring variables in a po-
tentially large set of structural equations. The continued
widespread use of neuron diagrams, particularly in infor-
mal settings [9], further suggests their utility as explanatory
tools and thinking aids. With a simple extension, we believe
their usefulness as tools for cause inference can be signifi-
cantly improved as well.

The extension we propose is to split neurons into two
kinds: laws, decorated with a § symbol, and actions, which
are unadorned. These allow the modeler to indicate whether
a neuron should be considered a potential cause or not.
Laws represent facts or relationships that are considered im-
mutable. They often provide context or are structural in na-
ture, and should not be considered as potential causes. Ex-
amples include the Cure and Sick neurons in the two doctors
problem. In this example, we are not interested in identify-
ing the firing of Sick as a cause of the patient’s death. That
the patient is sick is considered given; we are interested in
which of the doctors is responsible for the patient’s death.
Similarly, we do not want to identify the non-firing of Cure
as a cause of the patient’s death, but instead the ultimate
action neurons responsible for this event.

A crucial piece of our causal semantics is that the
backward-directed search for causes (that is, the construc-
tion of causal chains) terminates at action neurons. This
provides a simple solution to the transitivity problem. Since
Duck is an action in the boulder problem, we will return this
as the sole cause of the hiker’s survival, rather than contin-
uing the search for earlier causes and also identifying Boul-
der as a cause. Together with imposing a logical structure
on causes, we are able to correctly identify causes in all of
the traditionally difficult cases presented so far.

5 Formalization of Neuron Diagrams

While the nodes and edges of a neuron diagram define
an abstract causal structure, the shading of neurons show
the execution or instantiation of that structure for some set
of inputs. For example, Figures 2 and 3 represent the same
causal structure instantiated with two different settings of
exogenous neurons A and B. In our formalization, we make
a distinction between neuron graphs, which capture an ab-
stract neuron structure, and neuron diagrams, which rep-
resent an execution of a neuron graph for some set of in-
puts. In this section we begin by formally describing neuron
graphs in Section 5.1. We then describe the execution se-
mantics of neuron graphs in Section 5.2, and combine these
to describe neuron diagrams in Section 5.3.

5.1 Neuron Graphs

A core feature of neuron graphs is their extensibility.
New types of neurons can be (and frequently are) invented
for use in a single problem. We thus allow a neuron to
implement an arbitrary boolean function on its inputs. We
write Fk,m for the set of boolean functions with k inputs and
m outputs, Bk→ Bm (where F0,1 = B and B= {T,F}). We
let F = ∪k>0Fk,1 represent all functions with one or more
inputs and exactly one output.

The abstract syntax of a neuron graph is given by a node-
labeled DAG [3], G = (N,E,κ,ϕ), where each node repre-
sents a neuron. The sources and sinks of G are denoted
by src(G) and snk(G), respectively. Given a node n ∈ N,
if n ∈ src(G), the corresponding neuron is exogenous, oth-
erwise it is endogenous. The mapping κ : N → K, where
K = {§, !}, marks each neuron as either a law or action. The
mapping ϕ : N → F defines the function each endogenous
neuron implements. We require that functions given by ϕ

are consistent with the structure of the graph; that is, for a
node n with k > 0 predecessors, ϕ(n) ∈ Fk,1.

Note that we assume a fixed ordering on E. In particular,
we assume that the list of predecessors of a node n ∈ N are
given in a fixed order, and we write π(n) to denote this list.
This ordering is required since ϕ(n) is applied to the values
of π(n), and ϕ(n) is, in general, non-commutative. A fixed
ordering on E can be easily derived, for example, from the
names of nodes.

Also note that the distinction between stimulating and
inhibiting edges is not captured explicitly in this represen-
tation. This functionality is pushed into the function each
neuron implements. A standard neuron n with two prede-
cessors π(n) = [a,b], where a is connected to n by a stimu-
lating edge and b is connected to n by an inhibiting edge, is
implemented by the function ϕ(n) = λ (x,y). x∧¬y.

5.2 Firing Semantics

The firing semantics of a neuron graph G with k sources
and m sinks is given by a function from the set Fk,m and
can be defined by composing the functions of each node,
following the graph structure. We write F (n) for the firing
semantics of node n. F is defined inductively as follows.
Note that we abbreviate a list x1, . . . ,xk as xk.

Let ik (= i1, . . . , ik) be the list of all sources (inputs) and
om be the list of all sinks (outputs) of G. For each source
i j we define F (i j) to be a simple projection onto the jth
argument; that is, F (i j) = λ (xk). x j. For each node n with
l > 0 predecessors n1, . . . ,nl , we obtain a function Fk,m that
maps the k sources to a boolean value based on n’s function.

F (n) = λ (xk). ϕ(n)(F (n1)(xk), . . . ,F (nl)(xk))

This definition says that the firing semantics of n first com-
putes the firing-semantics values for its predecessors, then
applies its own function ϕ(n) to those values.
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The firing semantics of the whole neuron graph G is then
given by the following function (∈ Fk,m) that maps a k-tuple
of input values to an m-tuple boolean output.

F (G) = λ (xk).(F (o1)(xk), . . . ,F (om)(xk))

5.3 Neuron Diagrams

A neuron graph defines a structure from which neuron
diagrams can be derived by assigning values to the source
nodes and using the firing semantics to propagate those val-
ues to all other nodes in the graph. Therefore, we define a
neuron diagram as a node-labeled DAG, D = (N,E,κ,φ),
where φ : N→ B defines the value of each node.

For each neuron graph with k sources, the firing seman-
tics gives rise to 2k neuron diagrams. These are obtained by
applying the firing semantics to each possible boolean in-
put k-tuple. We capture this fact through the mapping D as
follows. First, we define the instantiation of a neuron graph
to a neuron diagram for one particular input tuple bk. Since
the nodes, edges, and node kinds do not change, all we have
to do is define the node labeling φ , which can be directly
obtained by the firing semantics, leading to the following
definition.

D((N,E,κ,ϕ),bk) = (N,E,κ,φ)

where φ(n) = F (n)(bk)

Next we define the set of all neuron diagrams that can be
instantiated from one neuron graph as follows.

D(G) = {D(G,bk) | bk ∈ Bk}

6 Formalization of Causation

In Sections 3 and 4 we introduced counterfactual rea-
soning and cause propagation as pieces of our approach to
cause inference. In this section we formalize and apply
these ideas to develop a causal semantics for neuron dia-
grams. In Section 6.1, we begin by formalizing the notion
of counterfactual dependency. We formalize the relation-
ship between counterfactuals and causes in Section 6.2, and
define the structure of causes. We use these definitions in
the description of the causal semantics in Section 6.3.

6.1 Counterfactual Dependencies

We begin by observing that the value of a neuron n in
some diagram D ∈D(G) can be obtained by applying ϕ(n)
to the values of n’s predecessors, a fact which is expressed
by the following lemma.

Lemma 1 D ∈D(G)∧π(n) = [n1, . . . ,nl ] =⇒
φ(n) = ϕ(n)(φ(n1), . . . ,φ(nl))

This follows directly from the definitions of F and D in
the previous section. Note that in the above and throughout

this section, we assume that symbols are implicitly defined
in the obvious way; that is, in Lemma 1, ϕ is the node-to-
function map in G, and φ is the node-to-value map in D.

To simplify the following discussion and technical devel-
opment, we introduce several notational conventions. First,
we write n:b to express the fact that φ(n) = b. Second, we
associate a neuron’s function with its name and write more
succinctly n(bl) instead of ϕ(n)(bl). Third, we introduce
the concept of an argument record, where the arguments to a
function are annotated by the corresponding neuron names.
Putting these all together, we can write n(n1:b1, . . . ,nl :bl)
instead of ϕ(n)(φ(n1), . . . ,φ(nl)).

An argument record is essentially a mapping from names
to values. Each neuron n in a neuron diagram has an
associated argument record ρn, which is given by the
names and values of its predecessor nodes; that is, ρn =
(n1:b1, . . . ,nl :bl) where π(n) = [n1, . . . ,nl ]. An alteration
of an argument record is a variation in which the names
of the record’s arguments are the same, but some subset of
the boolean values are changed. An alteration of record ρn
is given by a subset of its argument names M ⊆ π(n), and
is defined as ρn/M = (n1:b̃1, . . . ,nl :b̃l) where b̃i = ¬bi if
ni ∈M and b̃i = bi otherwise.

Argument records provide a convenient mechanism for
identifying counterfactual dependency. Recall that the ba-
sic idea of counterfactual reasoning is to try to find com-
binations of inputs such that when the values of those in-
puts are changed, the result also changes. Thus, we say that
neuron n is counterfactually dependent (or cf-dependent for
short) on M if n(ρn/M) 6= n(ρn). We say that n is min-
imally cf-dependent (or mcf-dependent) on M if it is cf-
dependent on M and if it is not cf-dependent on any proper
subset M′ ⊂ M. Finally, it is possible for n to be mcf-
dependent on several different subsets of inputs, and we
write n← {M1, . . . ,Mn} to express that neuron n is mcf-
dependent on each Mi ∈ {M1, . . . ,Mn}.

As an example, recall the diagram of the desert traveler
problem in Figure 1. Since Drink(Poison:T,Poke:T) = F
and Drink(Poison:T,Poke:F) = T, in this diagram, Drink
is cf-dependent on {Poke}. Since no other alterations of
the argument record produce a change in the output, Drink
is also mcf-dependent on {Poke} and this is its only mcf-
dependency. So we have Drink←{{Poke}}.

It is important to note that (m)cf-dependency is a prop-
erty of a neuron within a neuron diagram, not a neuron
graph. It is common for the same neuron to have differ-
ent cf-dependencies in two different diagrams instantiated
from the same graph. Sometimes a neuron is cf-dependent
on the same neurons in two different diagrams, but in a dif-
ferent way. These differences are revealed by the structure
of the dependencies. To demonstrate this, recall the in-
stance of the two doctors problem in Figure 3. In this exam-
ple, ϕ(Cure) = ∧, and Cure(A:F,B:F) = F. Since we must
change both A and B to change the outcome of Cure, Cure is
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mcf-dependent on the set {A,B}—that is, Cure←{{A,B}}.
If we consider instead the instance in which A:T and B:T,
then Cure(A:T,A:T) = T. Now, Cure will change if either A
or B changes, so we have Cure←{{A},{B}}.

Clearly, the nested set structure of cf-dependencies is
interpreted as a disjunction of conjunctions. To empha-
size this, we replace the set notation with a corresponding
boolean-formula notation. We combine neurons within a
dependency with ∧ and combine alternative dependencies
with ∨. Moreover, we include the value labels of neurons to
emphasize the context in which dependencies hold. Thus,
for the above examples we obtain the following notation.

Drink:F← Poke:T
Cure:F← A:F∧B:F
Cure:T← A:T∨B:T

In general, the function of a neuron n, ϕ(n), determines
a corresponding function ←−n that maps arguments neurons
into a structure describing the counterfactual dependency
based on the values for the argument neurons. For our ex-
amples, we have:

←−−−
DrinkT T (Poison,Poke) = Poke

←−−
CureFF(A,B) = A∧B
←−−
CureT T (A,B) = A∨B

The notion of cause is directly linked to cf-dependencies. In
the next section we make this relationship explicit.

6.2 Relationship of Counterfactuals and Causes

The relationship between counterfactuals and causes is
best seen by example. Consider again the overdetermined
two doctors problem, where Cure:F← A:F∧B:F. In other
words, both A and B must be changed to change Cure.
In turn, this means that either A or B alone is a sufficient
cause of Cure. Similarly, for the instance where Cure:T←
A:T∨B:T, the value of Cure will change if either of its two
predecessors change, so only together are A and B a suffi-
cient cause of Cure.

Converting an arbitrary cf-dependency into a cause re-
quires considering three cases. First, when n is mcf-
dependent on a single node n′, we say that n′ is the cause of
n, written n′ n. Second, if n is mcf-dependent on a con-
junction of neurons n1 ∧ . . .∧ nk, then all of these neurons
must change to change n, so any one of n1, . . . ,nk alone is
a sufficient cause of n. The corresponding cause is then a
disjunction of neurons, written n1∨ . . .∨nk n. Third, if n
is mcf-dependent on a disjunction of neurons n1 ∨ . . .∨ nk,
then the changing of any single neuron will change n, so
only together are they a sufficient cause of n. The corre-
sponding cause is therefore a conjunction of the original
neurons, written n1∧ . . .∧nk n.

Finally, we have to formulate these relationships for the
general case when we are already given a (complex) cause
of a neuron n. Such a cause is obtained through the func-
tion ←−n and yields a disjunction of conjunctions of causes.
We regroup such a nested cause as follows. We add each
conjunct from the first disjunct to each regrouped cause ob-
tained from the remaining disjunction. Formally, this can
be expressed by the counterfactual conversion function b·c.

bnc= n
b(c1∧ . . .∧ ck)∨Cc= c1∧C1∨ . . .∨ ck ∧C1∨ . . .

∨ c1∧Cm∨ . . .∨ ck ∧Cm

where C1∨ . . .∨Cm = bCc

With this transformation, the general relationship between
counterfactuals and causes can be captured in the following
lemma.

Lemma 2 (Counterfactual-Causation Correspondence)
n← c ⇐⇒ bcc n

6.3 Causal Semantics

With the direct correspondence between counterfactuals
and causes, we can nearly define a function C that com-
putes the causes for an arbitrary neuron in a diagram. How-
ever, we must still consider the distinction between law and
action neurons. The description in Section 4 leads to the
following definition: Each action is its own cause, but the
cause of a law is obtained from the causes of its predeces-
sors through counterfactual conversion.

C (n) =
{

n:φ(n) if κ(n) = !
b←−n

φ(nk)(C (nk))c if κ(n) = §∧π(n) = [nk]

Here we write more succinctly φ(nk) for the sequence of
boolean values φ(n1), . . . ,φ(nk) and, similarly, C (nk) for
the sequence of predecessor causes C (n1), . . . ,C (nk).

7 Evaluation
In this section we compare our causal semantics to other

well-known cause inference algorithms. We present a table
for each of the examples used throughout this paper: (1)
the two doctors problem, (2) the desert traveler problem,
and (3) the boulder problem. Each table corresponds to the
neuron graph for one of these problems, each row to a neu-
ron diagram instantiated from that graph, and each column
to a cause inference algorithm. A row is labeled according
to the settings of the exogenous action neurons in the di-
agram, where the values are assigned from top to bottom.
For example, the TF row in Table 1 (two doctors problem)
corresponds to the diagram in Figure 2 where the firing sta-
tus of neuron A is set to true, and neuron B is set to false.
Exogenous laws are assumed to be fixed, since studying the
alternatives yields no interesting results.

The columns are labeled as follows:
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CF CC SE Hall SCF C
FF {} {} {A,B} {} A∨B A∨B
FT {A} {A} {A} {A} A A
TF {B} {B} {B} {B} B B
TT {A,B} {A,B} {A,B} {A,B} A∧B A∧B

Table 1. Two doctors problem causes.

• CF - (token) counterfactual reasoning as described in
Section 3 and originally formulated by Lewis in [11].

• CC - Lewis’s causal chains, described in Section 4 and
also originally in [11].

• SE - structural equations as described by Halpern and
Pearl in [6].

• Hall - an approach sketched by Hall in [5] to deal with
perceived weaknesses of structural equations.

• SCF - structured counterfactual reasoning, formalized
in Sections 6.1 and 6.2.

• C - our causal semantics, defined in Section 6.3.

For the counterfactual algorithms, we perform counterfac-
tual reasoning on exogenous actions. For structural equa-
tions, we consider a direct translation of each neuron di-
agram into a structural equations model. Hall’s approach
is described only informally for certain classes of neuron
diagrams and so required some extrapolation on our part.
Finally, we filter all laws out of causes identified by any
method. This essentially retrofits our action/law extension
to the existing algorithms, enabling a fairer and more direct
comparison with our own causal semantics.

Table 1 shows the identified causes for the two doc-
tors problem. Incorrectly identified causes are shown in
gray. Note the flat structure of causes identified by methods
from the philosophy literature. This is especially significant
in the two doctors problem—although structural equations
identifies the correct set of causal events for both the FF
and TT diagrams, the causes in each case appear identical
while they are distinct in our results. Intuitively, since both
doctors’ treatments are required to prevent the patient from
dying, both are the cause of the patient’s survival in the TT
case. In the FF case, since either doctor’s failure to treat is
sufficient for the patient’s death, either doctor can be con-
sidered the cause. Several researchers have acknowledged
this distinction [8, 6], but it has not been incorporated into
philosophical accounts of causation.

The other interesting feature of Table 1 is the failure
of three approaches in the FF case. This is the symmet-
ric overdetermination problem described in Section 3, for
which the correct causes can only be identified by methods
that can reason about more than one neuron at a time.

The results of the desert traveler problem are shown in
Table 2. P represents the Poison neuron, and K represents
Poke. Note the failure of both counterfactual reasoning ap-

CF CC SE Hall SCF C
FF {P,K} {P,K} {P,K} {P,K} P∧K P∧K
FT {K} {K} {K} {K} K K
TF {P} {P,K} {P} {P} P P∧K
TT {} {K} {K} {K} P∨K K

Table 2. Desert traveler problem causes.

CF CC SE Hall SCF C
F {} {B} {B} {B} none B
T {} {B,D} {D} {B,D} none D

Table 3. Boulder problem causes.

proaches in the TT case. This demonstrates the classic pre-
emption problem, which pure counterfactual reasoning can-
not distinguish from overdetermination.

Our coding of the results for the TF diagram is poten-
tially contentious. In this instance of the desert traveler
problem, the poisoner puts poison in the bottle but the poker
does not poke the bottle; the traveler eventually drinks the
poison and dies. Several of the methods identify only Poi-
son as the sole cause of death, and this seems to agree
with intuition. It also seems consistent with the FT and
TT cases—when the traveler dies of thirst, Poke alone is
the cause of death. However, we believe that intuition is
incorrect here, and that this is a rare case where the struc-
tural equations approach fails (the only such failure in our
survey). The case where the traveler dies of poison is fun-
damentally different from the cases where the traveler dies
by poking since the problem is asymmetric—poking always
trumps poisoning. When the traveler dies of thirst, it does
not matter if we would have poisoned or not, the traveler
will still die of thirst. But when the traveler dies by poi-
soning, if we would have poked, the traveler would have
instead died of thirst. Thus, the non-poking in the TF case
is a significant factor in the cause of the traveler’s death, and
so Poison:T∧Poke:F Dead:T.

Chockler and Halpern distinguish causality from the re-
lated concepts of blame and responsibility [1]. We believe
that this is related to the disagreement of intuition and actual
causation in the TF desert traveler example. In this case, we
argue that the poisoner is the only one to blame for the trav-
eler’s death, but this does not preclude the non-poking from
being a cause. Thus, blame seems to involves a value judg-
ment while cause does not. A different assignment of real-
world meanings to the neurons in a neuron diagram could
yield different blames, but the causes would be unchanged.

The final example is the boulder problem, the results of
which are given in Table 3. Only structural equations and
our causal semantics correctly handle the transitivity prob-
lem in the case where the boulder falls. Both counterfactual
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reasoning strategies fail on both diagrams since the hiker
does not die in either case. Hall calls this counterfactual-
foiling pattern short-circuiting [5].

In addition to the examples above, we have tested our
causal semantics against 13 problematic test cases presented
by Hitchcock in [10]. Some of these examples involve atyp-
ical “switch” neurons with non-local effects; we remodeled
these using standard neurons. Our approach identifies the
same causes as structural equations in all cases.

8 Related Work

The works of Lewis [11, 12], Hall [5], and Halpern and
Pearl [6, 14] are most closely related to our own, and have
been discussed extensively throughout the paper. In this
section we continue this discussion and briefly acknowledge
related work in other fields as well.

We have so far considered the study of causation to
be the realm of philosophers, but it is also an active area
of research in the field of artificial intelligence (in fact,
Halpern and Pearl are computer scientists). Identifying and
modeling causal relationships is critical to planning, learn-
ing, knowledge representation, fault detection, and many
other problems in AI [14]. Neuron diagrams are not really
suitable for large, complex artificial intelligence problems.
While there is no principle limitation to their scalability,
they contain no abstraction or modularity mechanisms. Ad-
ditionally, most AI research focuses on probabilistic causa-
tion, which neuron diagrams do not represent. Other visual
notations have been developed for explaining probabilistic
causation systems, however, for example in [2]. Also rele-
vant is the work of Helmert [7], who develops a graph-based
representation for causal reasoning in planning problems.

Returning to the philosophy literature, the structural
equations approach includes its own graph-based notation
[14], but this is quite impoverished compared to neuron di-
agrams. A “causal graph” is associated with a model, but
indicates only which variables are related; how they are
related is defined only by the associated structural equa-
tions. In earlier work, Pearl describes a stand-alone graph-
ical notation for describing causal structures and an associ-
ated cause inference algorithm [13].

Neuron diagrams have become a lingua franca for cau-
sation research, but the notation is not without detractors.
Hitchcock discusses several shortcomings of neuron dia-
grams, including both usability and technical issues. Our
work resolves several of the technical issues. For example,
Hitchcock argues that the ability to add new types of neu-
rons ad hoc makes neuron diagrams: (1) difficult to reason
about, and (2) less useful as exploratory tools since config-
urations of neurons cannot be enumerated. With our formal
definition, reasoning about new neuron types is easy since
all neurons are represented generically as arbitrary func-
tions. It is also straightforward to list all boolean functions

for a certain number of inputs, allowing us to enumerate all
configurations of a finite number of neurons.

9 Conclusions
The two major contributions of this paper are: (1) a for-

malization, for the first time, of the syntax and semantics
of neuron diagrams, and (2) a new algorithm for cause in-
ference over neuron diagrams that performs better than ex-
isting alternatives. These theoretical contributions create a
foundation for future research on the development and anal-
ysis of causal structures, and for the creation of supporting
tools. This paper also demonstrates that formal approaches
to (visual) language design can contribute significantly to
the improvement of such languages.
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