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Abstract. Although maps and partitions are ubiquitous in geographical informa-
tion systems and spatial databases, there is only lititk wvestigating their
foundations. W& give a rigorous definition for spatial partitions and propose par-
titions as a generic spatial data type that can be used to model arbitrary maps and
to support spatial analysis.@/itlentify a set of three p@rful operations on par-

titions and she that the type of partitions is closed under them. These basic op-
erators are sfi€ient to express all knan application-specific operations. More-

over, mary map operations will be considerably generalized in our fraorie

We also indicate that partitions can béeetfively used as a meta-model to de-
scribe other spatial data types.

1 | ntroduction

In spatially-oriented disciplines kkgeograpy cartograpi, and related areas as well

as in computeassisted systems &kgeographical information systems (GIS), spatial
database systems, and image database systems, the most fundamental anavivell-kno
metaphor is that of map. A map is a widely recognized geometric structure; iiples

a paverful concept capable of carrying agaramount of information in visual form. It

can be viwed from tvwo different perspeates: thespace-based approach models a map

as a point set; each point in space represents a coordinate location and is associated with
some properties or attrites. Theobject-based approach adwates thexplicit and &-

act representation of spatial objects as single, self-contained entities. A nugpdsde

as a composition of a set of point objects, a set of line objects, and a gairobigects.
Spatial data types for points, lineggians, etc. hae been intensgely investigated in the
literature and assessed as appropriate concepts for modeling spatial phenomena (for e
ample, [CZ96, Eg89, EG94, Er94, GS95, Gii88, LN87, Sc95]). A maivbdk of the
object-based approach is the incapability of modeling topological relationships between
elements of a set of spatial objects.

This paper focuses on a formal treatmerpatitions as the central element of maps.
The importance of partitions is in particular reflected by #loe that the notion “map”
is frequently used as a synyon for “partition”. A partition is a subdiision of the plane
into pairwise disjointlocks or regions where each ggon is associated with an at-
tribute, which can ha a simple orven compl& structure. It implicitly models topo-



logical relationships between the participatingjoes. First of all, the neighborhood re-
lationship is of particular interest here wherefadént rgions may hee common
boundaries. This property is immediately visible on a map. A related aspect is that dif-
ferent rgions of a partition areahys disjoint (if we nglect common boundaries), so
that a visual representation of a partition hasrg simple structure and is easy to grasp.
Partitions by nature do not modeleylap and containment relationships which can be
considered for single and self-contained spatial objects [EF91].

There are numerous@mples of partitions in the realowd like subdiisions of the

world map into countries, classifications of rural areas according to their agricultural
use (maps arising from classifying space according to some aspect are frequently called
thematic maps or categorical coverages), or sites in cadastral applications. In geograph-
ically-oriented applications and systems partitions agarded as the primary tool for
spatial analysis tasks [Be87, Fr87, HSH92, NWHR0T \a91, FVM97, VE93]. Dis-

tinct features wer the same space are to be combined ealdaed under diérent re-
quirements. Brtition-based spatial analysis functions include operatiorsoliériay,
generalization, and reclassification (see Section 2y @alh@roduce a ne partition as
aresult.

In the literature partitions ka been identified as a centsphtial concept [Fr90] to or-
ganize our perception and understanding of spacey. ddreespond to the cognié e-
perience and knaedge the human has of areal phenomena in the oeld MHumans
cannot percek overlapping rgions lut always disjoint decompositions of space. f¥he
can only guess and mentally complete the obscured part giba (except for translu-
cent rgions). Also, if we consider the same space with respecbtdifferent thematic
or cognitive aspects (fon@mple, districts and cereals) modeled as partitions, their
overlay is a partition agn.

All the more it is surprising that a formal definitiongptial partitions and operations
on them has been glected. The wrk on catgorical cowerages done by Frankohé,
and others [FVYM97,VE93] focuses on partitions of atiéhalues alone — spatial op-
erations are completely ignored, in particuterundaries are not considered which play
an important role in connection with geometric intersection. lrgoaital caverages,
themes and attrilie \alues are figd, which means that dynamixtensions or combi-
nations of diferent partitions are not possible.

In this paper we study partitions thoroughly angeg formal semantics to them and
their operations. & shav that partitions can sesvas a fundamental and useendly

data modeling tool ééring a formal and peerful basis for coping with spatial analysis
and cartographical tasks. All application-specific operations proposadase tuered

and &en extended by our approach. Hence, our partition model is in particular interest-
ing for GIS and spatial database systems. In our frame from a data type and data-
base point of vi, a partition is a generic spatial data type which is formalized through
a type constructofFrom a general point of wie partitions model collections of objects



(not single objects), or more precisatpllections of objects that are somehelated
togetherIn particulay partitions are data types for collections of objects witlgnated
constraints like topological relationships.

On the one hand, partitions enable us to consider theuésibf single points (space-
based viw), on the other hand, thalso preide access to collections of pointsima
equal attrilates (object-based wig. Thus our model closes thegbetween these ow
views of areal features. In this sense our fraor& yields a lbrid model. Ungpect-
edly, some ery specific concepts are alsoveed by partitions; we are, foramnple,
able to model/ague egions[ES97] and een generalizations thereof on the basis of
partitions.

Section 2 gies an werview of partitions and application-specific operations in the lit-
erature. In Section 3 we define a general model of spatial partitions. Section 4 identifies
and formalizes three basic anery paverful operations on partitions. In Section 5 we
demonstrate that these operationfiseito express andwen generalize the application-
specific operations introduced in Section 2. Section 6 concludes the paper

2 Previous Wor k

In this section we ge an @erview of previous work on partitions and pertaining appli-
cation-specific operations as yheave been identified in the geographically-oriented
and computer science literature. Theerwiew will reveal that, surprisinglyformal
models for spatial partitions and formal descriptions of their semantiesrita yet
been studied sataftorily. Expositions on this topic are predominantly based on an in-
formal and intuitve level.

On (spatial) partitions tavkinds of partial ordering can be defined, either induced by
refinement or by inclusion [Fr87]. A partitionis said to be aefinemenbf a partition

o if each rgion inTtis contained in a gton ofo. With respect to refinement and inclu-
sion partitions form not only a partially ordered sett & lattice. Both lattice structures
are related it distinct: the lattice induced by refinement is one in which the elements
are the partitions, whereas the lattice induced by inclusion consists of sgiglesrer-
dered by the spatial suldiion in regions.

From a data type perspedithere hee been some unsatstory attempts to model
partitions. In [GU88] a spatial data typreais introduced to guarantee the disjointed-
ness constraint. ithin the framevork of an &tended relational data model, called the
geo-relational algebra, the set of polygons occurring in a relation as a column of an at-
tribute of typeareahas to fulfill the intgrity constraint that all polygons are disjoint.
Unfortunately the maintenance of this property is not supported by the data maidel, b

it is up to the uses'responsibilityA generic data type (type constructor) for partitions,
calledtessellationis informally introduced by [HSH92] as a specialized type for sets
of polygons; this type can be parametrized with an atgibf a yet unspecified type.

In [GS95] so-calledestriction typehiave been proposedoFa data typd and a binary



predicatep a special sed P of types (called “kind”) is defined; each tygein d P de-
scribes a set ofalues such that for giiwo distinct elements af’ the predicatg holds.
Furthermore, ansuch typed’ is defined to be aubtypeof d which means that all op-
erations defined for typeare also applicable to instances of tghdf, for example,d

is a type for rgions ando is equal to a predicate “disjoint”, we obtain a kind for parti-
tions. In [MC80] partitions (maps) @ been recognized as a fundamental geometric
data type which is realized in files. Their whole system GADS (Geographic Analysis
and Display System) is based on this single structure.

Previous approaches to define the semantics of operations on partitiersdes based

on a relational [GU88, SV89] or object-oriented [HSH92] setting. Unfortundkedy

do not formalize the concept of a partition. In [SV89] spatial join, spatial selection, spa-
tial product, and fusion are introduced as spatial auxiliary operators which are then used
to express the application-specific operations on partitions.

For spatial analysis tasksvegal application-specific operations on partitiongehzeen
identified. The most important operation is tiverlay operation [Be87, Da90, Fr87,
GS95, Gu88, HSH92, KBS91, Sc95, SV889T, \a91] which allevs to lay two parti-
tions with diferent attritute catgories on top of each other and to combine them
through intersection into a wepartition of disjoint rgions? The attritutes from the in-
put partitions are then either distrted to each block in the refined partition or appro-
priately combined to form a weattribute. o different interpretations of theverlay

1. The dashed b@s in the follaving figures represent equal reference frames of partitions.



mechanism are gen in the literature. In the first interpretationgflay,) [GS95, Gii88,
KBS91, Sc95, SV89] only thosegiens are part of the nepartition that result from
intersecting a i@on of the first partition with a ggon of the second patrtition. Since the
plane need not be completelyweoed by rgions, it is possible that agien of one par-
tition does not intersect gmegion of the other partition. In this case it will not be part
of the nev partition. In the second interpretatiaverlay,) [HSH92] also those gions
are talen into account that do not intersecy asgion of the other partition.

Thereclassify operation [Be87, Da90, HSH92] retains the geometric structure of the
partition and performs a transformation on the partition ate# It can be thought of

as a “recoloring” process; each or only & fegions are assigned with amer modi-

fied attritute. An ample is to map the population number of eagforeto its popu-
lation density

The fusion operation [CZ96, GS95, HSH92, KBS91, Sc95, SV89], catedye in
[KBS91] andgeneralization in [HSH92], is a kind of grouping operation with subse-
quent geometric union. It ngges adjacent ggons of a partition with respect to partially
identical attrilutes. An @ample is a partition depicting districts together with their land
use (left side of the image). The task is to compute thiene with the same land use.
Neighboring districts with the same land use are replaced by a siggla,rthat is,

their common boundary line is erased. District boundaries are not distinguighed an
more.

Thecover operation proposed by [SV89] forms the geometric union of gilbns of a
partition and yields a partition consisting of ongioa. Since polygons with holes are
not alloved in [SV89], the input partition must be complete, that is, it must nvat ha
holes. V¢ will drop this restriction. Thelipping operation [SV89] is a special case of
the averlay operation; it computes the intersection of a partition angka gectangular
window. We will generalize this operation and will allso-called “unit partitions” as
clipping windaws. The rgions of a unit partition are associated with a “neutral” at-
tribute which leses an attribte of the first partition unchanged during an intersection.

The difference operation [HSH92] tads two partitions definedwer the same attritte
domain and computes the geometriéadténce of their point sets. All thegiens of the
first partition are maintained in the result partitiocept for those parts thatvethe
same attribtes in both partitions. @/will generalize the diérence operation in v



ways. First, we will allev partitions as operands with @ifent attrilute domains. Sec-

ond, we can obseevthat gving priority to the first partition leads to a kind of “weak”
difference. The diérence operation gets a stronger interpretation if wevatie second
partition to dominate. This means that the area of the second partition (precisely: its
cover) is subtracted from the area of the first partition. Consider a partition of mineral
resources and a partition of inhabitable areas. Subtracting the second partition from the
first one yields the partition of currentlymoitable areas. Wwill take both interpreta-

tions into account.

The superimposition operation [CZ96, SV89] alles to superimpose thegiens of a
partition onto another partition and toveo and erase parts of the other partition.

Thewindow operation [SV89] allas to retrige those (complete) geons of a partition
whose intersection with awgn (rectangular) windw is not emptyWindowing is also
applied in queries where the windds defined as a circle with cenfeand radius, for
instance, if we ask for all gions whose distance from avgn pointp is less tham. We
generalize this operation and allainit partitions instead of rectangles or circles.

Thedivide operation [CZ96] taés a partition, which consists of ongimn, and a spa-
tially embedded planar graph as operands and yields pamrtition which results from



the decomposition or splitting of the input partition through the graph structuas, as f
as this is possible.

3 A Formal Model of Spatial Partitions

In nave set theory a partition is a complete decomposition of & iséd non-empty
disjoint subsets§ |i O 1}, calledblodks that is,

() Oiolg=z£0,

(ll) Di 0l S :S, and

@iy Oi,jOlLi#zj:gn§#0.
Here,l is just an uninterpreted inxlset used to name tkfent blocks, that id,has no
semantically releant content. Equalently, a partition can be garded as a total and
surjectize functiontt: S — 1. Accordingly one could try to define spatial partitior?
simply as a set-theoretic partition of the plane, that is, as a partition of the set of points
IR? or as a functiom : IR? - . There are te obserations, havever, that motvate a
slightly different definition.

First, from an application point of wie different blocks (or rgions) of a spatial parti-
tion are often colored or mae#d diferently Colors and marks are onlxamples of
rather arbitrary &lues, also callethbels that can be assigned t@iens. A partition
model should ta&this into account and should therefoigard point sets together with
the associatedalues. The set ofalues that are actually used in a specific partition, say
A, determines in a certainay the type of the partition. Note thatmight be a simple
type, such at\ or {red, green, blue}, or a cartesian product af ttwv more sets where
labels are actually g&n byn-tuples of alues. This means that spatial partitions of type
A are actually functions: IR?> _ AwhereA, in contrast td, contains semantically rel-
evant\alues. In most cases partitions are defined only partiadlyis, there are geons
which hare no eplicitly assigned labels. (Theseggiens are sometimes considered the
outsideof the partition.) © ensure thatris a total function, we assume that each label
type A contains an element, (calledundefinedbr unknown and that the outside area
of a partition is labeled byl,. For the cartesian product of twtypesA andB we let
Oaxg = {a, Og) (this is like the identification of bottom elements in domain theory),
and for the union oA andB we identify [, Og, andOpng (that is, we ta& the coa-
lesced sum). If no ambiguities can arise, we sometimes omit the typeaimdisimply
usel.

Second, rgions that actually do appear in applications are in most cases not just point
sets, It point sets that are in a certain semeg@lar. This means that géons typically
do not hae isolated points or lines or cuts or punctures. This idea is well modeled by
the topological concept ofgalar sets as shm by Tilove [T|80].3 So we vould like to

2. In the folloving we will mostly use the term partition in place of spatial partition.



have regularity for partitions, too; in particulawe require interior igions (that is, re-
gions without their boundary) to begrdar open sets. Since points on the boundary can-
not be uniquely assigned to either adjacegibre we cannot simply map them to single
A-values. Instead we map boundary points to the setloés gien by the labels of all
adjacent rgions. Thus spatial partitions are defined as functiorR? - A 2° (with
additional constraints). #/gie the definition in seeral steps.

Definition 1. A spatial mapping of typeA is a total mappingy: IR? - AO2A

Therange of a spatial mapping gives the set of labels actually usediiand is denoted

by range(m). Theblocks of a spatial mappingare point sets that are mapped to the same
value. Formally, the blocks are géen by the quotient dR? with respect to the equa-
lence relatiorker(m), the lernel ofrt.

The application of a functiofito a set of aluesA is defined asf(A) := {f(a) |a O A},
and for comenience we use the folling definition of function imerse: forf : X - A
andOa O A: f(a) := {x O X | f(x) = a}. Note thatf"! applied to a set yields a set of sets.
Now the block for a single labal(or a set of labels) is simply gien byn'l(a) (n'l(s)).
The common label of a blodkof mtis denoted byib], that is,r(b) = {I} O mfb] =1.

The cardinality of block labels identifies féifent parts of a partition. In the first place,
we can distinguish between the interior of a partition and its boundaegion of Ttis
ary block ofrtthat is mapped to a single elemenfpaind aborder of Ttis given by a
block that is mapped to a setMfvalues. Thenterior of Ttis the union of all of its re-
gions, and théoundary is given by the union of all of its border blocks:

Definition 2. Let tbe a spatial mapping of typge

@) p(m:= T['l(range(n) n A) (regions)
(i) B(m) := wi(range(m) n 24 (borders)
(i) 1() :=Crgpmy (interior)
(iv) (1) = Upmpemy b (boundary)

Now we can define a spatial partition by topologically constrainigmpns to rgular
open sets and by semantically constraining boundary labels to those of adgioest re

Definition 3. A spatial partition of typeA is a spatial mapping of typeA with
() Or Op(m:ris a rgular open set, and
(i) ObOR(m): m{b] ={r{r] |r O p(m) ObO T} 3
The set of all spatial partitions of typas denoted byA], that is, p\] O IRZ . AD 27

The partition boundary can be wied as an undirected planar graph. From this point of
view, we can discriminate the cardinality of border labels furtheredge block is

3. For the standard notions of open/closed set and interior/closure oAddsztoted by Ing)/
A), see ap textbook on topologysuch as [Du66]. An open s&ts calledregular if A= Int(A).
An important property of gular open sets is that thare closed under intersection.



mapped to a terelemenid-set and defines border cesbetween tarrggions. Avertex

block is mapped to aA-set containing three or more elementsedex block is alvays

a singleton point set and describes locations where three or rgmmesref a partition
meet.

Definition 4. Let 1t: [A]. Then
(i) e(m :={b0B(m: [nb]| =2} (edge blocks)
@iy v(m :={b0B>m: [fb]| > 2} (vertex blocks)

The distinction between edge arettex blocks is helpful when describing the beioa
of some of the follwving operations.

4  Basic Operations on Rrtitions

As it turns out, there are three basic, yatyvpaverful, operators on partitions which
suffice to epress most of the congable application-specific operations.

4.1 |Intersection

Given two partitions of type# andB, we consider the partition that results from actu-
ally computing the intersections of algiens: each resulting geon is labeled with a
pair of values fromA x B, and the g&lues on the boundary are adred from these. Thus
we first determine the geons of the intersection. This can be done by a simple set-in-
tersection of all rgions, sincen is closed on igular open sets.

Pa(m o) :={r ns|rp(m, s p(0)}
Now the interior of the intersection is the union of all theggores:

1n(TT 0) = Derm(n, o)l
Next we define the spatial mapping restricted just to the interior: the label of each inte-
rior point is simply gien by the pair of labels of thegaiment partitions.

1-intersection(tt, 0) := {(p, (M(p), 6(p))) [P U 14(TT 0)}

Finally, the boundary labels are dexd from the labels of all touchinggiens. W say
that a rgionr touches a pointp if p O r. Now letR:=p (11, 0), | :=1,(Tt, 0), andt :=
I-intersection(tt, 6). Then we hee:

intersection : [A] x [B] - [A x B]
intersection(tt, o) ;=1 O {(p, {t[r] |[r OROpOr}) | pO IR? - 1}

Figure 1 shars two partitionsit ando of typeC andR modeling tvo countriesc andd
and mineral resources ob)(and @s ). Owerlaying these tw partitions is actually
equivalent to computing their intersection. In Figuregioas colored® (&) denote
oil fields in countryc (d) and are labeled by,(0), respectiely, (d, 0). The rgion col-
ored& is labeled d, g) and denotes theag field in countryl (there is no gs field in
countryc). Region colorsCY) and&) with labels (¢, 0) and (¢, g) shaw mineral re-



Figurel. Two partitions for countries and mineral resources.

sources in no masland, whereas géons (D and with labels €, Ug) and €, Og)
shav country parts with unkmen mineral resources. Finallthe outside of the inter-
section, that is, the géon colored” ) and labeled({, [g) = Ocxg denotes the part of
the no mars land with unknevn mineral resources. In a similaayywe can distinguish
the labels on the resulting partition boundary: f@raple, points, y, andz have all the
same label§, Og} undero and the labels, {c, d}, and {d, Oc} underTt In contrastt

= intersection(tt, o) maps them to {, o), (c, OR)}, {( ¢, 0), (c, UR), (d, 0), (d, Og)}, and
{(d, 0), (d, Og), (Cc, 0), Ocxg}. respectiely. For w the original partitions ge mi(w) =
{c, d, Oc} and o(w) = o whereag(w) = {(c, 0), (d, 0), (Cc, 0)}.

Figure2. Intersection partition for countries and mineral resources.

We have to shav that the definition afntersection is sound, that is, partitions are closed
underintersection:

Lemma 1. If t: [A] ando : [B], thenintersection(tt, o) : [A x B].

Proof. Lett =intersection(r, 0) andt’ := (-intersection(Tt, 0). First, it is olvious from
the definition ofintersection thatr is a total map otR? and thatange(t) O (A x B) O
2(A*B) It remains to be sk that ) 0Or d p(1): r is a rgular open set, and that (ii)
Ob O B(t): t[b] = {1[r] |r O p(r) Ob Or}. Concerning (i) it is clear thaft) =p, (1, 0)
(which we knav to be a set of grilar open sets) since ordymaps to single @lues and
since the domain af is exactly p, (11, ). Concerning (ii) we hae for all border points
pOb:tp) ={t[r]|r Op,(m o) OpOr}={1[r]|r Op(t) Op Or}sincep, (T, o) =
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p(T) and sinca’ equalst onp(1). Sincef(T) = IR? - 1, we thus hee Ob O B(D): 1[b] =
{t[r] |r Op(t) ObOr}. O

4.2 Relabel

Relabeling a partitiomn of typeA essentially means to apply a functfor\ - Bto each
region of 1t In the simplest case, whérs injective, the rgions ofrtremain the same,
and only the labels change as demandefl loygeneral, haever, f might map tw or
more rgions ofrtto the sam@-value, and if some of thesegiens are adjacent i,
the border between them disappears and tliens are fused in the result partitione W
would like to express relabeling simply by applyifigo the alue each point has under
Tt Then, havever, border points might be mapped to singleton sets whereowie \sx-
pect a single alue. Considerfor example, tvo adjacent rgionsr andr’ with T{r] = x
and 1r'] =y. The borderb betweenr and r’ is labeled m{b] = {x, y}. Now if
f(x) = f(y) = z, we hae 1{b] = {Z where we vould like to hae r{b] = z. We can adjust
cases lile this by simply applying a functidtat : AD 2% - A O 2" that leaes single
values and sets with twor more elements unchanged arttaets elements from sin-
gleton sets:

Ha if | ={a}
flat() =
at() dl otherwise

Now we can easily define relabeling of partitions:

relabel: [A] x (A - B) - [B]
relabelr, f) := {(p, flat(f(r(p)))) | p O IR?}

Whenever a border label is mapped tgt to a single &lue, the border and its adjacent
regions are identified and malkup a n& region containing the union of the border
points and the points of all adjacengimns. This means that border points can become
interior points through relabeling:

I(relabe(, f)) O 1(1) and d(relabe(r, f)) O o(m)

As an application consider the task aflding a map shweing regions of oil fields that
can be grploited by either countrg or d shaving a possible conflict betweerandd.
Such a partition can be defined by applyiaeabelto the intersection at andc from
above using a function mappin@ & R)-tuples toE = {e, Og} for just coloring exploit-
able oil fields. This function is defined by:

e if xO{c,d}andy=0

f(x,y)=§D {. bandy
= otherwise

Thus, the required map isvgh by the gpressiorrelabelintersectior{r, o), f).The re-

sultis shavn in Figure 3 as gions coloredX); for clarity we hae included the bound-
aries of the original partitions.

— 11_
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Figure3. Reclassification of country/oil map

The points, q, r, ands are mapped by, o, andt = relabelintersectior{r, o), f) to the
following values:

1 a T

p c o} e

q O 0 e

r {c, d} 0 e

s | {d0g {o0f {eDOg

Again, we hae to sheav thatrelabelindeed yields proper partitions.eMse the folle-
ing results which mads the albee mentioned relationships between interior and bound-
ary of a partition and its relabeledrgion more precise. First, all borders whose labels
are mapped bf/to a singleton set are “med” byflat into the interior Thus we knw:

Lemma?2. Lettt: [A] andf: A - B. ThenpB(relabe(r f)) = {b O B(m): [f(r{b])| > 1}

Establishing a similar relationship foigiens gets a bit morevnlved. The application
of f induces an equalence on blocks. Let:

Or, sO (p(r) O B(m): r~s : = {f(r{r])} = f(r{s]) Tf(n(r]) = {f(r{s])}
The relationship ~ collects pairs ofjiens and borders that are mapped to one identical
value. The equalence relatiom = s is then defined as the refiee, symmetric, and
transitive closure of ~ (thatis=s: = (r~s) O(s~r) O(: s=tOt=r)). The equialence
classes of are maximal sets of adjacent blocks thatehidne same label. Thegiens
of relabelare nav obtained by taking the unions of blocks of all @glénce classes that
have a single label.
Lemma3. Letmt: [A] andf: A - B. Then

p(relabe(r, f)) = {Uypsr [s 0 (p(m) O B(m)/=: flat(f(rs])) O B}
Now we can she that partitions are closed undetabel
Lemmad. If t: [A] andf : A - B, thenrelabel(T f) : [B].

Proof. Let o = relabe(r, f). The fact thato is a spatial mapping of tyggfollows di-
rectly from the definition.

_12_



We must nw shav thatOr 0 p(0): r is a rgular open set. Wconsider tw cases: first,
s={r} O (p(m) O B(m)/=, that isr results from a singleton set and thygsr =r. This
can only be the caserifd p(m), since for ap borderb O 3(m) that is mapped to a sin-
gleton set, sayd}, at least the adjacentgmns will also be mapped tp and thus the
equvalence class contains more than one element. Then we fkoim the partition
property ofrtthatr is a rgular open set. On the other hand,iff a union of tw or more
sets, the definitions of ~ amdensure that these are borders amibres ofrt that are
completely connected. This means that (i) for each border there are at teadjaoent
regions, (ii) for each pair of ggons there is an adjacent bordand (iii) for each set of
regions that are adjacent to a pgn{p} is also inr. This implies that the unidf, g r
contains no dangling points or lines and no punctures and cuts which just means that
is a rgular open set.

Next we must sha thatOb O B(0): o[b] = {o[r] |r O p(o) Ob Or}. If fis injective, o
is identical tortup to a “renaming” of labels which means that thevalroperty fol-
lows directly from the same property nflf f is not injectve, we consider te cases:
() b O g(m). Lettb] = {Xx, y}, and assumer{ r'} are the adjacent gtons. Wl.0.g. let
1(r) =x andr(r’) = y. Now if f(xX) =z# Z = f(y), b remains an edge border with adjacent
regionsr andr’, that is,b 0 £(a), and we hee:o[b] ={z zZ}={ ofr] |r Op(c) Db Or}.
If, on the other hand(x) = z = f(y), the points irb are mapped to the singlaluez
(caused by the application fHt), and thus is meged withr andr’ (which are also
mapped ta) into a single rgion. (i) b={p} O v(m). Consider ay subset of labels
| O m{b] that is mapped bfto the samealuez. It is clear that eachgéenr that touches
pwithfr] O1is also mapped o Since the edge borders betweep o such rgions
are also mapped t all regions are meed into a single meregion s of o which, of
course, also touchgs So the one-to-one correspondence between the sibgls [af
regions and the set of labels of adjacent points is pregdyy mapping with. O

At this point we can describ&erlays of partitions bintersection and by choosing an
appropriate functiori partitions can be arbitrarily generalized or reclassified through
relabel. In particulay if f is not injectve, acoarseningof partitions is achied. Hav-

ever, we cannot really refine a single partition, faample, into its connected compo-
nents. Therefore we need an additional opera#finethat extends labels of a partition

to distinguish difierent connected components of gioa.

4.3 Refine

It is often the case that agien of a partition consists of twor more components. This
might result from a precedirigtersectionor relabeloperation, or it might be simply
given by the application. In grtase, it is sometimes interesting to distinguistedsht
components. & example, if we vant to find out mineral resources that canxpagted

by a specific countrg, we would like to perform a kind aiindowoperation with win-

dow c on the partition of mineral resources. The result contains only some components
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of regions that interseat, and for a specific resource, say oil, this also is, in general,
only a subset of the corresponding components.

Refining a partition means to add tags (faraple, numbers) to the components of a
region so that thecan be distinguished. Intwigly, a connected component of an open
setsis a maximum subset] s such that antwo points ofc can be connected by a
cunwe lying completely inside (for a formal account, see [Du66]) &lenote the set of
connected components of gienr O p(m) by y(r) = {cy, ..., cnr}. First, we define re-
finement on the interior:

-refingr) := {(p, (r{], i)) [r 0 p(m) Oy(r) ={cy, ...,cy} 0i O{L, ..., n} OpO g}
The set of all components are thgioms of the refined partition, and the interior is just
the union of all components:

Py 1= Orp(ry ()

(M) = Dery(n) r
This means that the set of interior points (and thus the boundary points, too) is not
changed byefine As we hae done in the definition for intersection, we derihe la-
bels of the boundary from the interibet o :=1-refingm).

refine: [A] - [A X IN]

refingr) :=o 0 {(p, {ofr] |[r Upy(m) Up D M|pO IR? - (19}

An immediate use of threfineoperation is toxplicate diferent components of specific
partition regions. or example, we might be interested in the number of oil fields of the

mineral resources partitian Sincerefindo) labels all components of agien consec-
utively, we can get the result as the maximum numtarary (o, n) label.

Partitions are closed undezfine
Lemmab. If 11: [A], thenrefindm) : [A x IN].

The proof is ery similar to that for Lemma 1, and we omit it for\btg It is clear that
all regions of a refined partition are connected:

Lemma 6. p(refingm)) = p,(refingm).

Finally, as a corollary of lemmas 1, 4, and 5 we obtain thevfollp closure properties:

Theorem 1. Spatial partitions are closed undetersection relabel andrefine

5 Applications

Applications of partitions can be found almogtywhere in cartographspatial anal-

ysis, etc. Operations that arise in those applications been already reported in Sec-
tion 2. Next we shav how these (and some additional operations) can be realized and
generalized by the basic operators introduced in theque section. W thus come to

the “conquering” step by demonstrating that our set of operations is complete from an
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application point of vier. We shall also neeal interesting relationships among the dif-
ferent application operators (foxample clippingis just a special case oferlay;, and
coveris just a special case fofsion). If not stated otherwise, we assume thafA] and

o : [B]. ltis interesting to note that only twof the basic operatorsyebeen identified,
more or less directlyn applicationsoverlaycorresponds timtersection andreclassify
fusion andcover are all special cases i@label however, refinehas no direct counter-
part.

To begin with overlay; it is obvious that
overlay(Tt, 0) = intersectior{Tt, )

In contrastoverlay; forgets all parts of the intersection that are undefined (that is, la-

beled with[d) in either agument partition. \& can receer this behaior by relabeling

the intersection with a function mapping partially undefingides to undefined:

DDAXB if x= DA ory= DB

both(x,y) = [ ;
hxy) O(x,y) otherwise

Then we simply hee:

overlay (T, 0) = relabe(intersectiorfr, o), both)

Reclassification presezs the spatial structure of a partition and thus corresponds to re-
labeling with an injectie function:

reclassifym, f) = relabe(T, f) (reclassifyis only defined if is injective)

In contrastfusiondoes not perform grreal computations on labels, it essentially de-
fines an eqwalence relationship on labels which causes adjacginnewith equia-
lent labels to be mged. Echnically fusionapplies to partitions of typg, A (which
isA; x ... x A for | ={1, ..., k} and model attributes). As an additional gnment
fusiontakes a se$={iy, ..., in} O specifying which attribtes are to bedpt. To realize
this byrelabelwe need a functiollg: x5, Ay - XjgsA; that projects onto the atttites
given bySas follaws: Mg(ay, ..., a) = @, ..., & ). So we hae:

fusion(tt, S) =relabe(r, MNg)

Sincecover is a special case fifsion it can also be realized bglabel coverignores
all attributes of a partition and only distinguishes between inside and outside (with label
0). This amounts to fusion with an empty subset, that is,

cover(m) = fusior(tt, O0)

Although we are able tocpresscover by fusion a more direct realization obveris to
relabel the partition with a special constant function that mapédaefined) alue to a
unit value “s” of typeU = {¢}. (U denotes the unit type that consists of just aieer)

wniy = g0 Tx=0
T O otherwise
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This also maks the type ofover more &plicit, namely cover: [A] - [U]. (We call
partitions of type [J] unit partitions) Now coveris defined by:

cover(m) = relabe(r, unit)

The clipping operation is essentially a special casewveaflay;. The restriction is that
the averlaid partition consists ofxactly one (unlabeled) rectangle. In particuthis
means that the secondjament is a unit partition and that the result partition should be
of the same type as the firstgament. Henceclipping has the restricted type
[A] x[U] - [A] so that the correspondencedieerlay; only holds up to isomorphism

of the two types A] and A x U].

clipping(t, ) Doverlay (g, 0)

The type-correct realization afipping by intersection and relabeling thusfelit
slightly from that ofoverlay;. With
. x ify=-e
=0
inside(x, y) OO otherwise
we thus obtain:
clipping(tt, o) =relabel(intersectior{, 0), inside

Compared with the operations consideredapviindow has a remarkably comple
definition. It is also the only operation that really requires the usfiog In applica-
tions, the windw is assumed to be a rectangleaiagof typeU. We give a definition
which allovs windaving with respect to an arbitrary unit partition. Ttasifitates man
more applications: for instance, we can wiwdbe country partition

(i) with a specific oil field,
(ii) with all oil fields, or gen
(i) with the (caover of the) whole mineral resources partition

to determine

() all countries that are possible competitors for that specific oil field,
(i) all countries that carxploit oil, or
(i) all countries that hae access to mineral resources at all.

For the definition of thevindowoperation, we assume we areegi a partitiont: [A]
and a windw w : [U]. First, we refinat and construct the intersection of the compo-
nents withw. We then determine the detof all labels that contain « which means to
obtain the labels of all components that interseétinally, we relabel the components
with a function that &eps labels contained linand maps all other labels b

window(Tt, w) = relabelrefingm), covered)
where L ={(x,1) | ((x 1), *) O rang(intersectiorfrefingm), w))
if (x,i)0OL

coveredx i)-@x
/700,  otherwise
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What males the definition oivindow so complg compared with all other operations?
The fundamental diérence is that usually in an operator definition the label pfen
gion is determined locallyhat is, independent from othegiens. Havever, this is not
the case fowindow: to compute the label of agien it is necessary to look at all adja-
cent rgions since the final label of agien labeled , i), [J) cannot be predicted in
isolation: the result ig if there &ists an adjacent géon with label (, i), ¢), and it is]

if there is no such gion. So what wex@ress here is essentially a kindagfiregation

of partitions. V& have deliberately omitted such an operatordefkthe partition model
simple and shoft.

We can gplain the meaning dfifference(m, o) by specifying the label for eachgien

of the intersection aft ando. Regions that are undefined inyaagument partition, re-
main unchanged. It is also clear thajioms that are labeled equally should be mapped
to [0. It remains to define the label of intersectiogioasr for whichtir] = x andor]

=y (with x # y). Now this can be done in twdifferent ways: we can gie priority to
either agument partitiorrt or 0. In the first case, this means to simply ignore the sub-
traction ofy since it does not match, thatrisyill remain labelec. This is, in a certain
sense, a “conseative” view that allavs subtraction only for matchinggien labels. In
contrast, the “aggresa&” point of viav subtractseerything (ecept) so that will get
labeledd. We capture this bekir by the follaving two relabeling functions:

_ O if x=y
leftx,y) = ﬁ X otherwise
) O if yz0
right(x, y) = ﬁx otzerwise

Now we can definéeft andright difference simply by:
[-difference(tt, 0) = relabel (intersection(t, o), left)
r-difference(tt, 6) = relabel (intersection(tt, 0), right)
Finally, we can define the superimposition obtpartitionsrt ando very similarly to

overlay,: we huild the intersection oft ando and perform a relabeling\wing priority
to 0. The functionsecond takes the label gen byo as long as it is defined:

Ox if y=0Opg
=
second(x, y) = H y otherwise

Then we hee (note thasuperimposition has typeA] x [B] - [A O B]):

4. Actually, aggrgations of partitions are closely related to the aggien of (their dual)
graphs, and as s in [Er97] there are quite défrent reasonable possible definitions for that.
Moreover, we can actuallyx@ress all presented application operations without an gatipa
operator Nevertheless, agggation has quite interesting applications, faample, testing
whether a map is colored consistenthat is, checking for eachgien whether it is colored
differently from all neighbors. ®will deal with aggrgations of partitions in a subsequent
paper
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superimposition(Tt, ) = relabel (intersection(1t, 6), second)

Since we hee concentrated on operations on partitions alone, we cannot currently de-
fine an operatiodivide(tt, G) operator which requires a planar grapgguanentG. How-

ever, when we clipG with cover(m) and addover (), this results in a partition which

is actually the remainder & with respect to the relant area, that is, the area to which
divide actually applies. Then we obtain the same resulivéde by simple intersection:

divide(tt, G) =intersection(, ')

6 Conclusions

We hare presented aevy general model of partitions which, to our Wihedge, is the

first rigorous formal approach to defining a spatial partition tygehaké defined three
powerful operators that carxgress an application operation that has been mentioned
so far — actuallyfor most operators weven achige a much more general definition.
The presented model sessas a specification for general spatial analysis and map-ma-
nipulation systems which can be the bases foryn@&® applications. Of course, it re-
mains to inesticate the relationships of partitions to points and lines and to define cor-
responding types and operations.

The partition model can also seras a meta-model for (some) spatial data types: for
instance, an element of egien data type can be vied as a partition with only one
region or as a unit partition. Anothexample is the model ofague rgions presented
in [ES97]: avagueregion is given by a pair of disjoint ggonsv = (r, s) wherer denotes
the part which definitely belongs ¥aands gives the uncertain part. It iswibus that a
vague rgion can be vieed as a partition of typecértain, uncertain} with exactly two
regions. All operations onague rgions can then be defined in term&érsection and
relabel.®> With this representation we can immediately obtain a generalizatiagaév
regions: a ague rgion can be simply garded as a partition without a restriction on the
number of rgions, and labels are dva from a type containingalues for diferent de-
grees of agueness, foxample, real &lues from the inteat [0..1].
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