
1

Toward Spatiotemporal Patterns

Martin Erwig

School of Electrical Engineering and Computer Science, Oregon State University,
Corvallis, Oregon 97331, USA, erwig@cs.orst.edu

Abstract Existing spatiotemporal data models and query languages offer only basic
support to query changes of data. In particular, although these systems often allow
the formulation of queries that ask for changes at particular time points, they fall
short of expressing queries for sequences of such changes.

In this chapter we propose the concept of spatiotemporal patterns as a system-
atic and scalable concept to query developments of objects and their relationships.
Based on our previous work on spatiotemporal predicates, we outline the design
of spatiotemporal patterns as a query mechanism to characterize complex object
behaviors in space and time. We will not present a fully-fledged design. Instead,
we will focus on deriving constraints that will allow spatiotemporal patterns to be-
come well-designed composable abstractions that can be smoothly integrated into
spatiotemporal query languages.

Spatiotemporal patterns can be applied in many different areas of science, for ex-
ample, in geosciences, geophysics, meteorology, ecology, and environmental studies.
Since users in these areas typically do not have extended formal computer training,
it is often difficult for them to use advanced query languages. A visual notation for
spatiotemporal patterns can help solving this problem. In particular, since spatial
objects and their relationships have a natural graphical representation, a visual no-
tation can express relationships in many cases implicitly where textual notations
require the explicit application of operations and predicates. Based on our work on
the visualization of spatiotemporal predicates, we will sketch the design of a visual
language to formulate spatiotemporal patterns.

1.1 Introduction

Our world is changing at an increasing pace causing the validity intervals
of information to shrink. Therefore, the change of information becomes im-
portant information itself—an important information resource that should be
exploitable by query languages. In particular, information about the position
and extent of objects is of high interest in many areas of science and elsewhere
(vehicle tracking, history, security, health care, ecology, weather prediction,
urban planning, and so on). In all these areas relevant information has to be



2 Martin Erwig

extracted from huge data sets. Beyond data mining that often serves the pur-
pose of identifying interesting objects in spatial or spatiotemporal data sets,
queries are of interest that find out about relationships between objects once
they have been identified. In the realm of spatiotemporal databases this means
to find out, in particular, about the changes that objects and their relation-
ships undergo. Moreover, many applications require not only the detection of
one single change, but rather look for sequences of changes describing partic-
ular developments.

Existing spatiotemporal database systems and query languages offer only
basic support to query changes of data. Most of these systems allow the for-
mulation of queries that ask for changes at particular time points. However, it
is often very difficult, if not impossible, to express queries for sequences of such
changes. In other words, existing query languages do not offer a systematic,
scalable concept to query developments of objects and relationships; instead
they require the user to encode these by a number of individual conditions.
This method is awkward, in particular, because it also requires the formula-
tion of additional side conditions. Moreover, this approach does not work in
queries for arbitrary numbers of changes.

A concept of spatiotemporal patterns and their integration into spatiotem-
poral query languages can help to close this gap. Spatiotemporal patterns
enable the formulation of queries about complex object developments; their
integration into query languages allows the formulation of queries that are
currently not possible. Moreover, spatiotemporal patterns can also simplify
the formulation of queries that are possible with existing languages.

Beyond the integration of spatiotemporal patterns into a textual query
language we will also discuss the design of a visual query language and a corre-
sponding user interface to support the formulation of spatiotemporal patterns
and queries. This is of particular importance because most users of spatiotem-
poral data (for example, scientists) do not have a formal computer education
and do not know how to use a query language, in particular, query languages
for complex data like spatiotemporal data. Moreover, the fast growing set of
available spatial and spatiotemporal data and its wide dissemination through
the Internet increases the class of possible users for these data. Offering or-
dinary users access to spatiotemporal data is therefore becoming a more and
more important issue that should be addressed by developing a visual query
language and a corresponding user interface.

In the remainder of this chapter we first motivate the need for spatiotem-
poral patterns in Section 1.2. We discuss related work on spatiotemporal data
models and query languages in Section 1.3. We review the notion of spatiotem-
poral objects and their integration into databases in Section 1.4. Spatiotem-
poral predicates are described in Section 1.5. Spatiotemporal patterns will be
discussed in Section 1.6, and the design of a visual query language is sketched
in Section 1.7. Finally, we present some conclusions in Section 1.8.



1 Toward Spatiotemporal Patterns 3

1.2 The Need for Spatiotemporal Patterns

Queries about changing objects are becoming more and more important. One
reason might be that the world is changing at a constantly increasing pace
so that information about a situation at a particular instant in time has a
decreasing half-life. In other words, the intervals for which certain pieces of
information remain valid become shorter and shorter. Therefore, the change of
information becomes important information itself—an important information
resource that should be exploitable by query languages. In the area of temporal
databases this issue has been addressed for quite some time now [4, 60, 63].

Spatiotemporal Data

A particularly important kind of information change is that of objects’ lo-
cations and/or spatial extensions. Many phenomena in all areas of natural
sciences involve the change of spatial information. A few example are given
below.

• Meteorology: all kinds of weather data, moving storms, tornados, develop-
ments of high pressure areas, movement of precipitation areas, changes in
freezing level, droughts, El Niño effects, ...

• Biology: animal movements, mating behavior, species relocation and ex-
tinction, ...

• Crop sciences: seasonal grasshopper infestation, harvesting, soil quality
changes, land usage management, ...

• Forestry: forest growth, forest fires, hydrology patterns, canopy develop-
ment, planning tree cutting, planning tree planting, ...

• Medicine: patients’ cancer developments, supervising developments in em-
bryology, ...

• Geophysics: earthquake histories, volcanic activities and prediction, ...

A characteristic feature of most of these examples is that changes are of contin-
uous nature. Moreover, many human-related activities are related to changes
in spatial information as well:

• People: movements of terrorists/criminals/spies, movement of people in
emergency situations, pedestrian patterns/habits, ...

• Cars/trucks/taxis: tracking, rerouting, fleet management, ...

• Urban planning: parcel management, development of social areas, urban
economics, tourism planning, bus routes, ...

• Crime/disaster prevention: risk area analyses, resource allocations (police,
health care, fire stations), ...

• History: country expansions, reunifications, tribe movements, ...

• Military: missile tracking, troop movements, ...

• Planes/ships: routes, detours, ...



4 Martin Erwig

• Ecology: causal relationships in environmental changes, tracking down pol-
lution incidents, ...

In particular, since mobility is constantly increasing, we can observe an in-
crease in the time dependency of spatial information related to human ac-
tivities. Many of the second group of examples represent continuous changes,
some are discrete in nature.

In addition to the shown individual areas, combinations of phenomena
are also of interest, for example, what changes in forests can be linked to
which kind of animal behavior, which weather developments are responsible
for grasshopper infestation, etc. Moreover, some combinations pose particular
planning challenges, for example, extreme weather events require rerouting of
cars, planes, and ships.

Spatiotemporal Patterns

The shown examples reveal one important characteristic of change in spatial
data that makes it interesting for data processing by scientists and others:
interesting phenomena are those that are not random but rather follow certain
rules. In other words, applications are interested in spatial data changes that
exhibit a certain regular structure.

Regular structures in space and time, in particular, repeating structures,
are often called patterns. Patterns that describe changes in space and time
are referred to as spatiotemporal patterns [48].

Not surprisingly, the notion of spatiotemporal patterns occurs in many
different areas of nature [44] and sciences [17], in particular, in geosciences
[49] and geophysics [57], meteorology [46, 68], ecology [73] and environmental
studies [70], and even embryology [65]. A collection of applications in ecology
and related sciences and the challenges they pose for computer science has
been gathered during a recent NSF workshop [45]. An area of growing im-
portance is that of crime detection and prevention, in which spatiotemporal
patterns also play an important role, for example, in crime-pattern analysis
with the help of GIS [72, 14, 53], tracking criminals [52], and crime prevention
[37].

To make the following discussion concrete, we use a couple of example
queries that could arise in different application areas. Here we will comment
on the requirements that a data model and query language must have to
support these applications. In Section 1.3 we will discuss how most of the
existing approaches fall short of supporting these requirements in some way
or another. The first example relates to the environment.

Q1. Find all satellites that were able to observe an oil spill at least
four times for at least 5 minutes each time.

This innocent looking query demands a lot from a data model and query
language. For example, in addition to moving points the data model must



1 Toward Spatiotemporal Patterns 5

also support evolving regions. Moreover, the movement of the satellite and
the oil spill are continuous.

Next we consider some examples of spatiotemporal queries that can be
relevant for crime prevention. Suppose we want to find out suspicious move-
ments of, say cars. With regard to security of the public mail system we might
want to pose the following query.

Q2. Find all cars that stopped at two or more mailboxes in a short
period of time.

Why would anyone not put all their mail into the first mailbox? Therefore, the
above query gives hints for suspicious behavior. To answer this query a lan-
guage must be able to express repetitions of patterns of changes, for example,
in speed or topological relationships (here: meeting a mailbox). Moreover, the
language must be able to express time conditions on the duration of certain
predicates. Another example is to identify suspicious behavior near sites of
high public interest (like Disneyland):

Q3. Find cars that surrounded an area of interest multiple times or
at a significantly less than average speed.

In addition to the need for a repeated pattern, this query requires the pos-
sibility to express a constraint on an object’s movement by another object’s
spatial attribute (here, boundary).

A spatiotemporal database system should be able to answer queries like
these. However, as we will discuss next, most existing systems and language
proposals are rather limited in their support for querying spatiotemporal pat-
terns and cannot express queries as the ones shown.

Limitations of Existing Approaches

One goal of spatiotemporal databases research is to enable the intelligent use
of the collected data. In addition to the challenges of efficient storage and
indexing spatiotemporal data [50, 1], a main problem is that of extracting
relevant and useful information from the data. Two complementing areas of
database research address two different aspects of this problem.

(1) Data mining [16], which is also sometimes referred to as knowledge

discovery [32], is concerned with the discovery of patterns in large data sets.
Data mining often uses statistical analyses and methods to extract interesting
constellations/arrangements of points in a usually very huge data space. In
particular, spatiotemporal data mining [69, 6, 51] has the goal of identifying
interesting structures and patterns in spatiotemporal data sets. In many cases,
spatiotemporal data mining is used to identify spatiotemporal objects. Once
found, these objects of interest can the be stored in a database where they can
be processed further. In GIS systems the so-called field view [55, 36] of spatial
and spatiotemporal data is used. Data mining techniques can be used to move



6 Martin Erwig

from this low-level field view of raw data to the higher-level view of objects.
This conception was prevailing at a recent NSF workshop on spatiotemporal
data models for scientific applications [45].

(2) Query Languages work on data that is well structured and that is stored
in rather fixed formats obeying schema definitions and possibly additional
integrity constraints. The distinctive feature of query languages (compared to
data mining) is the assumption that the knowledge in a database is already
present, whereas the goal of data mining is to discover it. Query languages
are used to find out further relationships among objects.

Although considerable research has been performed in recent years on data
models and query languages, most of them are not capable of expressing the
example queries shown above.

What are the reasons for this situation? We believe that there are two
major problems of data models and query languages that are responsible for
the gap between research and applications: (1) Lack of expressiveness and (2)
high complexity, which has a particularly bad impact on the usability.

Problem 1: Lack of Expressiveness. There have been quite a few pro-
posals for spatiotemporal query languages. However, most languages are able
to express only a small fraction of the queries that are possible on spatiotem-
poral data and that are needed to solve application problems like the ones in-
dicated above. For example, data models that are only concerned with moving
objects, such as [62, 71], cannot express queries that involve changing regions,
such as Q1. Models that are restricted to discretely changing objects, such
as [10, 74, 54, 9, 41, 18], cannot express queries about continuous objects;
again, query Q1 relies on exploiting the continuous nature of the involved
objects. None of the existing data models can express queries about changing
relationships of objects in a satisfactory way, as it is required for query Q2.
In particular, queries like Q3 that ask for a repetition of certain patterns are
either impossible to express or lead to incredibly complex ad hoc solutions.
Although constraint databases promise a declarative and expressive approach
to spatiotemporal databases [12], actual approaches to spatiotemporal query
languages have been described only in [39, 41, 11]. The DEDALE system
[39, 41] can due to its embedding of constraint objects into relations only deal
with discretely changing spatiotemporal objects. The proposal of Chomicki
[11] is based on constraints in the n + 1-dimensional space (n space dimen-
sion plus one time dimension) and corresponds more closely to the field view,
so that it is not really clear whether applications involving many attributes
(spatial and others) can be modeled well. In any case, the constraint approach
like all other proposals lacks abstractions to express patterns of changes.

A possible route for a solution to the last problem is given by the concept
of developments [24] and spatiotemporal predicates [27], described in Section
1.5, which form the basis for spatiotemporal patterns, discussed in Section
1.6.



1 Toward Spatiotemporal Patterns 7

Problem 2: Complexity and Lack of Usability. A data model and
query language for spatiotemporal data must be necessarily more complex
than, for example, SQL, because SQL is a language for querying flat relations
over atomic data, whereas spatiotemporal databases have to deal with spatial
data (point, lines, and regions) and their possible changes. It seems that the
goal of simplicity contradicts the goal of expressiveness because one might
think in order to express more advanced queries one needs more and complex
operations in the query language. Indeed, extending, for example, relational
algebra by spatial data types, increases the number of operations significantly
because the added data types require their own operations [42]. This is even
more the case when considering more complex data types for spatiotempo-
ral objects [22]. Apparently, the constraint approach does not suffer from an
inflation of operations. However, it is not immune to an increase in complex-
ity because the domains over which constraints are formulated become more
complex [31]. Although the vocabulary of constraint languages remains very
much unaffected, queries grow complex, too, because without a mechanism to
express patterns of changes, the individual changes have to be spelled out in
detail, which leads to an inflation of conditions comparable to the inflation of
joins found in relational approaches.

The problem of usability is of growing importance because the fast growing
number of data sources and the raising availability through the Internet causes
the target group of possible users also to grow. For many of these possible
users languages like SQL are already too complex since most of them do not
have formal computer science training at all; the requirement to learn a formal
language with keywords, binding rules, etc. is in many cases too high a barrier.

Visual query languages and visual query interfaces to spatiotemporal
databases can help solving this problem. Visual query languages are partic-
ularly promising for spatial databases because spatial data has a direct and
intuitive visual representation that can be exploited for formulating queries
in a more direct way. As we will discuss in Section 1.7, we can also obtain
a representation of spatiotemporal data that is effective for expressing spa-
tiotemporal queries in a simple and direct way.

1.3 Related Work

Some early models for spatiotemporal data have been proposed starting in
the mid-90s. In [74] a spatial data model has been generalized to become spa-
tiotemporal. Spatiotemporal objects are defined as so-called spatio-bitemporal

complexes whose spatial features are described by simplicial complexes and
whose temporal features are given by bitemporal elements attached to all
components of simplicial complexes. On the other hand, temporal data mod-
els have been generalized to become spatiotemporal and include variants of
Gadia’s temporal model [34] which can be found in [10, 7]. In [66] a discrete
snapshot model is described. The main drawback of all these approaches is



8 Martin Erwig

that they are incapable of modeling continuous changes of spatial objects
over time. An extension of the snapshot model toward capturing continuous
changes has been described by Yeh and Cambray [75, 76] who introduce the
notion of behavioral time sequences. In this approach, which is based on the
work described in [59], each element of such a sequence contains a geometric
value, a date, and a behavioral function, which describes the evolution up to
the next element of the sequence.

The constraint-based approach to modeling spatiotemporal data considers
spatiotemporal objects as point sets in a multi-dimensional space [40]. The
description of objects is given by logical formulas (constraints). Moreover,
queries are also expressed by logical formulas. An embedding of constraints
into a relations is performed in [39] where also a SQL-like query language is
proposed. In other work [12] spatiotemporal objects are represented by spa-
tial objects plus affine geometric transformations to describe their evolution.
Although the logical/constraint-based approach is very general, it is not clear,
for example, whether it can be efficiently implemented. Other possible prob-
lems are the handling of objects that require non-linear constraints and the
treatment of metric operations (for example, computing distances).

A logic-based approach to model predicates on (spatio)temporal data is
offered through temporal logic. In particular, Allen’s work [3] is centered
around the definition of a predicate Holds(p, i) that asserts that a property p

is true during a time interval i. Combinations of predicates can be constructed
through logical predicates and quantifiers. The work is based on his earlier
work [2] where he has identified thirteen possible relationships between inter-
vals, such as before, equal, meets, overlaps, and during. Allen’s temporal logic
is solely based on time intervals and does not include time points. Galton [35]
has extended Allen’s approach to the treatment of temporally changing topo-
logical relationships. Topological relationships are based on the RCC model
[15, 56]. In contrast to Allen, Galton also takes time points into account. In
specifying changes of spatial situations he uses the notion of a fluent or state,
which can have different values at different times. Whereas Galton takes into
account time points, he does not consider geometric points. We believe that it
is important to have spatial as well as time points available in a data model.
First, spatial points are needed in many applications. Second, having also spa-
tial points provides some form of symmetry to the existence of points in the
time domain. Third, spatiotemporal values can be projected to spatial values
by function application at time points. This feature is absolutely essential and
much needed in spatiotemporal query languages.

Our approach is based on (1) the notion of temporal objects [30] and (2)
the concept of spatiotemporal data types [21, 22, 43].

The notion of a temporal object is based on the observation that anything
that changes over time can be expressed as a function over time. A temporal
version of an object of type α is then given by a function from time to α. Spa-
tiotemporal objects like moving points and evolving regions are regarded as
special instances of temporal objects where α is a spatial data type like point



1 Toward Spatiotemporal Patterns 9

or region. Spatiotemporal objects are encapsulated in data types that offer
tailor-made operations for them, which facilitates their integration as complex
values into databases [64]. The ADT approach has several advantages. First,
employing ADTs is more expressive than relying on attribute-timestamped
models, let alone tuple-timestamped models, since continuous changes can be
modeled [22]. Second, a definition of ADT values is valid regardless of a par-
ticular DBMS data model and query language. The reason is that ADT values
are not modeled by concepts of a DBMS data model and that they therefore
do not depend on them. This facilitates an easy and elegant conceptual in-
tegration of ADT values into relational, complex-object, object-oriented, or
other data models and query languages.

ADT operations can be used within queries to construct new, derived spa-
tiotemporal objects. In particular, boolean-valued operations can be used as
predicates to formulate conditions in queries. However, like for all other ex-
isting query language approaches, this approach is basically suited to express
queries about changes at single time points, so that a combination of condi-
tions is required to express multiple changes. What makes this worse is the
fact that, in general, additional side conditions are needed in such queries to
express temporal ordering of the formulated change events.

Our work on spatiotemporal predicates [27] enables more general queries
about developments [28, 24]. The idea is to specify and query changes in topo-
logical spatial relationships. Using point-set topology as a formal framework,
the 9-intersection model [19] provides a canonical collection of topological
predicates for each combination of spatial types. Based on the nine topo-
logically invariant intersections of boundaries, interiors, and exteriors of the
two participating objects, these predicates are mutually exclusive and cover
each possible topological situation between two objects. The relevance of spa-
tiotemporal predicates is demonstrated in [24] where we have identified an
important new class of spatiotemporal queries, which is concerned with de-
velopments of spatial objects over time, which means queries ask especially
about changes in spatial relationships over time. A macro mechanism is pro-
vided which allows the user to build more and more complex spatiotemporal
predicates starting with a small set of elementary ones. We have demonstrated
how these concepts can be realized in a relational model and how SQL can
be appropriately extended to a spatiotemporal query language called STQL

to enable the querying of developments [28].
Our work on spatiotemporal predicates has also inspired other researchers

to consider the idea of spatiotemporal patterns. In [18] an approach is sketched
where the developments of objects can be queried using a regular expression
over one predicate. Although the approach is interesting, the expressiveness is
rather limited. First, only discretely changing objects are considered. Second,
since regular expressions can be formed only over one predicate at a time,
queries that ask for a development described by two different predicates (such
as, InsidemeetDisjoint, see below), cannot be expressed. This means that the
described approach is strictly less expressive than spatiotemporal predicates



10 Martin Erwig

as defined in [27]. Finally, the approach does not support any of the additional
expressiveness, such as time constraints on the duration of predicates, that is
possible in the approach presented here. On the other hand the work of [18]
and the described application provide a strong evidence that spatiotemporal
predicates form a solid basis for the development of spatiotemporal patterns.

We have addressed the problem of user-friendly specifications of tempo-
rally changing topological situations and predicates in [25]. For this purpose,
we have defined a visual language which extends existing concepts for visual
spatial query languages, which are only capable of querying static topological
situations. In [26] the design of the visual language is motivated in detail and
a user interface is defined. The visual notation is generalized to deal with
undefined parts of object developments in [29]. That paper also defines the
translation into our formal model of spatiotemporal predicates. The visual
notation can be used directly as a visual query interface to spatiotemporal
databases, or it can provide predicate specifications that can be integrated
into textual query languages leading to heterogeneous languages [23].

1.4 Spatiotemporal Objects and Databases

Spatial data types like point, line, and region have turned out to be a funda-
mental abstraction for modeling the two-dimensional structure of geometric
entities, their properties, relationships, and operations [42, 58]. Points are
elements of the Euclidean plane. Lines are two-dimensional curves. Regions
describe point sets with a two-dimensional extent and are bounded by lines
which in this context are called boundaries. To avoid anomalies and ensure
well-definedness of operations formal definitions of spatial data types are often
based on point-set topology [33] and on regularization functions [67].

Spatiotemporal objects are obtained by considering the changes of spatial
objects over time. They can be conveniently described by temporal functions

[30, 21], which are simply functions from time into the corresponding spatial
domain. For example, the movement of a satellite (projected onto the earth’s
surface) can be regarded as a function Sat : time → point, and the development
of an oil spill can be regarded as a function Spill : time → region [20]; see
Figure 1.1. We can apply functions like Sat or Spill to time values and obtain
the position of the satellite or the extent of the oil spill at a particular time
as spatial data.

Of course, spatial temporal data is just a particular example of temporal
data in general. For example, we can also deal with temporally changing
numbers through a type like time → num. Such a temporal number could
give the size of the oil spill depending on the time. Using the notational
convention that temporal versions of data types have their letter capitalized,
we have, for example, Sat : Point and Spill : Region. We can define functions
on spatiotemporal objects, for example, a function Area that computes the
time-dependent area of an evolving region:



1 Toward Spatiotemporal Patterns 11

Sat Spill

t

Figure 1.1. Satellite movement and oil spill development.

Area : Region → Num

If we apply Area to Spill, we obtain a time-dependent number reflecting the
temporal development of the size of the oil spill. The design of these spa-
tiotemporal data types has been described in [22]. A categorization and formal
definition of operations has been performed in [43].

By encapsulating (spatio)temporal data in data types like Point, Region,
and Num we can directly integrate them into data models, such as the rela-
tional data model. For example, we can define two relations containing infor-
mation about satellites and pollution incidents as follows.

Satellites(sname : string,Pos : Point)
Pollutions(pname : string,Reg : Region)

The relation Satellites contains for each satellite one tuple consisting of the
satellite’s name and its movement, which is given by the attribute Pos that
stores a moving point. Similarly, an evolving region is associated with each
pollution incident through the attribute Reg in the relation Pollutions. The
temporal changes are completely encapsulated by the types Point and Region.
The operations offered by these data types enable us to pose spatiotemporal
queries in a straightforward way. For example, we have an operation Inter-

section that computes the intersection of two spatiotemporal objects. In the
case of a moving point and an evolving region this intersection is given by
those parts of the moving point that lie inside the evolving region. As a query
example we ask which satellites were able to observe which pollution incidents
for a certain amount of time by the following query formulated in the SQL-like
language STQL [20, 28].



12 Martin Erwig

SELECT sname, pname

FROM Satellites, Pollutions

WHERE duration(Intersection(Pos,Reg)) > 3 hours

The query works as follows: For all pairs of satellites and pollution incidents
we consider the intersection of their spatiotemporal attributes and select those
pairs for which the lifetime (indicated by t in Figure 1.1) of the moving point
resulting from the intersection is larger than 3 hours. In queries we use di-
mension conversion operators like hours : num → duration in postfix notation.
The type duration is isomorphic to the real numbers, but it contains values
describing the duration of time intervals. The duration function computes the
total duration of the domain of a temporal function.

1.5 Generalizing Spatiotemporal Predicates

Although many interesting queries can be expressed by the approach described
in the Section 1.4, there are also many queries that cannot be (easily) formu-
lated. One large class of such queries are queries asking for changes in relation-
ships between objects. For example, we might be interested in finding ships
that were inside the oil spill and eventually left the spill. (This query could
point to the possible polluter.) Using a spatiotemporal intersection predicate
yields also all ships that entered, crossed, touched, etc. the spill and is simply
not precise enough to find the desired information. Although we can express
the query by adding a couple of further explicit conditions on the ship’s trajec-
tory (see for example, [28]), the query becomes incredibly complex and almost
unreadable. Moreover, the situation gets much worse for more complex devel-
opments, which indicates that the available query language abstractions are
not expressive enough. The same observation holds for other data models and
query languages. For example, in SQLST [9] queries suffer from an inflation
of joins.

What are Spatiotemporal Predicates?

With the introduction of spatiotemporal predicates [24] we can describe pre-
cisely the developments of objects and their relationships in a relatively simple
way. A (binary) spatiotemporal predicate P is a function that maps a pair
of spatiotemporal objects to a boolean value, that is, P : α × β → bool for
α, β ∈ {Point,Region}. An example is the predicate Inside (defined for the
two types Point × Region → bool and Region × Region → bool) that checks
whether the first argument is always inside the evolving region. Another ex-
ample is Disjoint that yields true for two spatiotemporal objects that have no
points in common. Complex spatiotemporal predicates can be built by regu-
lar expressions over a basic set of spatial and spatiotemporal predicates. For
example, the predicate describing a “leaving” development can be defined as:



1 Toward Spatiotemporal Patterns 13

Leaves := Inside meet Disjoint

The meet predicate is a spatial predicate that applies to two spatial objects
and yields true when they touch each other. The semantics of a “string”
of spatiotemporal and spatial predicates is formally defined in [27]. Intu-
itively, the meaning is that one predicate has to hold after the other. In other
words, for a sequence of alternating spatiotemporal and spatial predicates
P1 p1 P2 . . . pk−1 Pk to hold for an object (pair), there has to be a connected
sequence of time intervals and instants I1, t1, I2, . . . , tk−1, Ik such that each
spatiotemporal predicate Pj holds for Ij and each spatial predicate pj holds at
tj . Hence, Leaves is true for two spatiotemporal objects P1 and P2 if for some
time P1 was inside P2, then touched the border, and finally was disjoint from
P2. In addition to predicate “concatenation” there are many other predicate
compositions, such as alternation, reflection, and repetition, which have nice
properties (proved in [27]) that can be used, for example, for optimization.

Assume we have the following schema for the relation Ships.

Ships(sname : string,Pos : Point)

With the spatiotemporal predicate Leaves we can formulate the query for
ships leaving the oil spill as follows.

SELECT sname

FROM Ships, Pollutions

WHERE pname = ‘The Big Spill’ AND Pos Leaves Reg

This example demonstrates how spatiotemporal predicates offer a basic ab-
straction for expressing conditions on sequences of changes.

Spatiotemporal Predicates Based on Numerical Operations

The concept of spatiotemporal predicates is based on the notion of changes in
topological relationships between spatiotemporal objects. A logical next step is
the generalization to numerical predicates. For example, with spatiotemporal
predicates we can currently not formulate a query that asks for regions (like
oil spills) that after a period of growth were only shrinking (to check, for
example, a successful treatment).

The modular, two-step definition of spatiotemporal predicates indicates
possibilities for generalizations: A spatiotemporal predicate P is obtained
from a spatial predicate p by (1) lifting it to a function ↑p that computes
for two spatiotemporal objects a temporal boolean that gives the predicate
value for each time point and (2) aggregating all the boolean values using ∀
quantification into one boolean value. For example, consider the spatial pred-
icate inside : point × region → bool that tells whether or not a point is inside
a region. The lifted function ↑inside : Point × Region → Bool computes for a
moving point and an evolving region a temporal boolean that tells for each



14 Martin Erwig

time point whether or not the point is inside the region. The temporal aggre-
gation of all these boolean values yields true if the point was always inside
the evolving region.1

If we now consider numerical functions, such as area or distance, their lifted
versions ↑area and ↑distance yield temporal numbers, which can be aggregated
in two ways into booleans. First, we can apply a lifted numerical numerical
predicate (such as a function checking for “> 3”). This results in a temporal
boolean that can be aggregated further by ∀ as already described. With that
approach, however, we are not able to check, for example, growth since boolean
values are obtained for individual time values, independently from other time
values. However, we have to compare the numbers of different time values
in order to identify a growth trend in time. This can be performed by an
operator ∆ that maps any temporal object of type α (if a total ordering is
defined on α) to an object of type {negative,none, positive} that gives for each
time the change in the value at that point. Thus, ∆ is basically a differential
operator. Now, “growth” can be checked by comparing the result of ∆ to
positive and aggregating with ∀. We can generalize spatiotemporal predicates
to work for numerical functions by parameterizing the ∀ quantification by
a function that maps non-boolean values into booleans. This function will
be lifted and applied to the temporal object just before the ∀ aggregation
is performed. For example, to define a predicate for checking the growth of
a particular Region value R, we have to map R into a temporal number by
applying Area and then determining the change at each time point by ∆. Next
we can define a predicate grows as follows.

grows(x) :⇐⇒ x = positive

This predicate can be applied to all values returned by ∆ and aggregated
with ∀. We combine the last two steps in the definition of a parameterized
Always operation that takes two parameters: (i) the predicate to be applied
(here grows) and (ii) the spatiotemporal object to which the first parameter
expression is applied (here: ∆(Area(R))). Then we find out whether or not R

always grows through the expression:

Always(grows, ∆(Area(R)))

The precise definition of Always has to take into account different lifetimes of
objects, which is discussed in detail in [27]. Another issue to investigate is the
result type of ∆. For some applications the type {negative,none, positive}
is not general enough. It seems that we rather need ∆ to be of type
{negative,none, positive}×α. Then, for numerical functions ∆ gives the change
rate (for example, speed). However, for spatial types the situation is more in-
volved. For example, when we apply ∆ to an evolving region, we might get
marked regions and curves as a result.

1 There are some subtle details regarding the time intervals over which the ag-
gregation has to range. These considerations are not important here; a detailed
analysis can be found in [27].



1 Toward Spatiotemporal Patterns 15

Adding Time Constraints

Another limitation of spatiotemporal predicates is demonstrated by the query
Q1: While we can express the multiple-time-observation condition with the
help of repetition and the definition of a Cross predicate, the minimum time
constraint cannot be expressed by the current form of spatiotemporal pred-
icates. Similarly, the query Q2 about suspicious mailbox visitors requires a
constraint on the duration of the validity of a spatiotemporal predicate.

One possible way to extend spatiotemporal predicates by temporal con-
straints is to define an operation that can superimpose these constraints on
spatiotemporal predicates. Such an operation, say For, would take a predi-
cate on durations and would restrict a spatiotemporal predicate further by
this condition. If STP denotes the type of all spatiotemporal predicates (that
is, STP = α × β → bool for α, β ∈ {Point,Region}), then For has the type
For : (duration → bool) × STP → STP. With this operation we can define
two spatiotemporal predicates for expressing the minimum-observation-time
requirement and the minimum-number-of-visits requirement, respectively.

IntersectFor(d, P, Q) := For(≥ d, Intersection)(P, Q)
AtLeastFour(P ) := P (¬P ) P (¬P ) P (¬P ) P+

Note that we are using partial function application as a convenient means to
formulate duration predicates. For example, the expression “≥ d” is a short
form for the function f that is defined by f(x) = x ≥ d. The advantage of using
expressions like “≥ d”, in which the ≥ function is only partially applied to its
second argument, is that we do not have to introduce a name for that function
(for a detailed discussion, see [5]). Moreover, note that For is a higher-order

predicate, that is, it takes two predicates as arguments and returns a predicate
as a result. This fact also explains the notation For(≥ d, Intersection)(P, Q):
For(≥ d, Intersection) is the application of For to its two argument predicates,
and the result is a predicate that is applied to the pair of objects (P, Q).

The alternating sequence of predicates and their negation in the definition
of AtLeastFour is required to describe the repeated satisfaction of P on arbi-
trary but non-overlapping time intervals. Using the two predicates we could
express query Q1 as follows.

SELECT sname

FROM Satellites, Pollutions

WHERE pname = ‘The Big Spill’ AND
AtLeastFour(IntersectFor(5 min,Pos,Reg))

With the For operator we can also express query Q2. Assume that we have
two relations Cars and Mailboxes with the following schemas.

Cars(license-plate : string,Location : Point)
Mailboxes(id : string, pos : point)



16 Martin Erwig

Since mailboxes usually do not move, their position is represented by a spatial
point and not a moving point. To express the spatiotemporal condition of
“meeting”, we have to lift the mailbox points into moving points that actually
do not move. We can use the already mention lifting operation “↑”, which,
when applied to objects and not functions, yields a constant temporal function
that returns the argument object for each time point. For example, for a given
point p : point, the expression ↑p (of type Point) denotes a stationary position.
The query Q2 can now be expressed as follows.

SELECT license-plate

FROM Cars, Mailboxes

WHERE For(≤ 4 hours,AtLeastTwo(For(≥ 2 min,Meet)(Location, ↑pos)))

This query works as follows. The innermost For refines the Meet predicate
to hold for at least two minutes. The AtLeastTwo requires an occurrence of
this predicate at least twice. Finally, the outermost For constrains this whole
predicate to hold only if the total time is less than four hours. In this example,
we observe the need for another operation AtLeastTwo or a generalization
AtLeast that takes an integer parameter. We will discuss a generalization of
these function in Section 1.6.

We can also see that the definition of For is not general enough. To express
more complex conditions to refine spatiotemporal predicates it seems that For

needs access to the spatiotemporal objects that are under consideration by
the predicates to be refined. Then we can express constraints on speed (which
is required for the query Q3) and other object properties. Moreover, we also
have to consider versions of For that take a predicate on time instants and
constrains spatial predicates (when used inside developments).

1.6 Spatiotemporal Patterns

The extended form of spatiotemporal predicates outlined in Section 1.5 can
be used to define a language of spatiotemporal patterns.

One limitation of spatiotemporal predicates is demonstrated by the defi-
nition of the predicate AtLeastFour, which shows that a more detailed control
over repetition is needed to express developments/queries that mention an ex-
plicit number of repetitions. This is one of many ways to compose individual
predicates into spatiotemporal patterns.

As far as repetition is concerned, we can define in addition to the Kleene
star operation a combinator Repeat that takes a number k and a spatiotem-
poral predicate P and returns a spatiotemporal predicate that is true if the
k-fold composition/sequence of P is true. It is interesting to observe that al-
though we can easily express a combinator AtLeast as a derived predicate
based on Repeat, namely simply by

AtLeast(P, k) := Repeat(P, k) P ∗



1 Toward Spatiotemporal Patterns 17

it is not possible to define the combinator AtMost (without using recursion).
Sequential composition, repetition, and alternation (see [27]) of spatiotem-

poral predicates are just three simple example combinators to express struc-
ture for different relationships among spatiotemporal objects. In more ad-
vanced applications we might have to find out about more complex relation-
ships among different parts of a development. The following query illustrates
this aspect.

Q4. Which forests suffered from multiple fires of increasing duration?

We can express the multiple-fire constraint by an AtLeast operator similar to
what we have done for Q1 and Q2. However, the second part of the query
refers to the duration of the predicates, but not just with a condition that
is evaluated for each predicate individually, but rather with a condition that
relates different subpredicates. Here, it is the condition that the duration of
any intersection predicate is greater than the duration of the preceding one.
Since the For combinator is only able to constrain individual predicates, we
need a more general mechanism.

On possibility is to allow aggregations over spatiotemporal predicate se-
quences, that is, their values and time periods. By working in a generalized
model of numerical predicates, values and time periods can be exposed as
part of the evaluation of a spatiotemporal predicate as a sequence of (pairs
of) objects and the corresponding predicate whose evaluation on the objects
has contributed to the overall result. In the example query Q4 this would
be a list of forest/fire pairs plus the predicates Intersection, ¬Intersection,
Intersection. (Here we assume for simplicity to having just one fire object.)
Then we can imagine a function that scans this list, computes the relevant
information for each element (here, the duration of the first and third object
pairs), and performs an aggregation, which in this case could be simply a test
whether the computed list of durations is increasing.

This approach generalizes the notion of spatiotemporal predicates from
mere predicates that yield a boolean value to object filters or object par-
titioning functions. It is the generalization of the result type that “opens”
spatiotemporal predicates for further computations. Two open questions in
this context are:

• How can the notion of spatiotemporal predicates be generalized without
compromising their current useful applications?

• What is a suitable language to specify aggregations over spatiotemporal
predicate results?

Eventually, this generalization might lead to hierarchical sequences since mul-
tiple aggregations could follow one another offering the opportunity for an-
other aggregation. In other words, spatiotemporal patterns provide a way to
describe hierarchical or nested spatiotemporal predicates. One way of describ-
ing such hierarchies is to use a grammar formalism where terminals represent



18 Martin Erwig

basic spatiotemporal predicates and nonterminals represent spatiotemporal
patterns that can be expanded according to the grammar rules into arbitrar-
ily nested expressions of spatiotemporal predicates. Evaluating such a general
form of spatiotemporal patterns means to parse predicate sequences according
to a grammar that defines a pattern. The current version of spatiotemporal
predicates result as a special case by not using recursion in grammars, which
leads to regular expressions.

Another issue to consider is the ability to existentially quantify objects
used in development queries. Under the current interpretation, a spatiotem-
poral predicate is a binary predicate that can be applied to two spatiotemporal
objects and evaluates to either true or false. For example, a spatiotemporal
predicate that is able to express query Q4 can succeed only for a forest and
one particular fire that repeatedly affected that forest. However, the query is
rather concerned with the forest being affected repeatedly by any fire, that is,
it should be possible to satisfy the condition by different fires. One possibility
to allow for such a generalization is to introduce local quantifiers (existen-
tial and universal) into the language for specifying predicates. Nonquantified
variables can be assumed to be universally quantified by default to make this
a conservative extension. Another possibility is to introduce on the concep-
tual level “relation sequences” so that instances for a predicate can be chosen
independently from different relations.

In summary, spatiotemporal patterns seem to be a logical next step fol-
lowing spatiotemporal predicates in the definition of more expressive query
predicates. Their integration into spatiotemporal query languages, such as
STQL, can extend the expressiveness of such query languages considerably.

1.7 Visual Query Interfaces

Spatiotemporal predicates allow the formulation of many queries in a rather
direct way by expressing spatiotemporal relationships directly on attributes of
the involved objects. However, as we have seen in Section 1.6, more advanced
queries that require spatiotemporal patterns quickly tend to become quite
complex. Moreover, the fast growing set of available spatial and spatiotempo-
ral data and its wide dissemination through the Internet increases the class
of possible users for these data. Offering ordinary users access to spatiotem-
poral data is therefore becoming a more and more important issue that can
be addressed by developing a visual query language and a corresponding user
interface. In particular, it is important to make databases accessible to users
without formal training in databases and query languages, such as scientists,
administrators, or other end users. In many cases, these users do not have
the time or are not willing to learn a formal query language. From this point
of view, even spatiotemporal predicates embedded into a query language like
STQL [24, 28] is beyond what most of these users can deal with.



1 Toward Spatiotemporal Patterns 19

A visual notation for spatiotemporal predicates can help solving this prob-
lem. In particular, since spatial objects and their relationships have a natural
graphical representation, a visual notation can express relationships in many
cases implicitly where textual notations require the explicit application of
operations and predicates. A similar situation arises in the case of spatiotem-
poral objects when the time dimension is visualized as one spatial dimension
[25]. However, special care must be taken to keep the notation simple enough
to avoid overspecifications by exposing too many details. The idea of our
approach is to represent traces of object developments by two-dimensional
pictures. The relationships of the drawn objects can then be interpreted as
spatiotemporal predicates. An example is shown in Figure 1.2 that specifies
the Leaves predicate. (The interpretation of pictures like these and their for-
mal translation into spatiotemporal predicates is described in detail in [29].)

Ships

Pollutions

time

position

Figure 1.2. Visual Specification of the Leaves predicate.

Additional improvements and simplifications can be achieved by embed-
ding the query notation in a tailor-made user interface that supports the cre-
ation and adaptation of queries by direct manipulation of the objects whose
relationships represent spatiotemporal predicates and patterns [26]. Moreover,
by selecting attributes from a database schema and associating them with the
drawn objects, pictures can not only define spatiotemporal predicates, but
also complete queries. For example, if the moving point in Figure 1.2 is asso-
ciated with the Pos attribute of the Ships relation and the circle is associated
with the Reg attribute of the Pollutions relation, the picture describes the
following query and can be automatically translated into it.

SELECT sname, pname

FROM Ships, Pollutions

WHERE Pos (Inside meet Disjoint) Reg

Concreteness and directness are two strategies that have been used success-
fully by some end-user programming languages [8], and they should be em-
ployed in visual query interfaces for spatiotemporal databases as well. Con-



20 Martin Erwig

creteness has to do with working with values instead of with abstract variables.
The strategy of directness is particularly important in our design plans. The
term directness as used in the HCI community expands on the term direct

manipulation, first coined by Shneiderman to describe three principles: con-
tinuous representation of the objects of interest, physical actions or presses of
labeled buttons instead of complex syntax, and rapid incremental reversible
operations whose effect on the object of interest is immediately visible [61].
Hutchins, Hollan, and Norman expand on these notions, suggesting that di-
rectness is inversely proportional to the cognitive effort needed to use the in-
terface [47]. They describe directness as having two aspects. The first aspect
is the distance between one’s goals and the actions required by the system to
achieve those goals. We argue that distance is small in our approach since the
objects to be queried are displayed and directly manipulated on the screen.
For example, the goal “describe a ship leaving a region” is expressed by a pic-
ture in which the trace of the ship start inside the region and ends outside of
it, instead of requiring a textual expression involving predicate and operator
applications. Green and Petre enumerate several examples showing the unfor-
tunate lack of this aspect of directness (termed closeness of mapping in their
work) in commonly used programming languages [38]. The second aspect is
a feeling of direct engagement: “the feeling that one is directly manipulating
the objects of interest”. The notion of aiming for directness as a program-
ming language design goal has in recent years begun to influence other kinds
of end-user programming languages and domain-specific languages as well.
In our approach direct engagement is supported by the user interface, which
lets users place objects on a drawing region and move them around to create
traces. Simultaneously to the user action, the spatiotemporal predicate that is
specified through the current picture is displayed in a small area of the screen.
This enables the user to move objects and observe at the same time the effect
on the specified predicate. An additional benefit is that users can learn about
the formal, textual notation by examples if they want to.

To extend the developed visual query notation (and the user interface) to
cope with more general forms of spatiotemporal predicates and patterns, a
number of issues have to be addressed.

One example is to add conditions to query pictures. Consider, for example,
a refinement of the visual query in Figure 1.2 that is obtained by adding a
constraint on the time the ship needed to leave the pollution region. We can
express this by projecting two points onto the time axis and adding a condition
to it. The resulting visual query asks only for those ships that have left the
region within 30 minutes, see Figure 1.3.

This visual query will then be translated into the following STQL query.

SELECT sname, pname

FROM Ships, Pollutions

WHERE Pos (For(< 30 min, Inside) meet Disjoint) Reg



1 Toward Spatiotemporal Patterns 21

Ships

Pollutions

time

position

{< 30 min

Figure 1.3. Refining the Leaves predicate with a condition.

Two other useful extensions are to express numerical spatiotemporal predi-
cates and to allow for hierarchical specifications. To use numerical spatiotem-
poral we need additional visual elements to refer to numerical spatiotemporal
operations like Distance to be able to express numerical constraints on devel-
opments. In order to be able to express general spatiotemporal patterns that
require nested sequence conditions we need a mechanism to refer to visual
specifications from within other specifications. Nesting of visual expressions
can sometimes simplify the notation considerably [13]. Coupled with zoom-
ing capabilities on the interface level, this approach can lead to convenient
specification of hierarchical predicates and patterns.

1.8 Conclusions

We have introduced a concept of spatiotemporal patterns that can be em-
ployed in query languages to express queries about the development of spa-
tiotemporal objects and their relationships. To help coping with the complex-
ity of the query language we also have sketched the design of a visual query
language that makes the expressiveness of spatiotemporal patterns accessible
to a large group of users.

We believe that providing effective access to spatiotemporal data through
expressive query languages is an important step to help scientists and ordinary
users to exploit the information that is contained in fast growing spatiotem-
poral data sets. Moreover, we believe that the concept of spatiotemporal pat-
terns can provide a key to solving this problem. A group of researchers at
the recent NSF workshop on “Workshop on Spatio-Temporal Data Models
of Biogeophysical Fields for Ecological Forecasting” has concluded the same
thing [45] (emphasis added):

[...] there is a critical need for theories and tools that will enable
efficient and reliable characterization of spatio-temporal patterns con-
tained in image time series.



22 Martin Erwig

The general goal of the described work can be summarized by the term “uni-
versal geo-data access”. First, the developed query language concepts can help
to improve the ability to extract information from large geo-data sets. Second,
through the development of visual query interfaces, the access to geo data is
provided to a large group of users.

References

1. P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving Points. In 19th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages
175–186, 2000.

2. J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM, 26:832–843, 1983.

3. J. F. Allen. Towards a General Theory of Action and Time. Artificial Intelli-
gence, 23:123–154, 1984.

4. G. Ariav. An Overview of TQuel. ACM Transactions on Database Systems,
11(4):499–527, 1986.

5. R. S. Bird. Introduction to Functional Programming Using Haskell. Prentice-
Hall International, London, UK, 1998.

6. T. Bittner. Rough Sets in Spatio-Temporal Data Mining. In Int. Workshop on
Temporal, Spatial and Spatio-Temporal Data Mining, LNAI 2007, pages 89–104,
2001.

7. M. H. Böhlen, C. S. Jensen, and B. Skjellaug. Spatio-Temporal Database Sup-
port for Legacy Applications. In ACM Symp. on Applied Computing, pages
226–234, 1998.

8. M. M. Burnett. Visual Programming. In Webster, J. G., editor, Encyclopedia
of Electrical and Electronics Engineering, pages 215–283. John Wiley & Sons,
1999.

9. C. X. Chen and C. Zaniolo. SQLST : A Spatio-Temporal Data Model and Query
Language. In 19th Int. Conf. on Conceptual Modeling, LNCS 1920, pages 96–
111, 2000.

10. T. S. Cheng and S. K. Gadia. A Pattern Matching Language for Spatio-
Temporal Databases. In ACM Conf. on Information and Knowledge Manage-
ment, pages 288–295, 1994.

11. J. Chomicki. Querying Spatiotemporal Databases. In NSF/BDEI Workshop on
Spatio-Temporal Data Models of Biogeophysical Fields for Ecological Forecasting,
San Diego Supercomputer Center, La Jolla, CA, USA, 2002.

12. J. Chomicki and P. Z. Revesz. A Geometric Framework for Specifying Spa-
tiotemporal Objects. In 6th Int. Workshop on Temporal Representation and
Reasoning, pages 41–46, 1999.

13. W. Citrin, R. Hall, and B. Zorn. Programming with Visual Expressions. In 11th
IEEE Symp. on Visual Languages, pages 294–301, 1995.

14. M. Craglia, P. Haining, and P. Wiles. A Comparative Evaluation of Approaches
to Urban Crime Pattern Analysis. Urban Studies, 37(4):711–729, 2000.

15. Z. Cui, A. G. Cohn, and D. A. Randell. Qualitative and Topological Relation-
ships in Spatial Databases. In 3rd Int. Symp. on Advances in Spatial Databases,
LNCS 692, pages 296–315, 1993.



1 Toward Spatiotemporal Patterns 23

16. D. J. Hand and H. Mannila and P. Smyth. Principles of Data Mining. MIT
Press, Cambridge, MA, 2001.

17. D. Walgraef. Spatio-Temporal Pattern Formation: With Examples from Physics,
Chemistry, and Material Science. Springer Verlag, New York, NY, 1997.

18. N. Djafri, A. A. A. Fernandez, N. P. Paton, and T. Griffiths. Spatio-Temporal
Evolution: Querying Patterns of Change in Databases. In 10th ACM Int. Symp.
on Advances in Geographic Information Systems, 2002.

19. M. J. Egenhofer and R. D. Franzosa. Point-Set Topological Spatial Relations.
Int. Journal of Geographical Information Systems, 5(2):161–174, 1991.

20. M. Erwig. Design of Spatio-Temporal Query Languages. In NSF/BDEI Work-
shop on Spatio-Temporal Data Models of Biogeophysical Fields for Ecological
Forecasting, San Diego Supercomputer Center, La Jolla, CA, USA, 2002.

21. M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis. Abstract and
Discrete Modeling of Spatio-Temporal Data Types. In 6th ACM Symp. on
Geographic Information Systems, pages 131–136, 1998.

22. M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal
Data Types: An Approach to Modeling and Querying Moving Objects in
Databases. GeoInformatica, 3(3):269–296, 1999.

23. M. Erwig and B. Meyer. Heterogeneous Visual Languages – Integrating Visual
and Textual Programming. In 11th IEEE Symp. on Visual Languages, pages
318–325, 1995.

24. M. Erwig and M. Schneider. Developments in Spatio-Temporal Query Lan-
guages. In IEEE Int. Workshop on Spatio-Temporal Data Models and Lan-
guages, pages 441–449, 1999.

25. M. Erwig and M. Schneider. Visual Specifications of Spatio-Temporal Develop-
ments. In 15th IEEE Symp. on Visual Languages, pages 187–188, 1999.

26. M. Erwig and M. Schneider. Query-By-Trace: Visual Predicate Specification in
Spatio-Temporal Databases. In H. Arisawa and T. Catarci, editors, Advances
in Visual Information Management – Visual Database Systems, pages 199–218.
Kluwer Academic Publishers, Boston, MA, 2000.

27. M. Erwig and M. Schneider. Spatio-Temporal Predicates. IEEE Transactions
on Knowledge and Data Engineering, 14(4):881–901, 2002.

28. M. Erwig and M. Schneider. STQL: A Spatio-Temporal Query Language. In
R. Ladner, K. Shaw, and M. Abdelguerfi, editors, Mining Spatio-Temporal Infor-
mation Systems, chapter 6, pages 105–126. Kluwer Academic Publishers, Nor-
well, MA, 2002.

29. M. Erwig and M. Schneider. A Visual Language for the Evolution of Spatial
Relationships and its Translation into a Spatio-Temporal Calculus. Journal of
Visual Languages and Computing, 14(2):181–211, 2003.

30. M. Erwig, M. Schneider, and R. H. Güting. Temporal Objects for Spatio-
Temporal Data Models and a Comparison of Their Representations. In Int.
Workshop on Advances in Database Technologies, LNCS 1552, pages 454–465,
1998.

31. G. M. Kuper, L. Libkin, J. Paredaens, editor. Constraint Databases. Springer-
Verlag, Berlin, 2000.

32. G. Piatetsky-Shapiro and W. Frawley. Knowledge Discovery in Databases. MIT
Press, Cambridge, MA, 1991.

33. S. Gaal. Point Set Topology. Academic Press, 1964.



24 Martin Erwig

34. S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude to Parametric Data.
In A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,
editors, Temporal Databases: Theory, Design, and Implementation, pages 28–66.
The Benjamin/Cummings Publishing Company, 1993.

35. A. Galton. Towards a Qualitative Theory of Movement. In 2nd Int. Conf. on
Spatial Information Theory, LNCS 988, pages 377–396, 1995.

36. A. Galton. A Formal Theory of Objects and Fields. In 5th Int. Conf. on Spatial
Information Theory, LNCS 2205, pages 458–473, 2001.

37. E. Geake. How PCs Predict where Crime will Strike. New Scientist,
140(1896):17, 1993.

38. T. R. G. Green and M. Petre. Usability Analysis of Visual Programming Envi-
ronments: A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996.

39. S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. The DEDALE Proto-
type. In G. M. Kuper, L. Libkin, J. Paredaens, editor, Constraint Databases,
chapter 17, pages 365–382. Springer-Verlag, Berlin, 2000.

40. S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with
Constraints. In 6th ACM Int. Symp. on Advances in Geographic Information
Systems, pages 106–111, 1998.

41. S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with
Constraints. GeoInformatica, 5:95–115, 2001.

42. R. H. Güting. Geo-Relational Algebra: A Model and Query Language for Ge-
ometric Database Systems. In Int. Conf. on Extending Database Technology,
LNCS 303, pages 506–527, 1988.

43. R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schnei-
der, and M. Vazirgiannis. A Foundation for Representing and Querying Moving
Objects. ACM Transactions on Database Systems, 25(1):1–42, 2000.

44. H. W. Mielke. Patterns of Life: Biogeography of a Changing World. Unwin
Hyman, Inc., Winchester, MA, 1989.

45. G. M. Henebry, J. Chomicki, T. Fountain, and K. J. Ranson, editors. NSF/BDEI
Workshop on Spatio-Temporal Data Models of Biogeophysical Fields for Ecolog-
ical Forecasting, San Diego Supercomputer Center, La Jolla, CA, USA, April
2002.

46. M. P. Hoerling and A. Kumar. Atmospheric Response Patterns Associated with
Tropical Forcing. Journal of Climate, 15(16):2184–2203, 2002.

47. E. Hutchins, J. Hollan, and D. Nomran. Direct Manipulation Interfaces. In
D. Norman and S. Draper, editors, User Centered System Design: New Per-
spectives on Human-Computer Interaction, pages 87–124. Lawrence Erlbaum
Assoc., Hillsdale, NJ, 1986.

48. S. Imfeld. Time, Points and Space – Towards a Better Analysis of Wildlife Data
in GIS. Dissertation, University of Zürich, 2000.

49. L. Knopoff, A. Gabrielov, and M. Ghil, editors. IMA Workshop on Spatio-
Temporal Patterns in the Geosciences, University of Minnesota, Minneapolis,
MN, USA, September 2001.

50. G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mobile Objects.
In 18th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, pages 261–272, 1999.

51. E. Mesrobian, R. Muntz, E. Shek, S. Nittel, M. La-Rouche, M. Kriguer, C. Me-
choso, J. Farrara, P. Stolorz, and H. Nakamura. Mining Geophysical Data for
Knowledge. IEEE Expert, 11(5):34–44, 1996.



1 Toward Spatiotemporal Patterns 25

52. T. Miller. Computers Track the Criminal’s Trail. American Demographics,
16(1):13–14, 1994.

53. G. Naggle. Urban Crime: A Geographic Appraisal. Geographical Magazine,
67(4):56–57, 1995.

54. D. J. Peuquet and N. Duan. An Event-Based Spatiotemporal Data Model
(ESTDM) for Temporal Analysis of Geographical Data. Int. Journal of Ge-
ographical Information Systems, 9(1):7–24, 1995.

55. Peuquet, D. J. Representations of Space and Time. The Guilford Press, New
York, NY, 2002.

56. J. Renz and B. Nebel. On the Complexity of Qualitative Spatial Reasoning:
A Maximal Tractable Fragment of the Region Connection Calculus. Artificial
Intelligence, 108(1-2):69–123, 1999.

57. B. Romanowicz. Spatiotemporal Patterns in the Energy Release of Great Earth-
quakes. Science, 260(5116):1923–1926, 1993.

58. M. Scholl and A. Voisard. Thematic Map Modeling. In 1st Int. Symp. on Large
Spatial Databases, LNCS 409, pages 167–190, 1989.

59. A. Segev and A. Shoshani. Logical Modeling of Temporal Data. In ACM
SIGMOD Conf. on Management of Data, pages 454–466, 1987.

60. A. Segev and A. Shoshani. A Temporal Data Model Based on Time Sequences.
In A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,
editors, Temporal Databases: Theory, Design, and Implementation, pages 248–
270. The Benjamin/Cummings Publishing Company, 1993.

61. B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.
Computer, 16(8):57–69, 1983.

62. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying
Moving Objects. In Int. Conf. on Data Engineering, pages 422–432, 1997.

63. R. T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer Aca-
demic Publishers, Boston, MA, 1995.

64. M. Stonebraker. Inclusion of New Types in Relational Database Systems. In
Int. Conf. on Data Engineering, pages 262–269, 1986.

65. T. Suzue and Y. Shinoda. Highly Reproducible Spatiotemporal Patterns of
Mammalian Embryonic Movements at the Developmental Stage of the Earli-
est Spontaneous Motility. European Journal of Neuroscience, 11(8):2697–2710,
1999.

66. Y. Theodoridis, T. Sellis, A. Papadopoulos, and Y. Manolopoulos. Specifica-
tions for Efficient Indexing in Spatiotemporal Databases. In 10th Int. Conf. on
Scientific and Statistical Database Management, pages 123–132, 1998.

67. R. B. Tilove. Set Membership Classification: A Unified Approach to Geometric
Intersection Problems. IEEE Transactions on Computers, C-29:874–883, 1980.

68. Y. M. Tourre, B. Rajagopalan, and Y. Kushnir. Dominant Patterns of Climate
Variability in the Atlantic Ocean during the Last 136 Years. Journal of Climate,
12(8):2285–2299, 1999.

69. I. Tsoukatos and D. Gunopulos. Efficient Mining of Spatiotemporal Patterns. In
7th Int. Symp. on Spatial and Temporal Databases, LNCS 2121, pages 425–442,
2001.

70. M. A. Tumeo and M. K. Larson. Movement of Fuel Spills in the Ross Ice Shelf.
Antarctic Journal of the United States, 29(5):373–374, 1994.

71. M. Vazirgiannis and O. Wolfson. A Spatiotemporal Query Language for Moving
Objects. In 7th Int. Symp. on Spatial and Temporal Databases, LNCS 2121,
pages 20–35, 2001.



26 Martin Erwig

72. F. Wang and W. W. Minor. Where the Jobs Are: Employment Access and Crime
Patterns in Cleveland. Annals of the Association of American Geographers,
92(3):435–451, 2002.

73. T. Weigand, K. A. Moloney, and S. J. Milton. Population Dynamics, Distur-
bance, and Pattern Evolution: Identifying the Fundamental Scales of Organiza-
tion in a Model Ecosystem. The American Naturalist, 152(3):321–337, 1998.

74. M. F. Worboys. A Unified Model for Spatial and Temporal Information. The
Computer Journal, 37(1):25–34, 1994.

75. T. S. Yeh and B. de Cambray. Time as a Geometric Dimension for Modeling
the Evolution of Entities: A 3D Approach. In Int. Conf. on Integrating GIS and
Environmental Modeling, 1993.

76. T. S. Yeh and B. de Cambray. Modeling Highly Variable Spatio-Temporal Data.
In 6th AustraliAsian Database Conf., pages 221–230, 1995.


