
Semantics First!
Rethinking the Language Design Process?

Martin Erwig and Eric Walkingshaw

School of EECS
Oregon State University

Abstract The design of languages is still more of an art than an engineering dis-
cipline. Although recently tools have been put forward to support the language
design process, such as language workbenches, these have mostly focused on
a syntactic view of languages. While these tools are quite helpful for the de-
velopment of parsers and editors, they provide little support for the underlying
design of the languages. In this paper we illustrate how to support the design of
languages by focusing on their semantics first. Specifically, we will show that
powerful and general language operators can be employed to adapt and grow
sophisticated languages out of simple semantics concepts. We use Haskell as a
metalanguage and will associate generic language concepts, such as semantics
domains, with Haskell-specific ones, such as data types. We do this in a way that
clearly distinguishes our approach to language design from the traditional syntax-
oriented one. This will reveal some unexpected correlations, such as viewing type
classes as language multipliers. We illustrate the viability of our approach with
several real-world examples.

1 Introduction
How do we go about designing a new language? This seems to still be an open question.
To quote Martin Fowler from his latest book [6, p. 42]:

When people reviewed this book, they often asked for tips on creating a good
design for the language. ... I’d love to have a [sic] good advice to share, but I
confess I don’t have a clear idea in my mind.

This quote underlines that even though the development of software languages is sup-
ported by quite a few tools, the design process itself is still far from being an engi-
neering discipline. Many concepts remain poorly defined or are interpreted differently
depending on the approach taken.

In this paper we will address this problem and present a systematic approach to
designing a software language. This approach is based on two key ideas or insights.

First, language development should be semantics driven, that is, we start with a
semantics model of the language core and then work backwards to define a more and
more complete language syntax. This is a rather unorthodox, maybe even heretical,
position given the current dogma of programming language specification. For example,
the very first sentence in Felleisen et al.’s latest book [5] states rather categorically:
? This work is partially supported by the Air Force Office of Scientific Research under the grant

FA9550-09-1-0229 and by the National Science Foundation under the grant CCF-0917092.

The specification of a programming language starts with its syntax.

We challenge this view and argue that, even though the “syntax first” approach has a
long and well established tradition, it is actually impeding the design of languages.

Second, language development should be compositional, that is, bigger languages
should be composed of smaller ones using well-defined language composition opera-
tors. The notion of compositionality itself is widely embraced and praised as a mark
of quality, particularly in the area of denotational semantics [15], and compositionality
within individual languages is generally valued since it supports expressiveness with
few language constructs. We will illustrate that a semantics-driven language design will
itself be compositional in nature and will lead more naturally to compositional lan-
guages, in particular, when compared to syntax-driven language design. One reason
might be that thinking about a language’s syntax is often tied to its concrete syntax,
which is problematic since the widely used LL or LR parsing frameworks are not com-
positional in general and thus impose limits on the composition of languages [11].

In order to motivate and explain our approach we will consider in Section 3 the
(evolving) design of a small language for a calendar application. This example will help
us establish a set of basic concepts and the corresponding terminology. This example
also helps to point out some of the challenges that a language developer is faced with.

To discuss the involved technical aspects we have to express the language design in
a concrete (meta)language. We use Haskell for this purpose since (1) Haskell has been
successfully employed in the development of many DSLs, and (2) many of Haskell’s
concepts have a direct and clear interpretation in terms of language design. We will
briefly summarize how Haskell abstractions map to language concepts in Section 2.

Using Haskell as a metalanguage (or DSL) for language design also allows us to
identify new concepts in language design. One example is the notion of language
schema. Language schemas and their cousins language families will be discussed in
Section 4 where we specifically point out how polymorphism in the language descrip-
tion formalism (that is, the metalanguage) can be exploited for making language design
more systematic and amenable to reuse.

A critical aspect of semantics-driven language design is the systematic, incremental
extension of a base language (or schema) to a more complex language. This process
is supported by language operators that are discussed in Section 5. As explained in
Section 2, the semantics-driven approach leads to a distribution of language descriptions
across different concepts of the metalanguage. This suggests a distinction of language
operators into different categories, and the description follows these categories.

In Section 6 we will demonstrate the proposed semantics-driven language design
approach on several examples to illustrate its power and simplicity. Finally, after a dis-
cussion of related work in Section 7 we present some conclusions in Section 8.

2 Haskell as a Language Design DSL

Haskell [16] has a long tradition as a metalanguage and has been used quite extensively
to define all kinds of domain-specific languages. A few standard idioms of how to rep-
resent languages in Haskell have developed that are part of the Haskell folklore. Even
though these idioms may not have been documented comprehensively in one place, Tim

Language Domain Metalanguage (Haskell)
Language L Data type data L = Cn

L. Schema - Type constructor data S a = Cn

Program p ∈ L Expression e :: L

Operation N1 . . .Nk→ L Constructor C :: Nk -> L

Semantics domain D (Data) type data D

Semantics [[·]] : L→ D Function sem :: L -> D

Figure 1. Syntax-directed view of language concepts and their representation.

Sheard’s paper [18] is a good place to start. There has also been some work on how to
make language design modular and extensible [8, 13, 18, 19].

Most of this work is focused on syntax, taking the view that a language is defined
by defining its (abstract) syntax plus a mapping to some kind of semantics domain.
Under this view of language, sentences expanded from a nonterminal L are represented
in Haskell by terms that are built using constructors of a data type L. Each constructor
represents a grammar production for L. The argument types of the constructor represent
the nonterminals that occur on the right-hand side of the production. Constants represent
terminal symbols, and constructors having basic type arguments (such as Int) form the
link to the lexical syntax. This view is briefly summarized in Figure 1.

The two-level view that results from the syntax-directed approach to language de-
sign is not the only way in which language can be represented, however. Alternatively,
we can start the design of a language with a decision about the semantics domain that
best captures the essence of the domain the language is describing. In Haskell this do-
main will also be represented as a (data) type, say D. However, its constructors will be
taken immediately as language operators. For example, in a language for representing
dates (see also Figure 3) we may have a data type Month that includes constructors such
as Jan. This constructor would not just be considered a semantics value, but would also
be used as an operation of the date language.

Of course, the language will need more operations than just the constructors of D.
Instead of introducing an explicit representation through additional data types or con-
structors, as in the syntax-directed approach, the semantics-directed approach will sim-
ply define functions that take the appropriate arguments and construct elements of the
semantics domain D directly. This idea is also behind the combinator library approach
to the design of domain-specific embedded languages (DSELs), see, for example, [8].

While a semantics function is required in the syntactic approach to map explicit syn-
tax to semantics values, in the semantics-directed approach this semantics function is
effectively distributed over many individual function definitions. By forgoing an explicit
syntax representation, the phase distinction between syntax and semantics disappears
in the semantics-directed approach.

The semantics-directed view of language development and its implication on the
metalanguage representation are briefly summarized in Figure 2.

The basic idea of semantics-driven language development is to start with a small
language that represents the essence of the language to be developed, then to extend
this core systematically. The advantages of this approach are: (1) The compositional
design clearly represents the different components of the language and how they are

Language Domain Metalanguage (Haskell)
Language L Data type & functions data D = Cn; (f = e)m

L. Schema - Type constructor & functions data S a = Cn; (f = e)m

Operation N1 . . .Nk→ L Constructor or function C/f :: Nk -> L

Semantics domain D Given by D, the data type part of L
Semantics [[·]] : L→ D Given by (f = e)m, the function part of L

Figure 2. Semantics-directed view of language concepts and their representation.

connected, (2) the language development is less ad hoc, and (3) being compositional,
the language design can be better maintained.

These advantages are particularly relevant for language prototyping. Once a de-
signer is happy with a semantics-driven language design, she can always “freeze” it by
converting its syntax from implicit into explicit representations and adding a semantics
function. This enables the abstract syntax of programs in the language to be manip-
ulated directly (for analysis or transformation), regaining any advantages of syntax-
directed approaches. Therefore the semantics-driven approach should not be seen as an
exclusive alternative to the syntax-directed approach, but rather as a companion that
can in some cases replace it and in other cases precede it and pave the way for a more
syntax-focused design.

3 Semantics-Driven Language Development

In this section we will illustrate with an example how a focus on semantics can go a
long way in building a language. Specifically, we will consider compositional language
extensions, that is, extensions that do not require changes to existing languages, in Sec-
tion 3.1. We will also discuss the problem and necessity of non-compositional language
extensions in Section 3.2.

3.1 Compositional Language Extensions

Consider a calendar tool for storing appointment information. That this is by no means
a trivial application domain can be seen by the fact that many different calendar applica-
tions and tools exist with different sets of features, and that some calendar functionality
is commonly performed by separate, external tools (consider, for example, the planning
of schedules with Doodle).

In order to build a calendar application, we must identify the operations that such an
application must perform. However, instead of doing this directly, which would lead to
a flat, monolithic set of operations, we instead approach the problem by focusing first
on the core language elements. We will begin by identifying the individual components
of the domain, and how these can be represented by different DSLs. We will then in-
crementally compose and extend these smaller DSLs to form the desired application.
This approach has the additional advantage that it can produce a library of small and
medium-sized DSLs that can be reused in the development of many language projects.
We also refer to these small, reusable DSLs sometimes as Micro DSLs.

The most important element of semantics-driven language design is the idea to

data Month = Jan | Feb | ... | Dec

type Day = Int

data Date = D Month Day

[jan,...,dec] = map D [Jan,...,Dec]

type Hour = Int

type Minute = Int

data Time = T Hour Minute

hours h = T h 0

am h = hours h

pm h = hours (h+12)

before t t’ = t’-t

Figure 3. Micro DSLs for date and time. The function hours constructs hour values, am and pm

denote morning and afternoon hours, and the function before subtracts two time values.

start the design process by identifying the absolutely most essential concepts of the
language to be developed. Compared with a denotational semantics approach, this basi-
cally amounts to identifying the semantics domain, which also means that the semantics
function for this initial core language will then be the identity function.

At its core, a calendar application offers the ability to define appointments at par-
ticular times. We recognize two separate components in this description, “times” and
“appointments”, that we can try to define through individual DSLs. These two lan-
guages are linked to form a calendar, and without needing to know any details about
times and appointments, we can see that it is this language combination that captures
the essence of calendars. Specifically, times are mapped to appointments. We can rep-
resent this using a generic language combinator for maps that is parameterized by types
for its domain and range. This straightforward Map data type can be defined as follows.1

data Map a b = a :-> b | Map a b :&: Map a b

Whereas a data type represents a language, a parameterized data type represents what
we call a language schema, that is, a whole class of languages. A language can be ob-
tained from a language schema through instantiation, that is, by substituting languages
for the type parameters.

To make our example more concrete we start with a simple version of a calendar
that maps days, given by month and day, to values of some arbitrary type. To this end we
make use of the definitions for dates and times shown in Figure 3.2 Note that even these
tiny languages are not completely defined by data types alone. For example, functions,
such as dec or pm are providing syntactic sugar. In addition, the function before extends
the Time language by a new operation.

Based on the languages Date and Time we can define a language for calendars that
associates appointment information with dates.

type CalD a = Map Date a

week52 :: CalD String

week52 = dec 30 :-> "Work" :&: dec 31 :-> "Party"

1 Here and in the following we will sometimes omit details, such as Show instance definitions
and infix declarations. Their effect will become clear from their use.

2 Again, we simplify the definitions a bit and omit some definitions, such as the Show instances
or the Num instance for Time.

Strictly speaking, CalD is still a language schema since the appointment information has
not yet been fixed, but week52 is a program in the language CalD String. It is obvious
that we can also define a calendar language that maps Time to appointments. In the
following example we define a simple calendar pattern to encode a habit to exercise
before a party. With that, we can then define two typical daily schedules.

type CalT a = Map Time a

partyAt :: Hour -> CalT String

partyAt h = hours 2 ‘before‘ h :-> "Exercise" :&: h :-> "Party"

work, party :: CalT String

work = am 8 :-> "Work" :&: pm 6 :-> "Dinner"

party = work :&: partyAt 9

The use of calendar patterns supports a very high-level and compositional description
of calendars without changing the underlying language representation. For example, a
party day expands to a time calendar value as follows.3

08:00 -> "Work" & 18:00 -> "Dinner" & 19:00 -> "Exercise" & 21:00 -> "Party"

We argue that this form of low-cost extensibility is, at least in part, a direct consequence
of choosing the most appropriate semantics domain, in this case a mapping. Therefore,
the initial focus on language semantics pays off since it simplifies the later language
design by dramatically lowering the language maintenance effort. Since in our view a
language is given by the core representation plus additional functions, we can also view
function definitions, such as partyAt, as user-defined extensions of the DSL.

From a language engineering perspective, we can observe that the function defi-
nition capability of the metalanguage helps us to easily and flexibly extend the core
representation by new features, such as patterns for dependent appointments.

We can easily combine these two types of calendars by instantiating the date calen-
dar with the time calendar.

type Cal a = CalD (CalT a)

week52 :: Cal String

week52 = dec 30 :-> work :&: dec 31 :-> party

We have illustrated how to extend the calendar language by refining the domain of
the mapping structure that forms its semantics basis. In the same way we can create
more expressive calendar languages by extending the range. Using product types we
can combine appointment information with information about participants, how long
an appointment takes, dependencies between appointments or other relationships, etc.
This is all quite straightforward, and the result can be as general as the requirements of
a particular application need it to be. This extensibility is a consequence of finding the
right semantics domain for calendars at the beginning of the language design process.

Of course, there are situations when the initial design decision is not general enough
to support a specific language extension. In these cases, we have to resort to non-
compositional changes to the language. This is what we look into next.

3 Note that when pretty printed, the data constructors :&: and :-> are rendered as & and ->.

3.2 Non-Compositional Language Extensions

Suppose we want to extend the calendar application by allowing the distinction between
publicly visible and private (parts of) appointments (we might, for example, want to
hide the fact that we have two parties on two consecutive days). This idea can be easily
extended to more sophisticated forms of visibility or visibility in particular contexts.
From a language perspective we are faced with the need to selectively annotate parts of
an abstract syntax tree. Since this situation is quite common, the approach to take from
a language composition perspective is to define a generic annotation language (that is,
a language schema) and integrate this in some way with the language schema Cal. We
begin by defining a simple language schema for marking terms as private. This could be
easily generalized to a more general annotation language by additionally parameterizing
over the annotation language, but we will pursue this less-general approach for clarity.

data Privacy k a = Hidden k a | Public a

A simple extension of the calendar language with this privacy language is obtained by
composing the language schemas Map and Privacy k (for some language of keys k)
when instantiating Cal. Since language schemas are represented by type constructors in
the metalanguage, language composition is realized by type instantiation.

type Key = String

type Private a = Privacy Key a

type CalP a = Map (Private Date) (Private a)

We also add some special syntax for the map constructor for different combinations of
hidden and visible information. We use * and . in the smart constructors to indicate
the position of the hidden and publicly visible information, respectively. (We omit the
definition of *->* since we don’t need it for our examples.)

(*->.) :: (Key,Date) -> a -> CalP a

(k,d) *->. i = Hidden k d :-> Public i

(.->*) :: Date -> (Key,a) -> CalP a

d .->* (k,i) = Public d :-> Hidden k i

(.->.) :: Date -> a -> CalP a

d .->. i = Public d :-> Public i

We can now hide data and/or appointment information in calendars (for example, to
hide our birthday on New Year’s Eve or that we have a party on December 30th).

week52 = ("pwd",dec 30) *->. "Party" :&: dec 31 .->* ("pwd","Birthday")

When we inspect a partially hidden calendar, the pretty printer definition for Privacy
ensures that hidden parts will be blocked out.

*** -> "Party" & Dec-31 -> ***

So far the privacy extension of calendars was compositional. However the extension
is limited. While the shown definition enables us to selectively hide information about

particular appointments, it does not allow us to hide whole sub-calendars. This could be
important because we might not want to expose the number of appointments of some
part of our calendar to an outside party, but with the current definition we can only hide
the leaves of the syntax tree, and the number of entries remains visible.

Note that simply wrapping Private around CalP doesn’t solve this problem, be-
cause the :&: operation expects arguments of type Map and thus can’t be used to com-
pose private calendars. One could envision the definition of a smart constructor for Map,
a function that inspects the calendar arguments and then propagates the privacy status
to the combined calendar, but this approach will inherently lose the privacy information
of subcalendars and thus doesn’t solve the problem.

A solution to this problem is to generalize the definition of Map to allow for an addi-
tional language schema as a parameter, which is then used to wrap the result of recursive
occurrences of Map in :&: and the arguments of :->. Such a generalization of Map itself
is not compositional, but after the generalization we have regained compositionality,
which allows us to continue to keep the privacy and other micro DSLs separated.

There are different ways to realize this idea. The most obvious approach is to di-
rectly apply the type constructor representing the language schema to every occurrence
of Map.

data Map w a b = w a :-> w b | w (Map w a b) :&: w (Map w a b)

However, this representation might cause a lot of unnecessary overhead, in particular,
in cases when local calendar annotations are only sparingly used. Moreover, from a
more general language maintenance perspective, this approach is often more involved
since one has to change all recursive occurrences. This might cause more work in more
complicated data types, which also complicates the adaptation of values to the new
types. A less intrusive approach is to add an additional constructor to Map which wraps
just one recursive occurrence of Map. This constructor can then be used on demand and
thus introduces the wrapping overhead only when needed.

data Map w a b = w a :-> w b

| Map w a b :&: Map w a b

| Wrap (w (Map w a b))

With this definition we can apply the privacy operations not only to dates and infos, but
also to whole subcalendars.

week1 = Wrap $ Hidden "pwd" (jan 1 .->. "Party" :&: jan 2 .->. "Rest")

Evaluating week52 :&: week1 produces the following output, completely hiding week1.

*** -> "Party" & Dec-31 -> *** & ***

The calendar scenario demonstrates how languages can be developed in small incre-
ments, starting from a small initial semantics core. We have seen that ideally language
extensions are performed in a compositional way, but that this is not always possible. In
the following two sections we will first briefly discuss the notions of language schemas
and language families and then analyze language operators that form the basis of our
approach to grow and combine languages out of small micro DSLs.

4 Language Schemas and Families

Sets of (related) languages can be characterized by a language schema, that is, a param-
eterized data type. We have seen different forms of calendars represented in this way,
and all calendars are elements of the set of languages characterized by the schema Map.

Language schemas facilitate the definition of quite general language operators that
can work on whole classes of languages. As an example, consider the function dom that
computes the domain in the form of a list of values for any language captured by the
language schema Map. In the calendar language dom computes the times at which ap-
pointments are scheduled, whereas in a scheduling or voting application (such as Doo-
dle), where Map may be used to map users to their votes or preferences, dom computes
users that have (already) voted. We can thus see that different concepts in different lan-
guages are realized by the same polymorphic function, which is made possible since the
function is tied to a language schema that can be instantiated in many different ways.

Some language schemas will be the result of instantiation from more general lan-
guage schemas. We have seen several examples of this, such as CalT, which is an
instance of Map, and Cal which is a “nested instance” obtained by instantiating CalD

(which is already an instance) by CalT, which is another instance.
Language schemas capture the idea of fully parameterized, or fully polymorphic,

languages, represented by parametric polymorphism in data types. The generality of
language schemas is a result of the data type polymorphism.

Language families are groups of related languages and are represented by type
classes. Languages are related if they have common operations (methods). An impor-
tant use of type classes in compositional language design is to enforce constraints on
the languages that can be used in a language schema. For example, we might say that
any language w used in the extended Map schema must provide an operation unwrap.

Type classes fit a bit differently into the “language operator” view, as will be ex-
plained below. Type classes reveal an interesting new class of activities in language
design, something that could be called language organization. For example, creating a
type class, say F, does not create a new language directly, but it provides new opportu-
nities for creating new languages. This typically happens when we make a type (that is,
language) L an instance (that is, member) of the type class (that is, language family) F.
In that case all the functions that are derived from the type class become automatically
available for the new instance. In other words, the instantiation has added new syntax
(represented by the derived functions) to the language.

5 Language Operators

In our vision of semantics-driven, compositional language development, languages live
in a space in which they are connected by language operators. This structure allows
a language designer to start a design with some initial language and then traverse the
space by following language operators until a desired language is reached. In this sec-
tion we discuss the notion of language operators, which transform languages into one
another. Specifically, we are interested in language operators for expanding languages
since the semantics-driven approach to language design builds more complex languages
out of simpler ones. Therefore, we will focus on expansion operators and only briefly

First-Order Operations: Adding/Removing . . .

In the language domain In the metalanguage (Haskell)
. . . (Sub)language Data type •〈data L ps = CS〉
. . . Operation Constructor data L ps = CS•C
. . . Operation argument Constructor argument data L ps = CS{C TS•T}

Higher-Order Operation
In the language domain In the metalanguage (Haskell)
Abstraction Type parameterization data L ps⊕a = [a/T]CS
Instantiation Type instantiation ⊕〈type L = S T〉
Inheritance Type class instantiation ⊕〈instance C L where fs〉

Figure 4. Semantics language operators and their representation

mention their inverse cousins for language shrinking.
In the description of language operators we make use of some auxiliary notation to

abbreviate different kinds of changes to a language description. Since, in the context of
this paper, a language description is a Haskell program, that is, a set of Haskell type and
function declarations, we basically need operations to add, remove, and change such
declarations. Thus, we use⊕D and	D to indicate the addition and removal of a declara-
tion D from the language description, respectively. We use • to denote either operation.
We also use these operations in the context of declarations to add or remove parts. For
example, we write data L = CS⊕C to express the addition of a constructor C to the
constructors CS of the data type L. To pick a single element in a list as a context for a
transformation we enclose the element in curly brackets following the list. For example,
the notation CS{C TS⊕T} says that the list of argument types TS of one constructor C in
the list of constructors CS is extended by the type T.

We also make use of the traditional substitution notation [N/O]D for substituting the
new item N for the existing old item O everywhere it occurs in the declaration D, and
we abbreviate [N/O]O by [N/O]. Specifically, we use D for declarations, CS for lists of
constructors, and C for individual constructors. We also employ indexing to access parts
of specific definitions. For example, CSL yields the constructors of the data type L.

We can distinguish between first- and higher-order language operators. A first-order
language operator takes one or more languages and produces a new language. In con-
trast, a higher-order language operator takes other language operators as inputs or pro-
duces them as outputs. Moreover, we can distinguish language maintenance operations
according to the language aspect they affect, that is, whether they affect the semantics
(representation), the syntax, or the organizational structure. We will consider first- and
higher-order operations for these cases separately in the following subsections.

5.1 Semantics Language Operators

The semantics language operations and their representation in the metalanguage are
summarized in Figure 4.

An example of a first-order language operator is the addition of a new operation,
represented in the metalanguage by the addition of a constructor to the data type rep-

resenting the language. Similarly, we can extend an existing language operation by
adding a new type argument to the constructor that represents that operation. We can
also add whole languages by adding new data types. This will often be a preparatory
step to combine the language with others into a bigger language. All of these operations
have natural inverse operations, that is, removing productions/constructors, restricting
operations/constructors, and removing languages/data types.

These six first-order operations form the basis for other language operations. For
example, consider the case when we have two languages L and M with different oper-
ations that are nevertheless describing the same domain. We can merge L and M into
one language, say L, by substituting all occurrences of type M in the constructors of M
by L and then adding those updated constructors to L. Since language M is not needed
anymore after the merge, it can be removed.

data L = CS⊕〈[L/M]CSM〉
	〈data M = CS〉

This is an example of an (ordered) union of two languages (ordered, because one lan-
guage is privileged since its name is kept as a result of the union).

In contrast to first-order language operators that work directly on languages, a
higher-order language operator takes other language operators as inputs or produces
them as outputs. We should note at this point that a language schema is itself a language
operator since it can produce, via instantiation, different languages. With this in mind,
we can discuss higher-order language operations. One example is language abstraction
that takes a language or a language schema and produces a language schema by substi-
tuting a type (or sublanguage) by a parameter. Similarly, language instantiation takes a
language schema and substitutes a language (or language schema) for one of its param-
eters and thus produces a language or a more specific language schema. For example,
CalD is obtained from Map by substituting Date for a.

As with first-order language operations, we can derive more sophisticated higher-
order language operations from abstraction and instantiation. In the following we dis-
cuss one such example, namely language or schema composition. The basic idea behind
schema composition is to instantiate one schema with another. Taking the example from
Section 1 we can instantiate a new language schema as follows.

type CalP a = Map (Private Date) (Private a)

We can then use this specialized schema to instantiate further languages (or schemas).
Finally, we can describe the inheritance of operations from existing languages

through the instantiation of type classes, which makes type classes a powerful weapon,
because in addition to the class members, all functions that are derived from the class
will be made also available for the newly instantiated language. The importance of this
language operation cannot be overemphasized. It can extend the scope and expressive-
ness of a language dramatically with very little effort. We will present an example of
this later in Section 6.1.

5.2 Syntax Language Operators

The syntax language operations and their representation in the metalanguage are rather
straightforward and are summarized in Figure 5. Interestingly, the syntax level offers

First-Order Operations: Adding/Removing . . .

In the language domain In the metalanguage (Haskell)
. . . Operation Function •〈fun f vs = e〉
. . . Operation argument Function argument fun f vs•v = [v/e’]e
. . . Specialized syntax Function instantiation •〈g = f e〉

Figure 5. Syntax language operators and their representation

only first-order language operations. This might be a reason why the semantics-driven
approach is so much more powerful, because it offers higher-order language operations.

Extending a language by introducing new syntax works essentially by adding a
new function definition. We have shown examples of this in Figure 3. In addition, in
DSEL settings, users can extend language syntax on the fly by adding their own function
definitions, as was illustrated in Section 3.1 with the function partyAt.

By extending an existing function with a new parameter we can extend the scope
of existing operations within a language. For example, we could add a new parameter
for minutes to the pm function shown in Figure 3 and thus extend the time language. Of
course, the inverse operations of removing function definitions or removing function
arguments are also available. Moreover, we can add or remove specialized syntax by
adding instances of functions obtained through application of more generic functions to
specific values. The definition of the reusable calendars work and party are examples
of this, again happening on the user level.

5.3 Organizational Language Operators

The adjective “organizational” indicates that the operators in this group are not directly
responsible for extending languages. But that does not mean that they are not useful or
even powerless. Organizational operations are preparatory in nature; they are akin to an
investment that pays dividend later.

For example, the definition of a type class creates a view of a language, called
language family, that other languages can be associated with. The benefit of making a
language a member of a language family (that is, making the data type an instance of
the type class that represents the language family) lies in getting immediate access to all
the functions that are derived from the class, that is, in language terms, the syntax of the
new family member is at once expanded by the whole “family heritage”. An example
of this is making a language a member of Monad, which expands the language’s syntax
through all the functions available in the vast monad libraries.

The definition of a language family itself amounts to the definition of a “language
multiplier” since the syntax provided by the functions derived from the type class can
be repeatedly added to arbitrarily many other languages. Multi-parameter type classes,
functional dependencies, and associated types do not change this view in any substantial
way. Moreover, most of the machinery that is available for defining type classes, such
as subclasses or derived classes, are supporting tools for the definition of language mul-
tipliers. Finally, adding a class constraint to a schema/function restricts the languages
that that schema can be instantiated with. Adding a class constraint might be considered
a higher-order operation since it produces a new (constrained) schema.

6 Semantics-Driven Language Design in Action

The semantics-driven approach to language development is born from our experiences
designing many languages for a wide range of application domains. In this section, we
discuss the design of just three of these languages from the perspective of semantics-
driven design. Each of these languages is described in published papers (one with a
best paper award), and one is in active use by other people. The first two strongly ex-
hibit semantics-driven traits as published, while the third language is a more traditional
syntax-directed design which we have redesigned here in a semantics-driven way.

It is important to emphasize, however, that the goal of this work is not to provide a
fool-proof methodology for language engineering. Rather, it is to provide a strategy for
language design and a toolbox for implementing this strategy. This will be evident in the
following discussion, where a semantics-driven approach does not lead inevitably to an
objectively best language, but rather informs design decisions and guides the inherently
subjective design process.

6.1 Probabilistic Functional Programming

The first language we consider is a Haskell DSEL for probabilistic modeling, called
PFP (probabilistic functional programming) [1]. This language is presented with only
minor changes from the published version, made to simplify the discussion.

We begin by considering what a probabilistic model represents at a fundamental
level. One obvious answer is a distribution of possible outcomes. By limiting the focus
in PFP to discrete probability distributions, we can capture this meaning as a mapping
from outcomes to the probabilities that those outcomes occur. We thus begin the design
of PFP by partially instantiating the Map language schema from Section 3, creating a
new language schema Dist for representing probability distributions.

type Dist a = Map a Float

Although we have fixed the representation of probabilities to the language of floating
point numbers, this is not the only possibility; for example, probabilities might instead
be represented as rational numbers.

We can now instantiate the Dist schema with different outcome languages to pro-
duce different distribution languages. For example, given the following simple language
for coin flip outcomes, Dist Coin is the language of distributions of a single coin flip.

data Coin = H | T

Using this we can define distributions modeling both fair and unfair coins.

fair, unfair :: Dist Coin

fair = H :-> 0.5 :&: T :-> 0.5

unfair = H :-> 0.8 :&: T :-> 0.2

On top of this tiny semantic core, PFP provides a large suite of syntactic extensions—
operations for extending and manipulating distributions, implemented as functions.
Probability distributions have several non-syntactic constraints related to probabilistic

axioms. For example, probabilities in a distribution must sum to one and each be be-
tween zero and one. Operations must therefore be careful to preserve these properties.

Below we demonstrate a simple syntactic extension of the language with an opera-
tion for defining uniform distributions.

uniform :: [a] -> Dist a

uniform as = foldr1 (:&:) [a :-> (1/n) | a <- as]

where n = fromIntegral (length as)

Using this, we could instead define the fair coin above as uniform [H,T], or define the
distribution of a die roll as uniform [1..6]. In the definition of uniform, we manu-
ally ensure that the probabilistic axioms are preserved and this is not too onerous. For
more interesting operations that involve the composition of multiple distributions, this
becomes more complicated and thus error-prone. Fortunately, organizational language
operators provide a more general solution to this problem.

By observing that probability distributions form a monad, we can carefully define
one composition operator (monadic bind) that preserves the axioms, along with an op-
erator for building trivial distributions (monadic return), in order to bring distributions
into the monad language family. This gives us immediate access to a huge number of
monadic operations for composing and manipulating probability distributions that auto-
matically preserve the probabilistic axioms by virtue of being defined in terms of return
and bind. Interestingly, as a class of type constructors, monads are actually a family of
language schemas. We instantiate the monad schema family for Dist as follows, where
toList is a function that transforms a map, Map a b, into an association list, [(a,b)].4

instance Monad Dist where

return a = a :-> 1

d >>= f = foldr1 (:&:) [b :-> (p*q) | (a,p) <- toList d

, (b,q) <- toList (f a)]

An interesting feature of the monad language family, when using Haskell as a meta-
language, is that instantiating it also extends the concrete syntax of our language by
allowing us to use Haskell’s do-notation.

Now we can, for example, write the Cartesian product of two distributions by
reusing the liftM2 composition operator from Haskell’s standard libraries.

prod :: Dist a -> Dist b -> Dist (a,b)

prod = liftM2 (\a b -> (a,b))

And we can confirm that the probabilistic axioms are preserved by examining the prod-
uct distribution of our fair and unfair coins from above.

> prod fair unfair

(H,H) -> 0.4 & (H,T) -> 0.1 & (T,H) -> 0.4 & (T,T) -> 0.1

This demonstrates the power of language families for enabling language reuse and pro-
moting structured language extension.

4 Note that the following is not strictly Haskell code since we cannot instantiate a type class with
a partially applied type synonym. In fact, Dist is a newtype, but wrapping and unwrapping
the nested Map value uninterestingly obfuscates the code, so we ignore this detail.

However, not all operations on probability distributions can be implemented in
terms of bind. One such example is computing conditional probability distributions.
Given a distribution d and a predicate p on outcomes in d, a conditional distribution d’

is the distribution of outcomes in d given that p is true. In other words, p acts as a filter
on d, and the probabilities are scaled in d’ to preserve the probabilistic axioms. We ex-
tend the syntax of PFP with a filter operation for computing conditional distributions,
described by the following type definition.

(|||) :: Dist a -> (a -> Bool) -> Dist a

To demonstrate the use of this operator, we also define the following simple predicate
on tuples, which returns true if either element in the tuple equals the parameter.

oneIs :: Eq a => a -> (a,a) -> Bool

oneIs a (x,y) = a == x || a == y

Now we can, for example, compute the distribution of two fair coin tosses, given that
one of the tosses comes up heads.

> prod fair fair ||| oneIs H

(H,H) -> 0.33 & (H,T) -> 0.33 & (T,H) -> 0.33

This discussion has barely scratched the surface of PFP. In addition to many more
syntactic extensions (operations on distributions), PFP provides semantic extensions
for describing sequences of probabilistic state transitions, running probabilistic simula-
tions, and transforming distributions into random (impure) events. The high extensibil-
ity of the language, both syntactically and semantically, is a testament to the benefits of
semantics-driven design and an emphasis on language composition. This is also demon-
strated in the next subsection, where we directly reuse PFP as a sublanguage in a larger
language for explaining probabilistic reasoning.

6.2 Explaining Probabilistic Reasoning

The language described in this subsection focuses on explaining problems that re-
quire probabilistic reasoning [2, 3]. This language has also been simplified from pre-
viously published versions, both for presentation purposes, and to better demonstrate
the semantics-driven approach.

We motivate this language with the following riddle: “Given that a family with
two children has a boy, what is the probability that the other child is a girl?” Many
reply that the probability is one-half, but in fact, it is two-thirds. This solution follows
directly from the conditional probability example above. If a birth corresponds to a fair
coin flip where heads is a boy and tails is a girl, then we see in the resulting conditional
distribution that two out of the three of the remaining outcomes have a girl, and their
probabilities sum to two-thirds.

Following the semantics-driven approach, the first step in designing an explanation
language is to identify just what an explanation is, on a fundamental level. It turns
out that this is an active area of research and hotly-debated topic by philosophers [7].
Ultimately, we opted for a simple and pragmatic explanation representation based on a
story-telling metaphor, where an explanation is a sequence of steps that guide the reader

from some initial state to the explanandum (that is, the thing that is to be explained).
An initial attempt to represent this semantics in Haskell follows, where the sublan-

guages s and a represent the current state at a step and the annotation describing that
step, respectively.

data Step s a = Step s a

type Expl s a = [Step s a]

For explaining probabilistic reasoning problems, we can instantiate these schemas with
a probability distribution for s, and a simple string describing the step for a.

type ProbExpl b = Expl (Dist b) String

The state of each (non-initial) step in an explanation is derived from the previous step.
Rather than encode this relationship in each explanation-building operation, we instead
reuse the Step schema to extend the semantics with a notion of a story. A story is a
sequence of annotated steps, where each step is a transformation from the state produced
by the previous step to a new state. We can then instantiate a story into an explanation
by applying it to an initial state.

type Story s a = [Step (s -> s) a]

explain :: Story s a -> s -> Expl s a

As an example, we can define the story in the above riddle by a sequence of three steps:
add the first child to the distribution, add the second child to the distribution, filter the
distribution to include only those families with a boy. We can then instantiate this story
with the empty distribution to produce an explanation—essentially a derivation of the
conditional distribution from the previous subsection.

However, this explanation is somewhat inadequate since it requires the reader to
still identify which outcomes in the final distribution are relevant and add up their prob-
abilities. As a solution, we extend the semantics of probabilistic reasoning explanations
by wrapping distributions in a construct that controls how they are viewed, allowing
us to group together those cases that correspond to the solution of the riddle. The lan-
guage schema G describes optionally grouped distributions. If a distribution is grouped,
a partitioning function maps each element into a group number.

data G a = Grouped (a -> Int) (Dist a) | Flat (Dist a)

type ProbExplG b = Expl (G b) String

This extension is similar to the addition of privacy to the calendar language in Section 3,
in that we extend the semantics by wrapping an existing sublanguage in a language
schema that gives us additional control over that language. Finally, we add a fourth step
to our story that groups results into two cases depending on whether the other child is a
girl or boy, so the riddle’s solution can be seen directly in the final grouped distribution.

In addition to several syntactic extensions for creating explanations, in [2] we also
extend the semantics to include story and explanation branching, for example, to repre-
sent decision points. In [3] we provide several operations for automatically transforming
explanations into alternative, equivalent explanations (which might then help a reader
who does not understand the initial explanation). This extension highlights a strength of
the semantics-driven approach. By focusing on a simple, fundamental representation of
explanations these transformations were easy to identify, while they would have been
much more difficult to extract from the (quite complex) syntax of explanation creation.

6.3 Choice Calculus

The final language we will consider is the choice calculus, a DSL for representing
variation in software and other structured artifacts [4]. As published, this is a more
traditional language, with a clear separation of syntax and semantics connected by a se-
mantics function. Although the initial design was strongly motivated by a consideration
of the semantics, we present a significantly re-designed version of the language here,
using a more purely semantics-driven approach.

The essence of a variational artifact is once again a mapping. The range of this map-
ping is the set of plain artifacts encoded in the variational artifact (that is, its variants),
and the domain is the set of decisions that produce those variants. We instantiate the Map

schema with a language for decisions, defined below, to produce a language schema V

(which stands for “variational”) for the semantics of choice calculus expressions.

type V a = Map Decision a

For the discussion here, we will use the lambda calculus as our artifact language, rep-
resented by the following data type.

data LC = Var Name | Abs Name LC | App LC LC

type VLC = V LC

We read the V schema as variational, so VLC is the variational lambda calculus.
The best representation for decisions is not immediately obvious. One option is to

employ a “tagging” approach, where each alternative in a choice (a variation point in the
artifact) is labeled with a tag. A decision is then just a list of tags, one selected from each
choice. This approach is appealingly simple, but turns out to be too unstructured. As a
solution, we introduce in [4] locally scoped dimensions, which bind and synchronize
related choices. For example, a dimension OS might include the tags Linux, Mac, and
Windows; every choice in the OS dimension must then also contain three alternatives,
and the selection of alternatives from these choices would be synchronized.

Therefore, we define decisions to be a list of dimension-tag pairs, representing the
tag chosen from each dimension in the variational artifact.

type Dim = String

type Tag = String

type Decision = [(Dim,Tag)]

To implement locally scoped dimensions, we will need to “lift” the semantics to param-
eterize it with a notion of context. A context is propagated downward from selections in
dimensions, so we represent it as a list associating dimensions with integers, where the
integer represents the alternative to select from each choice bound by that dimension.

type Context = [(Dim,Int)]

We express the lifted semantics below and provide a function to “unlift” the semantics
of a top-level variation artifact by applying an empty context.

type V’ a = Context -> V a

type VLC’ = V’ LC

unlift :: V’ a -> V a

unlift = ($ [])

Now we can define the syntax of the choice calculus in terms of this lifted semantics.
We must define two operations, for declaring dimensions and introducing choices. The
dimension declaration operation takes as arguments a dimension name, its list of tags,
and the scope of the declaration. As before, toList transforms a Map into an association
list; we introduce fromList to perform the inverse operation.

dim :: Dim -> [Tag] -> V’ a -> V’ a

dim d ts f c = fromList [((d,t):qs,e’) | (t,i) <- zip ts [0..]

, (qs,e’) <- toList (f ((d,i):c))]

The semantics of this operation is computed by selecting each tag independently in the
scope (by prepending (d,i) to the context, where the selected tag is the ith tag in ts)
and prepending that selection to the decision of the result.

The operation for introducing choices is much simpler. It accepts its binding dimen-
sion name and a list of alternatives as arguments, looks up its dimension in its associated
context, and returns the ith alternative if an entry in the context is found.

chc :: Dim -> [V’ a] -> V’ a

chc d as c = case lookup d c of

Just i -> (as !! i) c

Nothing -> error ("Unbound choice: " ++ d)

We also extend the syntax with smart constructors for variational lambda calculus ex-
pressions. Their implementations are omitted for lack of space, but each propagates the
corresponding LC constructor over the argument semantics. For app, the result is a prod-
uct of the two mappings, where entries are joined by concatenating the decisions and
composing the resulting lambda calculus expressions with the App constructor.

var :: Name -> VLC’

abs :: Name -> VLC’ -> VLC’

app :: VLC’ -> VLC’ -> VLC’

Finally, we provide an example of the language in action below. Note that we pretty
print the dimension-qualified tag ("D","t") as D.t for readability.

> unlift $ dim "A" ["t","u"]

$ app (chc "A" [var "f", var "g"])

(chc "A" [var "x", dim "B" ["v","w"]

$ chc "B" [var "y", var "z"]])

[A.t] -> f x & [A.u,B.v] -> g y & [A.u,B.w] -> g z

Observe that the two choices in the A dimension are synchronized and that a selection
in dimension B is only required if we select its alternative by selecting A.u.

This example demonstrates the flexibility of the semantics-driven approach by
showing that it can relatively easily accommodate concepts like scoping that seem at
first to be purely syntactic in nature. In particular, the strategy of lifting a semantics
language into a functional representation is potentially very powerful, although a full
exploration of this idea is left to future work.

7 Related Work

There is a vast literature on language design that approaches the problem from a syn-
tactic point of view; Klint et al. provide a comprehensive overview [12]. Also, the re-
cent flurry of work on language workbenches—essentially integrated development en-
vironments that support the creation of DSLs, takes a predominantly syntax-focused
approach to language design; for overviews see [14, 17, 20]. In contrast, the approach
described in this paper is characterized by its focus on semantics.

Paul Hudak was among the first to advocate DSELs [8, 9] (also called “internal
DSLs” [6]) and the compositional approach to developing DSLs. This work has inspired
many to develop DSELs for all kinds of application areas (some impressive examples
can be found in this collection [10]). Our choice of Haskell as a metalanguage raises the
question of how semantics-driven DSL design relates to DSELs. The answer is that the
two concepts are quite independent. For example, one might define a DSEL in Haskell
by first defining the abstract syntax of the language as a data type, which is decidedly
syntax-driven. Similarly, the semantics-driven approach can be equally well applied
to non-embedded (external) DSLs. The creation of combinator libraries (for example,
in [8]) is a specific strategy for implementing DSELs in functional metalanguages that
most closely resembles the semantics-driven approach. Although the design of a com-
binator library will not necessarily incorporate all aspects of the semantics-driven ap-
proach, combinator libraries can nonetheless be viewed as a specific realization of the
semantics-driven approach in languages like Haskell.

The use of Haskell for language design and development has also been subject to re-
search. Tim Sheard provides an overview of basic techniques and representations [18].
One particular problem that has been addressed repeatedly is the composition of lan-
guages (or language fragments). One proposal is to abstract the recursive structure of
data types in a separate definition and use a fixpoint combinator on data types to tie to-
gether several languages into one mutual recursive definition [19]. Another approach is
to systematically employ monad transformers to gradually extend languages by selected
features [13]. Both of these proposals are quite creative and effective. However, they
embrace the syntax-oriented view of languages. This is not a bad thing; on the contrary,
as far as they go, these approaches provide also effective means to compose parsers for
the built languages whereas the semantics-driven approach and internal DSLs have little
control over syntax. On the other hand, the opportunities for language composition are
rather limited when compared with the semantics-driven approach.

8 Conclusions

In this paper, we have promoted a semantics-driven approach to language development
and identified a set of language operators that support the incremental extension and
composition of languages in order to realize this approach. Our approach is based on a
clear separation of syntax and semantics into different concepts of the chosen metalan-
guage Haskell, namely functions and data types, respectively.

We have illustrated our approach with several examples, including the design of
non-toy languages that have been published and are in use, which demonstrates that
semantics-driven language design actually works in practice.

The advantages of our approach are particularly relevant for language prototyping.
And while semantics-driven language design can in some cases replace the traditional
syntax-focused approach, it can also work as a supplement, to be used as tool to explore
the design space before one commits to a specific design that is then implemented using
the syntactic approach.

References
1. M. Erwig and S. Kollmansberger. Probabilistic Functional Programming in Haskell. Journal

of Functional Programming, 16(1):21–34, 2006.
2. M. Erwig and E. Walkingshaw. A DSL for Explaining Probabilistic Reasoning. In IFIP

Working Conference on Domain-Specific Languages, LNCS 5658, pages 335–359, 2009.
3. M. Erwig and E. Walkingshaw. Visual Explanations of Probabilistic Reasoning. In IEEE Int.

Symp. on Visual Languages and Human-Centric Computing, pages 23–27, 2009.
4. M. Erwig and E. Walkingshaw. The Choice Calculus: A Representation for Software Varia-

tion. ACM Transactions on Software Engineering and Methodology, 2011. To appear.
5. M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. MIT

Press, Cambridge, MA, 2009.
6. M. Fowler. Domain-Specific Languages. Addison-Wesley Professional, 2010.
7. J. Halpern and J. Pearl. Causes and Explanations: A Structural-Model Approach, Part I:

Causes. British Journal of Philosophy of Science, 56(4):843–887, 2005.
8. P. Hudak. Modular Domain Specific Languages and Tools. In IEEE 5th Int. Conf. on Soft-

ware Reuse, pages 134–142, 1998.
9. Paul Hudak. Building Domain-Specific Embedded Languages. ACM Computing Surveys,

28(4es):196–196, 1996.
10. J. Gibbons and O. de Moor, editor. The Fun of Programming. Palgrave MacMillan, 2003.
11. L.C.L. Kats, E. Visser, and G. Wachsmuth. Pure and Declarative Syntax Definition: Par-

adise Lost and Regained. In ACM Int. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, pages 918–932, 2010.

12. Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an Engineering Discipline for Gram-
marware. ACM Trans. Softw. Eng. Methodol., 14:331–380, July 2005.

13. S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular Interpreters. In 22nd
ACM Symp. on Principles of Programming Languages, pages 333–343, 1995.

14. B. Merkle. Textual Modeling Tools: Overview and Comparison of Language Workbenches.
In ACM Int. Conf. on Object-Oriented Programming, Systems, Languages, and Applications,
pages 139–148, 2010.

15. J. C. Mitchell. Concepts in Programming Languages. Cambridge University Press, Cam-
bridge, UK, 2003.

16. S. L. Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, Cambridge, UK, 2003.

17. M. Pfeiffer and J. Pichler. A Comparison of Tool Support for Textual Domain-Specific
Languages. In OOPSLA Workshop on Domain-Specific Modeling, pages 1–7, 2008.

18. T. Sheard. Accomplishments and Research Challenges in Meta-Programming. In 2nd Int.
Workshop on Semantics, Applications, and Implementation of Program Generation, LNCS
2196, pages 2–44, 2001.

19. T. Sheard and E. Pasalic. Two-Level Types and Parameterized Modules. Journal of Func-
tional Programming, 14(5):547–587, 2004.

20. M. Völter and E. Visser. Language Extension and Composition With Language Work-
benches. In ACM Int. Conf. on Object-Oriented Programming, Systems, Languages, and
Applications, pages 301–304, 2010.

