
Sharing reasoning about faults in spreadsheets: An empirical study

Joseph Lawrance, Robin Abraham, Margaret Burnett, Martin Erwig
Oregon State University
Corvallis, Oregon 97331

{lawrance,abraharo,burnett,erwig}@eecs.oregonstate.edu

Abstract
Although researchers have developed several ways to

reason about the location of faults in spreadsheets, no sin-
gle form of reasoning is without limitations. Multiple types
of errors can appear in spreadsheets, and various fault lo-
calization techniques differ in the kinds of errors that they
are effective in locating. In this paper, we report empirical
results from an emerging system that attempts to improve
fault localization for end-user programmers by sharing the
results of the reasoning systems found in WYSIWYT and
UCheck. By evaluating the visual feedback from each fault
localization system, we shed light on where these different
forms of reasoning and combinations of them complement
— and contradict — one another, and which heuristics can
be used to generate the best advice from a combination of
these systems.

1. Introduction

Spreadsheet systems like Excel are among the most
widely used programming systems, yet up to 90% or more
of spreadsheets contain faults [14, 16]. Because spread-
sheets are often used for important tasks and decisions,
faults in them have been tied to costly errors.1

Researchers have been working to address this problem
by developing systems to locate faults within spreadsheets
and by evaluating the effectiveness of such systems through
empirical studies of end users [1, 10, 19, 21].

Several spreadsheet fault localization systems have
emerged from the work in this area, with each system spe-
cializing in locating particular categories of faults. For ex-
ample, UCheck finds faults relating to the spatial structure
of the spreadsheet, whereas WYSIWYT2 relies on data-
flow relationships within a spreadsheet and on users’ de-
bugging decisions to locate faults. Both systems, described
later in this paper, shade formula cells considered to have a
fault.

Empirical research into spreadsheet fault localization
has shown consistently that end users who debug spread-
sheets follow the advice of fault localization systems (e.g.,

1http://www.eusprig.org/stories.htm
2What You See Is What You Test with fault localization

[21]). That is, end users consistently debug the darkest-
shaded cells in the spreadsheet. Thus, it is important to
ensure that the darkest-shaded cells correspond as closely
as possible to where the faults actually appear.

To evaluate how closely this visual fault localization
feedback corresponds to where faults appear in a spread-
sheet, researchers have established a quantitative measure
of visual effectiveness [15, 21]. We score fault localization
feedback from zero to five (unshaded to darkest, respec-
tively). To compute visual effectiveness, we subtract the
average score of cells with correct formulas from the aver-
age score of cells with incorrect formulas. Therefore, fault
localization systems that yield higher visual effectiveness
scores are more likely to locate faults effectively and lead
users toward the actual faults within a spreadsheet.

As Ruthruff et al. [21] showed, any fault localization ap-
proach that includes some form of reporting or feedback to
a human involves two factors, an information base and a
mapping. An information base refers to the type of infor-
mation used to locate faults. Mappings transform informa-
tion bases into fault localization feedback.

Although spreadsheets are essentially a grid of cells,
various information bases can be extracted out of spread-
sheets, and each information base can highlight different
categories of faults. For example, cells often contain ex-
plicit relationships to other cells, in the form of cell ref-
erences, from which data-flow graphs emerge; these data-
flow graphs can be used to identify reference faults3 [8].
Furthermore, the juxtaposition of row and column head-
ers against cells containing data within spreadsheets typi-
cally implies unit information about cells. Unit inference
can be used to identify certain types of reference, range,
and omission faults [2]. Other information bases supplied
by end users can assist fault localization. For example,
the values of cells are often expected to fall within cer-
tain intervals; by asserting intervals on cells, cells whose
values fall outside their intervals can be located [7, 6, 8].
Adding assertions helped significantly with non-reference
faults, suggesting that the addition of assertions into the en-
vironment fills a need not met effectively by the data-flow

3One classification scheme we have found to be useful in our previous
research involves two fault types: reference faults, which are faults of
incorrect or missing references, and non-reference faults, which are all
other faults.

testing methodology alone [8]. Furthermore, in several do-
mains, particularly finance, it is often the case that two cells
within a spreadsheet must add up to the same value; assert-
ing relationships such as equality among groups of cells
can be used to audit spreadsheets. Our emerging prototype
is based on the assumption that reasoning about faults in
only one way is insufficient to locate several different cate-
gories of faults effectively.

In this paper, we modeled end-user testing and de-
bugging behavior probabilistically based on what end
users actually did in previous studies. We evaluated an
emerging prototype which combines the fault localization
feedback from two reasoning mechanisms: UCheck and
WYSIWYT. Our overall research goal was to add insights
to the following question: what heuristics are most effec-
tive in selecting and combining feedback, and what types
of faults do the heuristics find compared to WYSIWYT and
UCheck?

2. Related Work

Recent research has focused on assisting end-user de-
buggers by communicating with the user through visual
devices. Woodstein [23] is a software agent that visu-
ally assists users in debugging e-commerce errors. Ko
and Myers present the Whyline [12], an “interrogative de-
bugging” device for the event-based programming envi-
ronment Alice. Other research supports program compre-
hension and debugging by end users in the spreadsheet
paradigm. For example, Igarashi et al. [11] present de-
vices to aid spreadsheet users in data-flow visualization and
editing tasks. S2 [22] provides a visual auditing feature in
Excel: similar groups of cells are recognized and shaded
based upon formula similarity, and are then connected with
arrows to show data-flow. This technique builds upon the
Arrow Tool, a data-flow visualization device proposed by
Davis [9]. Ayalew and Mittermeir [5] present a method of
fault tracing based on interval testing and slicing, which is
similar to our own work on assertions to help users auto-
matically guard against faults [8]. Some recent research
automatically detects certain kinds of errors, such as errors
in spreadsheet units [1] and types [4]. Although researchers
have studied humans debugging empirically [15, 20], to our
knowledge, none have studied how well shared reasoning
systems interacts with human choices and mistakes.

3. Background: Debugging with WYSIWYT

The fault localization system found in WYSIWYT relies
on users’ judgments to locate formulas containing faults. In
the course of developing a spreadsheet, users can commu-
nicate a judgment that a cell’s value is correct with a check-
mark (X), or that a cell’s value is incorrect with an X-mark
(7), as shown in Figure 1. Checkmarks contribute to the
“testedness” of the cells according to an adequacy criterion

detailed in [17], and a cell’s testedness is reflected in border
colors along a red-to-blue continuum (in print: light gray
to black). The system combines the user’s X-marks and
7-marks with the dependencies in the cells’ formulas to es-
timate likelihoods of the fault (erroneous formula) being lo-
cated in various cells. It colors these cells’ interiors in light-
to-dark amber (gray) to reflect these likelihoods [19]. Thus,
the WYSIWYT fault localization and testing methodology
maintains the interactive nature of spreadsheet systems by
allowing users to incrementally test spreadsheets as they
develop them [18, 17].

For example, in the Gradebook spreadsheet shown in
Figure 1, the user checked off cells B6:E6 and F4:F5, be-
cause the user judged these cells’ values as correct, whereas
the user placed an X-mark on cells F3, J3, and I4, because
the user judged these cells’ values as incorrect. In response,
WYSIWYT shaded the interior of cell F3 the darkest, and
several more cells with lighter shades. These cell shadings
indicate to the user where to look for incorrect formulas.

4. Background: Unit Errors in Spreadsheets

Users often enter headers within their spreadsheets to
label the data. For example, in the spreadsheet shown in
Figure 2, the header Quiz 1 in B2 indicates that the data in
column B is somehow related to “Quiz 1”, which is in turn
a “Score” (as indicated by the header Score in B1). Headers
serve as documentation to help the user remember what the
data means.

In the context of the spreadsheet shown in Figure 2,
the number 67 in cell B3 is not simply an integer. The
row (Amanda) and column (Quiz 1) headers tell us that
the cell contains the score Amanda got on the first quiz
(presumably in some course). We call headers in their
function as labels units. Amanda, in turn, has Students
as its header, and Quiz 1 in B2 has Scores as its header.
These header hierarchies give rise to what we call depen-
dent units, which in this case are Students[Amanda] and
Scores[Quiz 1]. Since both the row and column headers
apply at the same time, the inferred dependent units are
combined using the and operator (&) to give the and unit
Students[Amanda]&Scores[Quiz 1] for the number 67 in
B3. This inferred unit is treated as an implicit type dec-
laration for the cell B3. The units for the other cells that
contain data values can be inferred along similar lines.

The units obtained for the data cells are then used
to infer the units for formula cells. For example, cell
B6 contains the formula AVERAGE(B3,B4,B5). Its unit
is inferred as a combination of the units of the cells
participating in the operation. All three cells have
Scores[Quiz 1] as a common factor from the column-level
header. The components from the row-level headers
are Students[Amanda] for B3, Students[Andy] for B4,
and Students[Christina] for B5. Since the values in
the three cells are added together, the units are com-

Figure 1. Users’ judgments and fault localization feedback using WYSIWYT

bined using the or operator (|) to give the or unit
Students[Amanda]|Students[Andy]|Students[Christina].
The common component can be factored out to yield the
unit

Students[Amanda|Andy|Christina].

This unit can be combined with the column-level compo-
nent using the & operator to give

Scores[Quiz 1]&Students[Amanda|Andy|Christina]

as the unit for B6.
Unit expressions can be combined and transformed ac-

cording to the formal rule system detailed in [10]. This rule
system allows identification of a class of unit expressions
that are considered to be well formed. Cell formulas whose
derived unit expressions cannot be transformed into well
formed units are considered erroneous, and the system re-
ports unit errors for such cells. In the current version of the
system, cells that have unit errors are shaded orange. Such
errors are called local unit errors. The cells that have for-
mulas that reference cells with unit errors get shaded yel-
low. Such errors are called propagation unit errors. This
fault localization feedback from UCheck is aimed at direct-
ing the user’s attention to the cells that have primary unit
errors since correcting these also removes the propagation
unit errors (at least in cases they do not contain their own
unit errors).

Consider the following three examples of the errors we
seeded in the spreadsheet shown in Figure 2.

The formula in F3 is IF(B3<C3,C4,B3). The in-
ferred unit is Scores[Quiz 2]&Students[Andy] for C4 (if
the condition evaluates to True), and the inferred unit is
Scores[Quiz 1]&Students[Amanda] for B3 (if the condition
evaluates to False). Since the output of the formula could
be one or the other, the two units are combined using the
or operator (|).4 UCheck shades the cell F3 orange since
the resulting unit is not well formed. Cells G3 and F6 have

4The current version of UCheck does not check the units of the
operands of the logical comparison for compatibility. That is, in this in-
stance, UCheck does not check the consistency on the units of B3 and C3
for compatibility on < operation.

references to F3, and G6 has a reference to G3. There-
fore they are all shaded yellow since the unit error from F3
propagates to cells F6, G3, and G6.

Cells G3 and G5 have the formulas (D3+E3+F3)/3 and
(D5+E5+F5)/3, respectively. G4, on the other hand, has the
formula (D4+E4)/3. While this formula is in violation of
the specifications for the spreadsheet (since the cell is sup-
posed to compute the average of three scores for the stu-
dent), it is not a unit error. The unit error shows up in G6
whose formula computes the average across the cells G3,
G4, and G5 since the inferred unit of G4 (which is missing
the component from F4) is incompatible with those of G3
and G5. Cell G6 is shaded yellow in Figure 2 because it
also has the propagation unit error from G2. Once the error
in F3 is corrected, G6 would only have its local unit error
and hence would be shaded orange.

The formula in I3 is
IF(AND(H3<1,B3<C3,C3<D3,D3<E3),G4+10,G5).
The inferred unit for G4 can be reduced to
Scores[Quiz 3|Quiz 4]&Students[Andy].
Similarly, the inferred unit for G5 can be reduced to
Scores[Quiz 1|Quiz 2|Quiz 3|Quiz 4]&Students[Christina].
These two units are incompatible under the | operation
since they are dissimilar on both the Scores and Students
components.

Thus, UCheck is a type system that uses the header in-
formation entered by the user and assigns units to the val-
ues and formulas at a finer level of granularity than the
types like Integer and String in traditional programming
languages. Instead of detecting and reporting errors the
same way as traditional type systems do, UCheck uses the
vocabulary of “types” from the user’s domain by employ-
ing the header information from the spreadsheet the user is
working on.

5. A Combined Reasoning System

Our combined reasoning system relies on the results of
the independent reasoning systems found in UCheck and
in WYSIWYT. As discussed in Sections 3 and 4, the two

Figure 2. Unit errors in the gradebook spreadsheet as reported by UCheck.

systems base their reasoning on different information bases
derived from spreadsheets. While both systems make use
of data-flow relationships to locate faults, UCheck ana-
lyzes the spatial juxtaposition of row and column headers
against data cells, whereas WYSIWYT propagates users’
judgments to locate faults.

The architecture of the combined system is shown in
Figure 3. In steps 1 and 2, user interactions and Excel
spreadsheet information are sent to the reasoning database.
In step 3, the spreadsheet cells and users’ marks are sent
to individual fault localization systems. UCheck carries
out unit checking based on the spreadsheet structure and
WYSIWYT calculates fault likelihood based on users’
judgments. In step 5, the reasoning database collects the
results from the two systems. Finally, in steps 6 and 7, the
fault localization information for the spreadsheet is com-
puted based on combined results, and the visual feedback in
terms of cell shadings is displayed on the spreadsheet. Note
that the design depicted in Figure 3 suggests the possibility
of including additional reasoning systems in the future; for
now, only the reasoning from WYSIWYT and UCheck is
used.

UCheck

Reasoning
database

Fault localization Cells, marks

Cells, marks Cells

...WYSIWYT

User

Excel

1

2

3 4
Reasoning

5

6

7 Cell edits, judgmentsVisual feedback

Figure 3. Integrating WYSIWYT and UCheck

In the emerging prototype, we have devised three ways
to combine the reasoning from each fault localization sys-

tem:

• Combo Max: return the darkest cell shading received
from each fault localization system.

• Combo Average: return the “average” of the cell shad-
ings received from each fault localization system.

• Combo Min: return the lightest cell shading received
from each fault localization system.

6. Experiment

Using our emerging prototype as a testbed, we designed
an experiment to evaluate the following research questions:

• RQ1: What heuristics are most effective in combining
feedback?

• RQ2: What types of faults do the heuristics find com-
pared to WYSIWYT or UCheck?

6.1. Design

To investigate our research questions, we evaluated
our emerging prototype by simulating users who debug
spreadsheets. To simulate users, we modeled user behavior
based on results from prior empirical work. In these
studies, users marked 85% of formula cells on average
when testing and debugging spreadsheets, often placing
X-marks on cells, and rarely placing 7-marks on cells.
Of the cells that users marked, users in our earlier studies
made mistakes according to the probabilities given in
Table 1, so for our study, we simulated user behavior
based on these probabilities. The bold numbers in Table 1
highlight false positive (X on incorrect value) and false
negative (7 on correct value) oracle mistakes. Note that
even when the value of a cell was incorrect, users were
more likely to place a X-mark on that cell (false positive)
than an 7-mark. On the other hand, when the value of a
cell was correct, users were unlikely to place an 7-mark
on that cell (false negative). Depending on the percentage
of cells with incorrect values, users made incorrect testing
decisions between 5% to 20% of the time, although the
low proability of false negatives means that users’ negative

judgments were more accurate, overall [15, 20, 21].

Table 1. Probabilistic User Model

Value Formula X 7
Incorrect Incorrect 74% “dumb” 26% correct

Correct 75% “smart” 25% correct
Correct Incorrect 50% correct 50% “smart”

Correct 99% correct 1% “dumb”

6.2. Materials

The experiment utilized a spreadsheet similar to those
that appear in Figures 1 and 2. The spreadsheet was derived
from an Excel spreadsheet of an instructor.

6.3. Dependent Variable and Measures

The visual effectiveness of the feedback provided by the
shading scheme was computed as it was in [15]. That is, we
defined visual effectiveness according to the following for-
mula, where Correct and Faulty are the set of formula cells
with correct formulas and incorrect formulas, respectively,
and score(c) is the fault localization feedback for cell c:

V E = ∑
c∈Faulty

score(c)
|Faulty|

− ∑
c∈Correct

score(c)
|Correct|

6.4. Evaluation Testbed

Figure 4 shows the design of the evaluation testbed and
the sequential flow of information among the components.
In previous work, we have developed a suite of mutation
operators for spreadsheet formulas [3]. The Driver took
the error-free grade spreadsheet as input and generated
mutant spreadsheets seeded with one faulty formula. For
each mutant spreadsheet, the Aggregator sent the spread-
sheet information to the reasoning engines, collected the
fault localization feedback, and inserted records into the
reasoning database. While interacting with WYSIWYT,
the Aggregator also modeled user behavior based on the
empirical data we have collected from previous studies.
We computed the visual effectiveness score over the entire
consistency-checking and/or testing cycle based on simu-
lated user behavior for each mutant spreadsheet. For each
cell in each mutant spreadsheet, the Aggregator output:

1. The mutation type
2. The oracle judgment
3. Feedback from each reasoning engine
4. Combined fault localization feedback
5. VE score for each type of fault localization feedback

Driver Aggregator

Gradebook

Spreadsheet Reasoning Database

Mutants Insert

Read

Fault
Feedback

Fault
Feedback

Cells,
user actions

Cells

WYSIWYT UCheck

Figure 4. Evaluation testbed architecture

6.5. Procedure

We modeled 932 mutated versions of the Gradebook
spreadsheet and sent the mutated spreadsheets to the
emerging prototype. Each mutated Gradebook spread-
sheet was seeded with a single mutated formula by ap-
plying a mutation operator from the list [3] shown in Ta-
ble 2. Following established software engineering tradi-
tion, we seeded each spreadsheet with a single fault to keep
the relationship between the fault being localized and the
feedback unambiguous, facilitating our data analysis. The
mutations in Table 2 provide coverage of the categories in
Panko’s classification system [13]. Under Panko’s system,
mechanical faults include simple typographical errors or
wrong cell references. Logical faults are mistakes in rea-
soning and are more difficult to detect and correct than me-
chanical faults. An omission fault is information that has
never been entered into a cell formula, and is the most dif-
ficult to detect [13]. For example, in Table 2, most opera-
tions (such as AOR, CRP) provide coverage for mechani-
cal faults, whereas FDL provides some coverage for omis-
sion faults, and LCR and ROR provide coverage for logical
faults.

For each mutant spreadsheet, the probabilistic model
of a user debugged and tested the spreadsheet. We then
recorded all feedback from each system and the combined
system.

Ruthruff et al. [20] pointed out the impact of mapping on
results, so we tried two mappings: one mapping is based on
the raw feedback from WYSIWYT and UCheck, another
mapping is based on thresholds for each system. In both
mappings, we combined the shadings from each system
using the three combination strategies given in Section 5.
For the original mapping, we used the original shadings
from each system. For the threshold mapping, we ignored
propagated unit errors from UCheck and ignored cells with
very low bug likelihood from WYSIWYT, then we treated
any remaining shaded cells as if they were shaded with the
darkest hue.

Operator Description
ABS ABSolute value insertion
AOR Arithmetic Operator Replacement
CRP Constants RePlacement
CRR Constants for Reference Replacement
LCR Logical Connector Replacement
ROR Relational Operator Replacement
RCR Reference for Constant Replacement
FDL Formula DeLetion
FRC Formula Replacement with Constant
RFR ReFerence Replacement
UOI Unary Operator Insertion
CRS Contiguous Range Shrinking
NRS Non-contiguous Range Shrinking
CRE Contiguous Range Expansion
NRE Non-contiguous Range Expansion
RRR Range Reference Replacement
FFR Formula Function Replacement

Table 2. Mutation operators for spreadsheets

6.6. Threats to validity

Any controlled experiment is subject to threats to va-
lidity, and these must be considered in order to assess the
meaning and impact of results. Threats to validity are fac-
tors other than those accounted for that may be responsible
for our results. Wohlin et al. [24] provide a general discus-
sion of validity evaluation and a threats classification.

The specific faults seeded in a spreadsheet can affect
fault localization results. To reduce this threat, we used
mutation operators providing coverage for categories of
faults in Panko’s classification scheme [13]. Note, how-
ever, that the mutation operators in Table 2 do not all gen-
erate the same number of mutants. For example, mutations
produced by the CRP, AOR and ROR operators were con-
strained in their numbers by the number of constants, arith-
metic operators, and relational operators (respectively) in
the spreadsheet. On the other hand, the RFR operator re-
placed cell references with references to neighboring cells,
thereby generating up to 8 mutants for each reference in
the original spreadsheet (we filtered out the mutations that
would result in cyclic references or point to empty cells).
Since the mutation operators produced different numbers
of mutations based on the constraints of the spreadsheet,
we tried many different distributions of mutations to get a
sense for the robustness of our results, and found that the
results were consistent.

Threats to validity also pertain to the extent to which re-
sults can be generalized. To increase the representativeness
of our spreadsheets, we selected a “real-world” spread-
sheet from a real end-user instructor. However, since we
did not involve real users in our experiment, it is entirely
possible that we overlooked some factor which our proba-
bilistic model did not capture. These validity concerns can
be addressed only through repeated studies, using different
spreadsheets, faults, and real users.

7. Results

7.1. What heuristics are most effective?

Table 3 shows how the various combination strategies
compare to WYSIWYT and UCheck, sorted in descending
order of visual effectiveness, for the original mapping (top)
and the threshold mapping (bottom), as described in Sec-
tion 6.5.
Table 3. Shared reasoning vs. UCheck and
WYSIWYT

Reasoning Faulty - Correct = VE
Combo Max: 1.730 - 0.119 = 1.611
UCheck: 1.526 - 0.042 = 1.484
Combo Average: 1.063 - 0.064 = 0.999
WYSIWYT: 0.600 - 0.085 = 0.515
Combo Min: 0.396 - 0.008 = 0.388
Combo Max*: 4.043 - 0.166 = 3.877
UCheck*: 3.814 - 0.106 = 3.708
Combo Average*: 2.339 - 0.093 = 2.246
WYSIWYT*: 0.864 - 0.079 = 0.785
Combo Min*: 0.636 - 0.019 = 0.617

We performed paired t tests to analyze differences
among the reasoning strategies shown in Table 3. To be-
gin, we state the following null hypotheses:

H1: The visual effectiveness of the combined reason-
ing does not differ from the visual effectiveness of
WYSIWYT.

H2: The visual effectiveness of the combined reason-
ing does not differ from the visual effectiveness of
UCheck.

H3: The visual effectiveness of the original mapping does
not differ from the visual effectiveness of the threshold
mapping.

We found significant differences in the visual effective-
ness scores among Combo Min, Combo Max, Combo Av-
erage, WYSIWYT, and UCheck, as shown in Table 4; all
were significant at the p < .001 level. Thus, Table 4 gives
evidence to reject both H1 and H2. The t tests in Table 4
for H1 and H2 are symmetrical, but are repeated for clarity.
These results give evidence to suggest that the combination
of feedback from UCheck and WYSIWYT is better than
either system alone.

We found significant differences in the visual effective-
ness between the original mapping and the threshold map-
ping, as shown in Table 4. Thus, Table 4 gives evidence
to reject H3. Modifying the visual feedback through a
threshold was sufficient to improve the effectiveness of
UCheck, WYSIWYT, and the combinations, in turn. This
corroborates the importance of the visual mapping factor in
the effectiveness of fault localization systems [20]. Addi-
tional tests demonstrated that the same statistically signif-
icant differences in the visual effectiveness scores among

WYSIWYT, UCheck, and the combinations also held for
the threshold mapping. Therefore, the relative visual effec-
tiveness of WYSIWYT, UCheck, and the combinations are
robust to changes in mapping.

Table 4. Significance tests (df = 931, p < 0.001)

System System t
H1 WYSIWYT Combo Min 5.36

WYSIWYT Combo Average −20.23
WYSIWYT Combo Max −26.95

H2 UCheck Combo Min 26.95
UCheck Combo Average 20.23
UCheck Combo Max −5.36

H3 Combo Max* Combo Max 33.07
UCheck* UCheck 34.56
Combo Average* Combo Average 29.52
WYSIWYT* WYSIWYT 5.65
Combo Min* Combo Min 5.36

7.2. What classes of faults are detected by each
system?

There has been a little research into classes of faults de-
tected by WYSIWYT and UCheck individually [1, 21]. We
want to add to this growing body of knowledge and also to
investigate how the two systems’ strengths might comple-
ment each other. To investigate this question, we tested the
following null hypothesis:

H4: The fault type is unrelated to the effectiveness of
WYSIWYT only, UCheck only, or both systems.

Statistical analysis causes us to reject H4. The feed-
back provided by UCheck only, WYSIWYT only, and
both systems is dependent on the type of fault (χ2 =
8897.803,d f = 27, p < 0.001). Thus, WYSIWYT and
UCheck differ in their ability to uncover various types of
faults.

Table 5 summarizes the relationship between the ob-
served faults and the feedback provided by UCheck only,
WYSIWYT only, and both systems. Whereas UCheck was
highly effective at detecting a narrow set of faults (particu-
larly NRE and RRR mutations), WYSIWYT was rather ef-
fective at detecting a broader range of faults, as suggested
by the “T” shape depicted in Table 5. In this way, UCheck
and WYSIWYT complement each other.

The Venn diagrams in Figure 5 illustrate how of-
ten UCheck, WYSIWYT, and their combinations shaded
faulty formulas and correct formulas. The intersection
of UCheck and WYSIWYT corresponds to the formulas
shaded by Combo Min, whereas the union of UCheck and
WYSIWYT corresponds to the formulas shaded by Combo
Max. Only 73 faulty formulas were not shaded by ei-
ther system; in contrast, 12119 correct formulas were not
shaded by either system.

Faulty
Formulas

346 188 93

73

U W

Correct
Formulas

225 56 860

12119

U W

Figure 5. UCheck (U) and WYSIWYT (W)

8. Discussion and Implications

The broader range of faults that WYSIWYT detected
might explain how Combo Max was able to achieve the
highest visual effectiveness score in our analysis — even
though the Combo Max heuristic was more likely to shade
correct formulas than either system alone (as shown in Fig-
ure 5).

In contrast to Combo Max, Combo Min is very conser-
vative. Since Combo Min was much less likely to shade
correct formulas than either system (shown in Figure 5),
Combo Min was the most trustworthy form of feedback
identified in our analysis.

As the results of the study show, fault detection through
the use of units and testing complement each other.
UCheck is very effective against a narrow range of faults,
whereas WYSIWYT — due to its reliance on users who
make mistakes — is less effective for some fault types, but
locates a broader range of faults than UCheck. Each excels
at particular types of faults, and each overlooks other types
of faults. Given effective combination heuristics, each can
help the other overcome limitations.

Even more important, the combination supports differ-
ent human work styles. To use UCheck to its best advan-
tage, the user’s time investment is concentrated mostly up
front, in the structuring of the spreadsheet under well orga-
nized labels. The better job the user does at this, the better
UCheck performs on many fault types, leaving fewer that
must be found by testing later. On the other hand, if a user
is not proficient at labeling, or wants to put off labeling for
later, the user can invest less time up front in structuring the
spreadsheet in favor of more time later in testing it.

9. Conclusion

In this paper, we showed that reasoning about faults
in only one way is not as effective as shared reasoning.
In doing so, we also corroborated previous findings that
demonstrated the importance of mapping in fault localiza-
tion feedback.

More importantly, we demonstrated that the combina-
tion of fault localization feedback is beneficial and flexible
enough to support different work styles and different design
objectives for fault localization systems. Users who invest
time into structuring their spreadsheets up front reap the
most benefit most UCheck, while users may favor spend-

Table 5. Observed Faults vs. Reasoning

Contributor CRP AOR CRR RFR NRE RRR NRS ROR LCR
Neither 0 2 11 35 0 7 14 1 3
WYSIWYT only (WYSIWYT - UCheck) 3 7 13 50 0 2 13 5 0
Both (WYSIWYT ∩ UCheck) 25 38 125
UCheck only (UCheck - WYSIWYT) 26 85 235

ing more time testing by making use of WYSIWYT. Ad-
ditionally, designers of fault localization systems who want
to provide conservative feedback may favor Combo Min,
while desginers who want to provide highly effective feed-
back would favor Combo Max. Thus, for users and de-
signers of fault localization systems, combined reasoning
provides improvements in both accuracy of reasoning and
flexibility of use.

Acknowledgments

This work was supported in part by the EUSES Consor-
tium via NSF grant ITR-0325273.

References

[1] Robin Abraham and Martin Erwig. Header and unit infer-
ence for spreadsheets through spatial analyses. In IEEE
Symp. on Visual Languages and Human-Centric Comput-
ing, pages 165–172, 2004.

[2] Robin Abraham and Martin Erwig. How to communicate
unit error messages in spreadsheets. In WEUSE I: Proceed-
ings of the first workshop on End-user software engineering,
pages 1–5, New York, NY, USA, 2005. ACM Press.

[3] Robin Abraham and Martin Erwig. Mutation testing of
spreadsheets. 2006. Submitted.

[4] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A type system for statically detecting spreadsheet errors. In
Proc. IEEE Conf. Auto. Soft. Eng., 2003.

[5] Y. Ayalew and R. Mittermeir. Spreadsheet debugging. In
Proc. European Spreadsheet Risks Interest Group, 2003.

[6] Yirsaw Ayalew. Spreadsheet Testing Using Interval Analy-
sis. PhD thesis, Universität Klagenfurt, 2001.

[7] Yirsaw Ayalew, Markus Clermont, and Roland Mittermeir.
Detecting errors in spreadsheets. In Proceedings of Eu-
SpRIG 2000 Symposium: Spreadsheet Risks, Audit and De-
velopment Methods, 2000.

[8] Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg
Rothermel, Jay Summet, and Chris Wallace. End-user
software engineering with assertions in the spreadsheet
paradigm. In International Conference on Software Engi-
neering, pages 93–103, 2003.

[9] J. S. Davis. Tools for spreadsheet auditing. Int. J. Human-
Computer Studies, 45:429–442, 1996.

[10] M. Erwig and M. Burnett. Adding apples and oranges. In 4th
Int. Symp. on Practical Aspects of Declarative Languages,
pages 173–191, 2002.

[11] T. Igarashi, J. D. Mackinlay, B. W. Chang, and P. T. Zell-
weger. Fluid visualization of spreadsheet structures. In Proc.
IEEE Symp. Visual Langs., pages 118–125, 1998.

[12] A. J. Ko and B. A. Myers. Designing the whyline: A de-
bugging interface for asking questions about program fail-
ures. In Proc. ACM Conf. Human Factors Computing Sys-
tems, pages 151–158, 2004.

[13] R. Panko. What we know about spreadsheet errors. Journal
of End User Computing, 10(2):15–21, 1998.

[14] Raymond R. Panko. Spreadsheet Errors: What We Know.
What We Think We Can Do. In Proceedings of the Spread-
sheet Risk Symposium, European Spreadsheet Risks Interest
Group (EuSpRIG), 2000.

[15] Amit Phalgune, Cory Kissinger, Margaret Burnett, Curtis
Cook, Laura Beckwith, and Joseph R. Ruthruff. Garbage
in, garbage out? An empirical look at oracle mistakes by
end-user programmers. In IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, 2005.

[16] K. Rajalingham, D. R. Chadwick, and B. Knight. Classifica-
tion of spreadsheet errors. In Symp. of the European Spread-
sheet Risks Interest Group (EuSpRIG), 2001.

[17] Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher
Dupuis, and Andrei Sheretov. A Methodology for Test-
ing Spreadsheets. ACM Trans. Software Engineering and
Methodology, 10(1):110–147, 2001.

[18] Karen J. Rothermel, Curtis R. Cook, Margaret M. Burnett,
Justin Schonfeld, T. R. G. Green, and Gregg Rothermel.
WYSIWYT testing in the spreadsheet paradigm: An em-
pirical evaluation. In ICSE ’00: 22nd International Conf.
Software Engineering, pages 230–239, 2000.

[19] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prab-
hakararao, M. Fisher II, and M. Main. End-user soft-
ware visualizations for fault localization. In Proceedings of
ACM Symposium on Software Visualization, pages 123–132,
2003.

[20] Joseph R. Ruthruff, Margaret Burnett, and Gregg Rother-
mel. An empirical study of fault localization for end-user
programmers. In International Conference on Software En-
gineering, 2005.

[21] Joseph R. Ruthruff, Shrinu Prabhakararao, James Reich-
wein, Curtis Cook, Eugene Creswick, and Margaret Bur-
nett. Interactive, visual fault localization support for end-
user programmers. Journal of Visual Languages and Com-
puting, 16(1-2):3–40, 2005.

[22] J. Sajaniemi. Modeling spreadsheet audit: A rigorous ap-
proach to automatic visualization. J. Visual Langs. Comput-
ing, 11(1):49–82, 2000.

[23] E. J. Wagner and H. Lieberman. Supporting user hypotheses
in problem diagnosis on the web and elsewhere. In Proc. Int.
Conf. Intelligent User Interfaces, pages 30–37, 2004.

[24] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohls-
son, Björn Regnell, and Anders Wesslén. Experimenta-
tion in Software Engineering. Kluwer Academic Publishers,
2000.

