
SheetDiff: A Tool for Identifying Changes in Spreadsheets?

Chris Chambers
Oregon State University

chambech@eecs.oregonstate.edu

Martin Erwig
Oregon State University

erwig@eecs.oregonstate.edu

Markus Luckey
Universität Paderborn

markus.luckey@upb.de

Abstract

Most spreadsheets, like other software, change over
time. A frequently occurring scenario is the repeated reuse
and adaptation of spreadsheets from one project to an-
other. If several versions of one spreadsheet for grad-
ing/budgeting/etc. have accumulated, it is often not obvious
which one to choose for the next project. In situations like
these, an understanding of how two versions of a spread-
sheet differ is crucial to make an informed choice. Other
scenarios are the reconciliation of two spreadsheets created
by different users, generalizing different spreadsheets into a
common template, or simply understanding and document-
ing the evolution of a spreadsheet over time.

In this paper we present a method for identifying the
changes between two spreadsheets with the explicit goal of
presenting them to users in a concise form. We have im-
plemented a prototype system, called SheetDiff, and tested
the approach on several different spreadsheet pairs. As our
evaluations will show, this system works reliably in practice.
Moreover, we have compared SheetDiff to similar systems
that are commercially available. An important difference is
that while all these other tools distribute the change rep-
resentation over two spreadsheets, our system displays all
changes in the context of one spreadsheet, which results in
a more compact representation.

1. Introduction

Studies have shown that each year hundreds of millions
of spreadsheets are created, making spreadsheets one of
the most widely used end-user programming environments
[10]. As the end-user programmers creating these spread-
sheets may not have a sound background in software design,
development, or maintenance, many of these spreadsheets
end up containing errors. In fact some studies report that up
to 90% of real world spreadsheets contain errors [9]. This

∗This work is partially supported by the National Science Foundation
under the grant CCF-0917092 and by the Air Force Office of Scientific
Research under the grant FA9550-09-1-0229.

has motivated research efforts in the area of software en-
gineering and end-user programming with the goal to sup-
port end user in their work to create reliable spreadsheets.
Much of this research has focused on adapting successful
programming and software engineering methods to the area
of spreadsheets, such as type checking, design, program
generation, testing, and debugging (for an overview and a
list of references, see [5]).

However, one important area of software engineering
that has not yet received much attention in the research com-
munity is how to support the reuse of spreadsheets. An
essential component of the software reuse process is com-
paring artifacts. The importance of change inference for
spreadsheet reuse and beyond is illustrated by the following
examples.

Imagine that there is a spreadsheet that is shared amongst
three different co-workers. Whenever a change is made
there is no easy way for other users to see what has hap-
pened. There are ways to document these changes, such as
change logs or Excel’s track changes functionality, but these
methods suffer from two fundamental limitations.

First, change tracking has to be actively enabled by a
user, otherwise no changes will be recorded. In other words,
for change tracking to be an effective tool its use must be
carefully planned in advance, and also must be employed
consistently by all users of a spreadsheet. Second, in the
case of multiple spreadsheet versions that evolve in paral-
lel, change tracking is only of limited use and can not show
differences between arbitrary versions. For example, con-
sider a spreadsheet S with change tracking enabled, which
is then changed by three users to three different versions T ,
U , and V , respectively. While change tracking can show the
differences for T , U , and V with respect to S, it cannot show
the differences between T and U , T and V , or U and V . In
contrast, a tool for inferring spreadsheet changes allows a
user to always compare any two spreadsheets without prior
arrangements, and so, for example, reveals any changes in
T , U , and V compared to S and compared to each other.

In a completely different scenario, such a change infer-
ence tool would allow teachers to create an oracle spread-
sheet, with the correct formulas and calculations in place.

1

This oracle could then be compared a students result to de-
termine similarity. Any cells containing the incorrect for-
mula or result would be shown, and the teacher could use
this to mark the ones that are incorrect.

Finally, in addition to comparing just two versions of
a spreadsheet, change inference can also reveal trends and
patterns about the evolution of a spreadsheet over time. If
several versions of the same spreadsheet exist, these can be
compared to see the incremental change of the spreadsheet
in each version, and these changes taken together provide a
greater understanding of the spreadsheet and its evolution.

Each of these examples demonstrate how spreadsheet
change inference allows users to put the changes in con-
text and better understand what the spreadsheet is doing and
how it is evolving. This better understanding supports users
in modifying spreadsheets correctly.

In this paper we describe SheetDiff, a tool that we have
developed for identifying changes between two spread-
sheets and presenting them in a succinct form. SheetDiff
shows the changes that are needed to get from one spread-
sheet to the other. The changes are shown “in place”,
which supports not only the easy identification of what has
changed, but also where the changes have occurred.

The rest of this paper is structured as follows. Related
work is discussed in Section 2. In Section 3 we illustrate
the issues involved in identifying and presenting spread-
sheet changes with a small example. The algorithm for in-
ferring spreadsheet changes is then described in Section 4.
In Section 5 we present an evaluation of the SheetDiff tool
on several examples. We discuss one particularly promising
area of future research in Section 6, and finish with conclu-
sions in Section 7.

2. Related Work
Much of the previous research on spreadsheets has fo-

cused on ways to detect and correct errors [5]. However,
very little research has been done on identifying and report-
ing the differences between two related spreadsheets.

If a spreadsheet with an error is reused or shared, the
error is propagated amongst the different users. One field
study [3] notes that errors in spreadsheets can lead to bad
decision making amongst business managers and major
monetary losses. This would indicate that before spread-
sheets are widely reused and shared it is important to see
what has been changed, which will give users a better un-
derstanding of how the spreadsheet has been changed and
also indicate where possible errors may be.

One systematic approach to manage reuse is through
templates [11]. There has been some work in the devel-
opment of an automatic spreadsheet template tools [6, 4],
which allow users to create a spreadsheet template that can
be shared and reused. This template provides a structure
that must be followed for the spreadsheet to be correct.

However, these tools can be rather rigid and as they are not
built into Excel many users may have trouble adapting them
for widespread use.

There are three related systems that attempt to identify
changes in spreadsheets. The first system is Excel’s built in
functionality, Track Changes, the other two, DiffEngineX
and Synkronizer, are commercial products that are used to
compare two spreadsheets and report the changes to users.
These three systems are presented and discussed below.

2.1 Excel’s Track Changes
Microsoft Excel has built-in functionality that allows

users to highlight the changes that they are currently making
to a spreadsheet, such as deleted or added rows and columns
as well as edited cells. This functionality can be particularly
useful when one wishes to change and then return a spread-
sheet to another user. However, it does have a few problems.

First, change tracking lacks the ability to compare two
spreadsheets; it can only track changes that are currently
being made. If it is not turned on, none of the changes will
be marked making it appear as if nothing had been changed.

Second, the visualization for changes is rather poor. Fig-
ure 1 shows the output of track changes. While this shows
all the changes, it is misleading as the bold line between
rows three and four represent the removal of two rows.
However, this line would be the same if any number of rows
had been removed.

A B C D E F G

1 Year

2 Type Detail Value 2007 2008 2009

3 Capacity Tower 50,000 bbl. 50,000 89,791 23,490
4 Yield Low-End fr. Crude 0.60 0.60 0.65 0.55

5 Contract Crude 36,000 bbl. 36,000 34,000 6

Figure 1. Sample Track Changes Output
2.2 DiffEngineX and Synkronizer

DiffEngineX [8] is a commercial product that can be
used to compare and highlight the differences between two
spreadsheets. The output of this system is displayed on
both of the spreadsheets, with the colors representing the
changes based on the other one. An example output is
shown in Figure 2.

Figure 2. Sample Output from DiffEngineX
There are several options that DiffEngineX uses that as-

sists in spreadsheet comparison. Among these is the ability
to compare formula cells by either their value or the formula
it contains and the ability to align rows. With these options
DiffEngineX is a powerful tool for comparing spreadsheets.

2

A B C D E F G

1 Year

2 Type Detail Value 2007 2008 2009

3 Capacity Tower 50,000 bbl. 50,000 89,791 23,490

4 Capacity Cracker 20,000 bbl. 20,000 1,324 123,434
5 Yield Distillate fr. Crude 0.40 0.40 0.43 0.44

6 Yield Low-End fr. Crude 0.60 0.60 0.65 0.55

7 Contract Crude 36,000 bbl. 36,000 36,000 6

8 Demand Regular gas 5,000 bbl. 5,000 5,600 5,800

9 Demand Premium gas 10,000 bbl. 10,000 10,987 981
10 Quality Min Cat in Reg 0.50 0.50 0.50 0.50

11 Quality Min Cat in Prem 0.65 0.65 0.65 0.65

12 Cost Crude $25.00 per bbl. $28.00 $35.74 $35.74

13 Price Low-End $28.00 per bbl. $25.00 $35.06 $34.87

14 Price Regular gas $40.00 per bbl. $40.00 $58.77 $58.77

15

16 Profit Annual net income $31,988 $31,751

17 Efficiency Tower utilization 5% 100%

18 Efficiency Cracker utilization 100% 53%

19 Sales Low-End 10,610 21,600

20 Sales Regular 21,600 580

21 Sales Premium 580 5,601

22 Sales Hi-End 10,000 4,244

A B C D E F G H

1 Year Projected

2 Type Detail Value 2007 2008 2009 2010

3 Capacity Tower 50,000 bbl. 50,000 89,791 23,490 40,090

4 Capacity Cracker 20,000 bbl. 20,000 1,542 23,800 900
5 Yield Distillate fr. Crude 0.40 0.40 0.43 0.44 0.41

6 Yield Low-End fr. Crude 0.60 0.60 0.65 0.55 0.62

7 Contract Crude 36,000 bbl. 36,000 36,000 1,500 45,000

8 Demand Regular gas 5,000 bbl. 5,000 5,600 5,800 6,500
9 Quality Min Cat in Reg 0.50 0.50 0.50 0.50 0.65

10 Quality Min Cat in Prem 0.65 0.65 0.65 0.65 40.00

11 Cost Non-Crude $24.00 $27.00 $28.00 $33.00 $40.00

12 Cost Crude $25.00 per bbl. $28.00 $35.74 $35.74 $38.00

13 Price Low-End $28.00 per bbl. $25.00 $35.06 $34.87 $33.50

14 Price Regular gas $40.00 per bbl. $40.00 $58.77 $75.00 $100.00

15

16 Profit Annual net income $31,988 $31,751

17 Efficiency Tower utilization 5% 100%

18 Efficiency Cracker utilization 100% 53%

19 Sales Low-End 10,610 21,600

20 Sales Regular 21,600 580

21 Sales Premium 580 5,601

22 Sales Hi-End 10,000 4,244

Figure 4. Original and Updated Spreadsheets

One of the major problems with this system is that it rep-
resents the changes by coloring two different spreadsheets.
This requires a user to continuously switch between the two
sheets and rely on their memory to judge the differences.
When the changes are shown in context on one sheet the
comparison can be done visually.

Synkronizer [1] is another spreadsheet difference prod-
uct, and while also showing changes in two separate spread-
sheets, its output tends to be much easier to understand
since it can group row and column changes. An example
of Synkronizer is shown in Figure 3.

Figure 3. Sample Output from Synkronizer

3. Finding and Presenting Differences Between
Spreadsheets

Consider the spreadsheets shown in Figure 4 that shows
two different versions of a budget sheet. The original
spreadsheet, shown on the left, has been updated to include
projections and new products. The updated spreadsheet,
shown on the right, is very similar to the original, and at
first glance it is not easy to spot all the changes that have
been made. Upon closer inspection it could be noticed that
a column has been added, and some changes have occurred
with two rows. However, visual comparisons can be time
consuming and are not guaranteed to catch every change.

While the spreadsheets in Figure 4 are small enough
that a visual comparison might be feasible, as the size of a
spreadsheet grows, such a comparison becomes almost im-
possible, and a tool for the automatic inference of spread-
sheet differences becomes a necessity.

An important design question for such a tool is: How
should the changes between two spreadsheets be presented
to the user? There are at least three different approaches
conceivable: First, one could list the addresses of cells,
rows, and columns in which changes have occurred. Sec-
ond, one could present both spreadsheets side-by-side and
mark cells in each version that are different in the other.
As discussed in Section 2, this approach is taken by sev-
eral commercially available tools. Third, one could present
one of the spreadsheets and annotate it in place so that it is
shown what parts differ from the other spreadsheet.

The third option is the approach we have pursued in the
design of SheetDiff since it (a) provides the change infor-
mation in the context of the rest of the spreadsheet, that is,
in the context of the unchanged parts, and (b) it does not
require a constant back-and-forth focus switching between
two spreadsheets as in the second approach. With this de-
sign decision in mind, change inference can be performed
in two distinct steps.

The first step finds all the cell differences, by compar-
ing the values of the cells. For example, the value in cell
G4 is 123,434 in the original spreadsheet and 23,800 in
the updated spreadsheet. This would cause the cell to be
marked as changed. The second step looks at all the cell
changes that were found and groups them into an easier-to-
understand set of changes. For example, since all the cells
in the column H have been added, it makes more sense to
mark this as an added column rather than simply marking
every cell in the column as individually changed.

By employing this methodology we can locate the
changes in the new spreadsheet and display them to the user.
The results, shown in Figure 5, indicate seven changes to
the spreadsheet. One column and one row has been added

3

A B C D E F G H

1 Year Projected

2 Type Detail Value 2007 2008 2009 2010

3 Capacity Tower 50,000 bbl. 50,000 89,791 23,490 40,090

4 Capacity Cracker 20,000 bbl. 20,000 1,324 123,434 900

5 Yield Distillate fr. Crude 0.40 0.40 0.43 0.44 0.41

6 Yield Low-End fr. Crude 0.60 0.60 0.65 0.55 0.62

7 Contract Crude 36,000 bbl. 36,000 36,000 6 45,000

8 Demand Regular gas 5,000 bbl. 5,000 5,600 5,800 6,500

9 Demand Premium gas 10,000 bbl. 10,000 10,987 981

10 Quality Min Cat in Reg 0.50 0.50 0.50 0.50 0.50

11 Quality Min Cat in Prem 0.65 0.65 0.65 0.65 0.65

12 Cost Non-Crude 24.00 27.00 28.00 33.00 40.00

13 Cost Crude $25.00 per bbl. $28.00 $35.74 $35.74 $38.00

14 Price Low-End $28.00 per bbl. $25.00 $35.06 $34.87 $33.50

15 Price Regular gas $40.00 per bbl. $40.00 $58.77 $58.77 $100.00

16

17 Profit Annual net income $31,988 $31,751

18 Efficiency Tower utilization 5% 100%

19 Efficiency Cracker utilization 100% 53%

20 Sales Low-End 10,610 21,600

21 Sales Regular 21,600 580

22 Sales Premium 580 5,601

23 Sales Hi-End 10,000 4,244

Figure 5. The Results of SheetDiff

(shown with the blue highlight in column H and row 12),
one row has been deleted (denoted by the red highlight in
row 9), and four individual cells have been changed (de-
noted with orange cells). The black cell, located at the inter-
section of the added column and the deleted row, indicates
that there was no value in this cell.

4. Change Inference
The SheetDiff change inference algorithm operates in

the following two interrelated phases.

• Compare individual cells
• Optimize cell changes into higher-level changes

While the first step is fairly simple, the inference of higher-
level changes is generally ambiguous and not straightfor-
ward. For example, in the case that the majority of the cells
in a row are changed, does this signify that a row has been
added or simply that many of the cells have been changed?
Apart from the question of how to best represent such a
change, a decision about how to parse and present sets of
changes also has an impact on the change inference of the
rest of the spreadsheets, and it generally requires that the
results of individual cell comparisons must be dynamically
adapted.

To understand this latter point, consider a spreadsheet
S that contains in column A and row i the number i (for
1 ≤ i ≤ 20). Now consider spreadsheet T in which cell A1
contains 1 and column A, row i contains the value i+1 (for
2 ≤ i ≤ 19). A comparison of the individual cells yields
changes in all cells A2, A3, ..., A20. Now we can observe
that the change in cell A2 (2 changed to 3) is, in fact, a
change of the whole row 2. More specifically, the deletion
of row 2 in S yields the current value of A2 in spreadsheet
T . But what is more important in this case is the fact that by
identifying the deletion of row 2 as a change from S to T ,

the remaining individual cell changes disappear. This can
be seen as follows. The deletion of row 2 caused all cells in
T to move up one row. Therefore, the remaining rows of T
(from row 2 on upwards) have to be compared with rows in
S that have their row index increased by 1, that is, we have
to compare A2 in T with A3 in S, A3 in T with A4 in S, and
so on. All these comparisons do not yield any change.

This small example illustrates two important aspects of
change inference.

• First, the information about individual cell changes is
changed dynamically with the identification of higher-
level changes and has to be recomputed in some cases.
• Second, the number of changes to be reported can be

reduced (in some cases enormously) through the iden-
tification of higher-level changes.

It also seems that in order to avoid redundancy individual
cell changes should be computed only incrementally up to
the point where a higher-level change (that is, a row or col-
umn insertion or deletion) can be detected. However, this
works only if higher-level changes are considered in a strict
ordering (for example, top-down, left-right). In one version
of the change inference algorithm, we actually consider the
inference of higher-level changes based on how promising
they are, irrespective of where they occur in the spreadsheet.
To realize this strategy, we need access to all individual cell
changes.

In the following we will describe the change inference
algorithm in more detail. For two given spreadsheets, S and
T , let W (H) be the maximum width (height) of any row
(column) in S or T . All the individual cell changes between
S and T can be determined by applying a simple traversal
function ∆(S,T) that produces a set of changes that will be
kept in a set δ. These changes can be grouped by row and
column, and the sets R(r) (C(c)) denote the set of changes
in row r (column c). In step 4 of the algorithm, we use
the notation S⊗ x for ⊗ ∈ {+,−} and x ∈ {r,c} to denote
the result of applying different possible high-level changes
“⊗x” to spreadsheet S, namely adding or deleting a row or
column.

ALGORITHM SheetDiff.
INPUT: Two spreadsheets S and T .
OUTPUT: A set of changes δ, initially set to ∅.

Step 1. Determine all individual cell changes between S
and T , that is, let δ = ∆(S,T).

Step 2. Group the changes in δ by rows and columns of
their addresses, which yields a mappings R and C.

Step 3. Select the first row r for which |R(r)|/W > p where
p is a fixed threshold that is required for identifying higher-
level row and column changes.

4

Similarly, select the first column c for which |C(c)|/H >
p. If neither r nor c can be found, stop.

Step 4. If r and c were successfully determined in step 3,
consider what effect the addition and deletion of row r and
column c has in terms of simplifying the set of reportable
changes δ. (If only one of r or c is available, consider only
the respective case.)

Compute four new spreadsheets and change sets as fol-
lows. S⊗x = S⊗ x and δ⊗x = {⊗x}∪∆(S⊗x,T). Find the
the smallest change set δ⊗x, and let S := S⊗x and δ := δ⊗x.
Continue with step 1. �

We illustrate the algorithm, using the optimum p value of
70%, with the help of a small example. Consider the two
spreadsheets, shown in Figure 6.

A B

1 Jack Walking

2 Jim Swimming

3 Jill Biking

A B C

1 Jack Mon, Wed Running

2 Jill Tue, Sat Biking

Figure 6. Two Spreadsheets to be Compared

In step 1 individual cell differences are computed, pro-
ducing changes in δ for the cells A2, A3, B1, B2, B3, C1,
and C2. The grouping in step 2 yields the mappings (for
brevity we show only the addresses of the changes).

R = {(1,{B1,C1}),(2,{A2,B2,C2}),(3,{A3,B3})}
C = {(A,{A2,A3}),(B,{B1,B2,B3}),(C,{C1,C2})}

In step 3 we select the first row and column that contain
over 70% changes (i.e. p=0.7). In this example row 2 and
column B qualify. Step 4 considers the effect of adding or
deleting row 2 or column B and generates four correspond-
ing new versions of the first spreadsheet and the following
versions of δ.

δ+2 = {+2, B1, B2, C1, C2, D1, D2}
δ−2 = {−2, B1, B2, C1, C2}
δ+B = {+B, A2, A3, C1, C2, C3}
δ−B = {−B, A2, A3, B1, B2, C1, C2}

The smallest change set is δ−2. We therefore continue the
algorithm in step 2 with S = S−2 and δ = δ−2, which pro-
duces the following mappings.

R = {(1, {B1, C1}), (2, {B2, C2})}
C = {(B, {B1, B2}), (C, {C1, C2})}

In this iterations, step 3 yields two rows (rows 1 and 2) and
two columns (B and C) that have over 70% changes. Our
algorithm only considers the first of those and thus leads to
another four different change sets to be considered.

δ+1 = {+1,−2, A2, A3, B2, B3, C2}
δ−1 = {−1,−2, A1, A2, B1, B2, C1, C2}
δ+B = {+B,−2, C1}
δ−B = {−B,−2, B1, B2, C1, C2}

In this case, the smallest change set is δ+B, and the algo-
rithm proceeds again with step 2. The change set is now
δ = {+B,−2,C1}, which leads to a termination of the algo-
rithm in step 3. The three changes would be visually rep-
resented as shown in Figure 7. As we can see column B
is highlighted in blue to represent the added column, row
2 is highlighted in red to indicate a deleted row, and cell
C1 is shaded orange indicating that the cell value has been
changed.

A B C

1 Jack Mon, Wed Walking

2 Jim Swimming

3 Jill Tue, Sat Biking

Figure 7. Visual Presentation of Results.

Finally, we note that this basic algorithm can be varied
in at least two different ways.

First, the hypothetical consideration of higher-level
changes in step 4 could be extended to multiple levels, that
is, for each S⊗x and δ⊗x we can compute four versions
(S⊗x)⊗y and (δ⊗x)⊗y and then select S⊗x based on the small-
est (δ⊗x)⊗y. Of course, this “lookahead” can be performed
for an arbitrary number of levels. However, this would lead
to an exponential running time.

Second, the selection of r and c in step 3 can be driven
by the highest ratios |R(r)|/W and |C(c)|/H instead of top-
down, left-right ordering.

We have tested several combinations of both variations,
neither of which produced significantly better results than
the plain version described above. In fact, some combina-
tions performed worse. Moreover, the lookahead versions
had, as expected, a higher runtime. We therefore stick to the
basic version of the algorithm. Finally, we found that using
p = 0.7 as a change-ratio threshold for identifying higher-
level changes was able to find the most changes consistently
(that is, across a mix of small and large spreadsheets with
few and many changes).

5. Evaluation
We have implemented SheetDiff as an add-in for Mi-

crosoft Excel. Using this add-in we evaluate how the
method described in this paper compares spreadsheets. We
will also contrast SheetDiff to two commercial products,
DiffEngineX and Synkronizer, both of which are described
in more detail in Section 2. The evaluation of these tools is
used to answer the following research questions.

RQ1: How effective are the systems at finding changes?
Are the tools able to identify all changes in a spreadsheet
correctly? An effective system will find most or all of the
changes and show very few unnecessary changes.

RQ2: How understandable are the presented results?
How the changes are represented is important since results

5

that make little sense can cause users to become confused.
An understandable system will show a minimal number of
changes and present it in a way that makes sense. For ex-
ample, presenting a deleted row as two deleted rows and an
added row would not be understandable.

RQ3: Are there any ways in which SheetDiff could be
changed to improve the functionality?
If there are spreadsheets that our system has problems with,
can these be analyzed to determine ways to change the tool
in the future to provide better, more compact, easier to un-
derstand changes to the user?

5.1 Experiments

To answer these research questions we have gathered two
different sets of spreadsheets from the EUSES corpus [7].

The first set of selected spreadsheets consists of sheets in
the EUSES repository that are versions of the same sheet.
These 8 spreadsheets represent real world examples of how
different versions of spreadsheets have changed and will be
used to look at how the systems represents changes.

The second set consists of 10 randomly selected spread-
sheets to which we applied a specific set of changes to de-
termine whether the tools could identify these. This set will
be used to supplement the knowledge gained from the real
world examples as well as check the overall correctness of
the representation.

To each of the randomly selected spreadsheets we ap-
plied four distinct sets of changes to allow us to test the
tools in a number of different scenarios. The change sets
are listed below.

1. Individual cell changes only: Change randomly se-
lected formula and value cells.

2. Row insertions & cell changes: A small number of
rows are inserted, plus random cell changes from (1).

3. Row/column insertions/deletions & cell changes. A
varying number of rows and columns are inserted and
deleted, plus cell changes from (1).

4. Many cell changes in one row. A high number of
changes are made to a single row to test the ratio p
of SheetDiff.

The modifications that were applied are based on data gath-
ered from inspecting changes in the spreadsheet pairs of set
1. The changed cells were calculated as a percent of the
total number of cells, and the rows and columns changed
were set at a small constant depending on the size of the
spreadsheet. The last change set was selected to test the ro-
bustness of high-level change detection in SheetDiff, that is,
we wanted to know: How often does SheetDiff incorrectly
identify individual changes as row insertions or deletions?

We then ran our tool and the two commercial products
on each of these sets.

For the first set, we determined how many changes were
reported by each tool. Since Synkronizer and SheetDiff can
identify higher-level changes, we expect lower numbers for
these two than for DiffEngineX.

For the second set of spreadsheets we determined the
number of correctly identified changes. Each correctly
identified change was counted as 1. When a tool reported
an inserted or deleted row or column as a set of individual
cell changes, we considered this as “somewhat correct” and
awarded 0.5 points. We also counted the number of false
positives and false negatives.

To answer RQ3 we will look at the cases that cause prob-
lems for the commercial systems and SheetDiff in particu-
lar. We will determine if there is any solution or simple
change to our tool that would make it easier to determine
changes in spreadsheets.

5.2 Results
The results of running the three tools on the first set

of spreadsheet pairs are shown in Table 1. As this table
shows, both SheetDiff and Synkronizer have compact rep-
resentations, with DiffEngineX, reporting a high number of
changes, as expected, due to cell based comparisons.

Table 1. Change Compactness

SheetDiff Synkronizer DiffEngineX
Pair chg err chg err chg err

1 205 0 623 0 2,190 0
2 57 0 31 5 131 0
3 4 0 12 6 3 0
4 17 0 - - 200 0
5 17 0 214 0 1,584 0
6 586 0 646 0 2,345 0
7 6 0 6 0 6 0
8 131 0 68 0 131 0

SUM 1,023 0 1,618 11 6,590 0

Compactness is important as it represents the number of
changes that will be displayed to users. If all the changes
can be represented in fewer operations, this will make the
display less cluttered and make it much easier to under-
stand. Since Synkronizer crashed when run on the pair 4,
no results could be reported for this case (this also makes
the total number of changes look better than it is).

To supplement the numbers from Table 1, we also an-
alyzed the three tools qualitatively and characterized its
change representation approach along several categories.
The results are shown in Table 2. In this table, context repre-
sents how the changes are displayed, a tool shows changes
in context if the changes are shown on one sheet. Cell or
Line measures how the system determines changes; Cell
only detects changes to cells, while Line will detect row
and column changes. Workbook comparison is the ability

6

so check many spreadsheets at once. We also report under
“confusing results” cases where the results took effort to de-
code and where the displayed results looked different than
the changes that were actually performed.

Table 2. Change Representation

Tool SDiff Synk DEX
context yes no no

cell or line both both cell
workbook comparison no yes yes

confusing results 2 2 6

SheetDiff is the only system that shows the changes
in context, which makes the representation more compact.
The other two systems offer only a split view, which re-
quires repeated switching back and forth between two win-
dows to interpret the change results.

The results from running the tools on the second set
of spreadsheets is summarized in the following two tables
that report the percentage of correctly identified changes for
each tool. Table 3 shows the correctness levels for each
spreadsheet summarized over all four change sets. We can
observed that overall SheetDiff performed well when com-
pared to the other systems. However, Synkronizer is more
consistent, with the number being low due to crashing for
one test on a spreadsheet pair. However, as this is the sec-
ond test Synkronizer failed on (it also failed on pair 4 in the
first experiment) this may point to Synkronizer being less
robust.

As DiffEngineX only reports cell changes, it does poorly
in this evaluation since no row and column changes can be
identified.

Table 3. Correctness Levels by Sheets

Pair SheetDiff Synkronizer DiffEngineX
1 98% 100% 90%
2 98% 100% 91%
3 93% 100% 81%
4 97% 100% 92%
5 95% 60% 89%
6 92% 100% 83%
7 100% 100% 85%
8 100% 100% 84%
9 100% 100% 85%

10 100% 100% 91%
AVG 98% 96% 88%

To break down which types of change sets gave the sys-
tems the most trouble, Table 4 gives the correctly identified
changes grouped by the type of change set and aggregated
over all spreadsheets. As we can see all three tools are able
to detect 100% of the cell changes. The category that gives
the most trouble is “Rows/Cols”, which are by far the most

complex. The crashed test for Synkronizer, again, provides
for a lower score.

The test that was designed to trick SheetDiff into in-
correctly identifying high-level changes shows that even
in some of the worst cases (for our tool), it performs ad-
mirably.

Table 4. Correctness Levels by Change Type

Changes SheetDiff Synkronizer DiffEngineX
Cells only 100% 100% 100%

Rows 100% 100% 86%
Rows/Cols 94% 89% 78%
Quasi Row 97% 100% 100%

AVG 98% 96% 88%

5.3 Discussion
As our results show, SheetDiff and Synkronizer are the

only tools to identify high-level changes and score there-
fore relatively high on the correctness test. Even though
SheetDiff has a slightly higher overall correctness rate,
Synkronizer seems to be more consistent; but in cases when
it gets confused (such as spreadsheet 5 in Table 3) it fails
more dramatically. (It also crashed on example 4 in the sec-
ond test.) Thus, with very good correctness results, we can
answer RQ1 positively for SheetDiff and Synkronizer.

On RQ2 we see an advantage for SheetDiff since it
scores better on change compactness. The context-based
representation is not only easier to understand, but allows
users to trace back and convert from the new spreadsheet
to the original one. While we believe that the contextual
representation is more user friendly, this will need to be es-
tablished by a separate user study.

Finally, regarding RQ3, we have determined several
problems with the tested systems. These are discussed in
the following.

The first problem is table movement. Take for example
the table in the lower left corner in Figure 4. Moving the
block one to the right, SheetDiff will report many added
and deleted rows. While technically correct, this could be
improved. The other systems have even more problems with
this, with Synkronizer even crashing.

The second problem is string comparison. There are sev-
eral cases were the only difference between a cell is a trail-
ing space. What is the difference in the value “Report ”
compared to “Report”? All three systems had this problem,
and while technically correct, this can result in confusing
change representations and could be improved by a more
refined cell comparison method.

The final problem is that all three systems ignore row
and column headers. There has been work done into how to
determine headers for spreadsheets [2]. However, none of
these systems leverage this. If the headers were determined

7

for rows and columns then changed rows and columns may
be able to be determined with higher likelihood. For exam-
ple, if the original spreadsheet has column headers “2001”,
“2003”, and “2005” and the new spreadsheet has column
headers “2001”, “2003”, “2004”, and “2005” it would be
very likely that the column with the header “2004” was
added.

6. Future Work
Currently, all three tools can compare only two sheets at

a time. But the contextual, in-place change representation
of SheetDiff leads to an interesting extension of the system
that is able to compare a range of spreadsheets. As an ex-
ample consider a budget sheets that is extended every year.
A mock up of this functionality is shown in Figure 8.

A B C D E F G H I J K

1 Year

2 Type Detail Value 2005 2006 2007 2007 2008 2009 2010

3 Capacity Tower 50,000 bbl. 50,000 45,000 30,000 78,000 89,791 23,490 40,090

4 Capacity Cracker 20,000 bbl. 20,000 19,000 18,000 1000 1542 23,800 900

5 Yield Distillate fr. Crude 0.40 0.40 0.40 0.40 0.40 0.43 0.44 0.41

6 Yield Low-End fr. Crude 0.60 0.60 0.60 0.60 0.60 0.65 0.55 0.62

7 Contract Crude 36,000 bbl. 36,000 36,000 36,000 36,000 36,000 1,500 45,000

8 Demand Regular gas 5,000 bbl. 5,000 5,000 5,000 5,000 5,600 5,800 6,500

9 Demand Premium gas 8000.00 bbl. 8000 9,000 20,000 50,000

10 Quality Min Cat in Reg 0.50 0.50 0.5 0.5 0.5 0.5 0.5 0.5

11 Quality Min Cat in Prem 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

12 Cost Non-Crude $24.00 $27.00 $27.00 $27.00 $27.00 $28.00 $33.00 $40.00

13 Cost Crude $25.00 per bbl. $28.00 $28.00 $28.00 $28.00 $35.74 $35.74 $38.00

14 Cost Craker $5.00 per bbl. $5.00 $5.00 $5.00 $5.00

15 Price Low-End $28.00 per bbl. $25.00 $25.00 $25.00 $25.00 $35.06 $34.87 $33.50

16 Price Regular gas $40.00 per bbl. $40.00 $40.00 $40.00 $40.00 $58.77 $75.00 $100.00

17 Price Premium gas 42.00 per bbl. 40 40 40 $40.00 $58.77 $75.00 $100.00

18 Price Hi-End $200.00 per bbl. $200.00 $200.00 $200.00 $200.00 $210.00 $210.00 $2,000.00

19

20 Profit Annual net income $31,988 $31,751

21 Efficiency Tower utilization 5% 100%
22 Efficiency Cracker utilization 100% 1

23 Sales Low-End 10,610 21,600

24 Sales Regular 21,600 580
25 Sales Premium 580 5,601

26 Sales Hi-End 10,000 4,244

Figure 8. Multiple Versions Changes

The changes that are more recent are shown in a darker
shade. Since column K was added most recently, it is darker
shaded than column F, which was added first. When a row
is removed the cells in the columns that are added later are
black, signifying that no data exists for those cells. A sim-
ilar process is done for the added rows. This functionality
allows the system to report on the evolution tendencies of
the spreadsheet. In Figure 8 one can notice that every year
a new column has been added, and in occasional versions
rows have been added or deleted. This is a very simple
evolution of a spreadsheet, one that tends to be very lin-
ear. However, much more complex spreadsheet evolution
patterns could conceivably be recognized and displayed.

These evolutionary patterns can help us accomplish
two things; namely, detecting errors and identifying pos-
sible templates. If we already have the template used for
a spreadsheet then we can compare the template to the
changes that were made. If any change is incongruent with
the template then this could be reported as an error.

If there is no template for a spreadsheet, the evolutionary
pattern information can be used, along with header informa-
tion to create one. This is particularly evident in Figure 8,

where a column has been added in every new version. This
shows that the template would be the first four columns,
with a repeating block of one column.

7. Conclusion
As our results have shown SheetDiff is a robust tool that

efficiently and effectively finds the changes between two
spreadsheets. The ability to identify higher-level changes
and the contextual embedding of changes results in more
compact representations. This allows users to not only see
the changes that have been made in an easy to understand
representation, but also shows the steps one could take to
transform one spreadsheet to the other.

SheetDiff gives end-users the ability to see the changes
made between versions with the click of a button and de-
termine if the new version has been changed correctly or if
there are any unexpected changes. This makes SheetDiff a
very useful tool in a business setting and it holds the poten-
tial to help facilitate the reuse and sharing of spreadsheets.

References
[1] Synkronizer, 2010. http://www.synkronizer.com/.
[2] R. Abraham and M. Erwig. Header and Unit Inference for

Spreadsheets Through Spatial Analyses. In IEEE Int. Symp.
on Visual Languages and Human-Centric Computing, pages
165–172, 2004.

[3] J. P. Caulkins, E. L. Morrison, and T. Weidemann. Spread-
sheet errors and decision making: Evidence from field inter-
views. Journal of Organizational and End User Computing,
19:1–23, 2007.

[4] G. Engels and M. Erwig. ClassSheets: Automatic Gen-
eration of Spreadsheet Applications from Object-Oriented
Specifications. In 20th IEEE/ACM Int. Conf. on Automated
Software Engineering, pages 124–133, 2005.

[5] M. Erwig. Software Engineering for Spreadsheets. IEEE
Software, 29(5):25–30, 2009.

[6] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooper-
stein. Gencel: a program generator for correct spreadsheets.
J. Funct. Program., 16(3):293–325, 2006.

[7] M. Fisher and G. Rothermel. The euses spreadsheet cor-
pus: A shared resource for supporting experimentation with
spreadsheet dependability mechanisms. In WEUSE I: Pro-
ceedings of the first workshop on End-user software engi-
neering, pages 1–5, New York, NY, USA, 2005. ACM.

[8] Florencesoft. DiffEngineX — Compare Excel Worksheets,
2010. http://www.florencesoft.com/index.html.

[9] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards.
Quality control in spreadsheets: A software engineering-
based approach to spreadsheet development. In 33rd Hawaii
Int. Conf. on System Sciences-Volume 4, pages 1–9, 2000.

[10] C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers
of end users and end user programmers. In IEEE Symposium
on Visual Languages and Human-Centric Computing, pages
207–214. IEEE Computer Society, 2005.

[11] D. M. Volpano and R. B. Kieburtz. The templates approach
to software reuse. Software reusability: vol. 1, concepts and
models, pages 247–255, 1989.

8

