
Science of Computer Programming 67 (2007) 199–222
www.elsevier.com/locate/scico

An update calculus for expressing type-safe program updates

Martin Erwig∗, Deling Ren

Oregon State University, School of EECS, Corvallis, OR 97331, USA

Received 8 December 2004; received in revised form 14 February 2006; accepted 27 January 2007
Available online 1 April 2007

Abstract

The dominant share of software development costs is spent on software maintenance, particularly the process of updating
programs in response to changing requirements. Currently, such program changes tend to be performed using text editors, an
unreliable method that often causes many errors. In addition to syntax and type errors, logical errors can be easily introduced since
text editors cannot guarantee that changes are performed consistently over the whole program. All these errors can cause a correct
and perfectly running program to become instantly unusable. It is not surprising that this situation exists because the “text-editor
method” reveals a low-level view of programs that fails to reflect the structure of programs.

We address this problem by pursuing a programming-language-based approach to program updates. To this end we discuss in
this paper the design and requirements of an update language for expressing update programs. We identify as the essential part of
any update language a scope update that performs coordinated update of the definition and all uses of a symbol. As the underlying
basis for update languages, we define an update calculus for updating lambda calculus programs. We develop a type system for
the update calculus that infers the possible type changes that can be caused by an update program. We demonstrate that type-safe
update programs that fulfill certain structural constraints preserve the type correctness of lambda terms. The update calculus can
serve as a basis for higher-level update languages, such as for Haskell or Java.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Program transformation; Meta programming; Type safety; Refactoring; Software evolution

1. Introduction

1.1. Current problems with software maintenance

Most software products are dynamic entities that undergo many changes through their lifetime, or as Lehman puts
it [27]: “There is no such thing as a ‘finished’ computer program”. The cost of maintaining software dominates the
overall cost of software: it is estimated that maintenance requires more than 60% of all software development effort
[34]. Some estimates give figures up to 70% [2,42] or even 80% [44]. It has also been reported that the cost of software
maintenance is growing [16] and that maintenance costs grow at a rate of 10% a year [5]. Changes to software that
are performed in the course of software maintenance have been classified into corrective, preventive, adaptive, and

∗ Corresponding author. Tel.: +1 541 737 8893; fax: +1 541 737 3014.
E-mail address: erwig@eecs.oregonstate.edu (M. Erwig).

0167-6423/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2007.01.003

http://www.elsevier.com/locate/scico
mailto:erwig@eecs.oregonstate.edu
http://dx.doi.org/10.1016/j.scico.2007.01.003

200 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

perfective [28,42]. The latter two categories comprise changes in response to a changing environment and to new
requirements. Together they account for 75% to 80% of all maintenance cost [28,34]. Significantly improving the
process of changing software can greatly reduce the overall cost of software maintenance and development, as well as
substantially increasing product reliability and efficiency.

Changes to software programs today are usually made using text editors, a process that often causes problems. For
example, syntax and type errors are frequently introduced when a few minor changes are made to a correct program.
Also serious is the introduction of logical errors, which cannot be detected by a compiler. In this instance, if a change
to a certain expression (that does not change its type) is not performed consistently, the program might still typecheck,
but part of its computation is erroneous. Even if the required program changes are minimal, inconsistencies can be
introduced quite easily through editing operations, and worse, go unnoticed. The fatal aspect of this common situation
is that a correct and perfectly running program can become unusable in a few seconds.

This unfortunate circumstance is not surprising because performing program changes with a text editor reveals
a very low-level program view, namely that of character sequences. Moreover, the offered operations on programs
are basically those of inserting and deleting characters in the program’s textual representation. This view does not
reflect the structure of programs, and it follows that adding or deleting single characters are not the right operations
on programs. The lack of tools for automating software changes has been identified as a key problem by several
researchers [44,42,38]. Takang and Grubb write [42], “The task of software maintenance is such a vital and complex
one that it can no longer be done effectively without automated support”.

1.2. Improving the software update process

We can view a software program as an element of an abstract data type (ADT) [12]. Then changes to software
programs can be performed by applying ADT operations. Basic update operations can be combined through update
combinators to build arbitrarily complex update programs. Update programs can prevent certain kinds of logical
errors, for example, those that result from “forgetting” to change some occurrences of an expression. Using string-
oriented tools like awk or perl for this purpose is difficult, if not impossible, since the identification of program
structure generally requires parsing. Moreover, using text-based tools is generally unsafe since these tools have no
information about the languages’ scoping rules. In contrast, a promising opportunity offered by the ADT approach
is that effectively checkable criteria can guarantee that update programs preserve properties of object programs to
which they are applied; one example is type correctness. Even though type errors can be detected by compilers,
type-preserving update programs have the advantage that they document the performed changes well. In contrast,
performing several corrective updates to a program in response to errors reported by a compiler leaves the performed
updates hidden in the resulting changed program.

Viewing programs as abstract data types also goes beyond the idea of syntax-directed program editors because
it allows a programmer to combine basic updates into update programs that can be stored, reused, changed, shared,
and so on. The update programming approach has, in particular, the following two advantages: First, we can work on
program updates offline, that is, once we have started a program change, we can pause and resume our work at any
time without affecting the object program. Although the same could be achieved by using a program editor together
with a versioning tool, the update program has the advantage of much better reflecting the changes performed so far
than a partially changed object program that only shows the result of having applied a number of update steps. As will
be demonstrated in Section 2, we could actually use program updates as a basis to create a new kind of syntax-aware
versioning tool that can inform much better about program changes than character-based programs like diff. Second,
independent updates can be defined and applied independently. For example, assume an update u1 followed by an
update u2 (that does not depend on or interfere with u1) is applied to a program. With the editor approach, we can
undo u2 and also u2 and u1, but we cannot undo just u1 because the changes performed by u2 are only implicitly
contained in the final version that has to be discarded to undo u1. In contrast, we can undo each of the two updates
with the proposed update programming approach by simply applying only the other update to the original program.

Generic updates can be collected in libraries that facilitate the reuse of updates and that can serve as a reposi-
tory for executable software maintenance knowledge. In contrast, with the text-editor approach, each update must be
performed on its own. At this point the safety of update programs shows an important advantage: Whereas with the
text-editor approach the same (or different) errors can be made over and over again, an update program satisfying the
safety criteria will preserve the correctness for all object programs to which it applies. In other words, the correctness

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 201

of an update is established once and for all. One simple, but frequently used update is the safe (that is, capture-free) re-
naming of variables. Other examples are extending a data type by a new constructor, changing the type of a constructor,
or the generalization of functions. In all these cases the update of the definition of an object must be accompanied by
corresponding updates to all the uses of the object. Many more examples of generic program updates are given by pro-
gram refactorings [15] or by all kinds of so-called “cross-cutting” concerns in the fast-growing area of aspect-oriented
programming [1,19,11,31,4], which demonstrates the need for tools and languages to express program changes.

The update calculus presented in this paper can serve as an underlying model to study program updates and as a
basis on which update languages can be defined and into which they can be translated.

Although we propose update programming as a new approach to performing software changes, our goal is not
to completely replace the use of text editors for programming; rather, we would like to complement them since
there are many small, simple changes that can probably be accomplished most easily by using an editor. Moreover,
programmers are used to writing programs with their favorite editor, so we cannot expect that they will instantly switch
to a completely new way of performing program updates. The often described phenomenon of “resistance to change”
makes this situation even less likely [3,10]. However, there are occasions when a tedious task calls for automatic
support. We can add safe update programs for frequently used tasks to an editor, for instance, in an additional menu.1

Writing update programs, like metaprogramming, is in general a difficult task—probably more difficult than
creating “normal” object programs. The proposed approach does not imply or suggest that every programmer is
supposed to write update programs. The idea is that update programs are written by experts and used by a much wider
audience of programmers (for example, through a menu interface for text editors as described above). In other words,
the update programming technology can be used by people who do not understand all the details of update programs.

1.3. The structure of this paper

In the next section we illustrate the idea of update programming with a couple of examples. In Section 3 we discuss
related work. The notion of safety with regard to update programming is explained in Section 4. As a concrete example
of a safe update programming language we will describe a calculus for updating lambda expressions in Section 5. In
Section 5.1 we define the object language. The update calculus is introduced in Section 5.2, and a type system for the
update calculus is developed in Section 5.3. We show the safety of the update calculus in Section 5.3.3. After outlining
several directions for future research in Section 6, we will present some conclusions in Section 7.

2. Examples of update programming

We illustrate the idea of update programming through several examples. To this end we describe how updates to
Haskell programs can be implemented in HULA, the Haskell Update LAnguage [13] that we are currently developing.

Suppose we want to extend a module for binary search trees by a size operation giving the number of nodes in a
tree. Moreover, we want to support this operation in constant time, therefore we extend the representation of the tree
data type by an integer field for storing the information about the number of nodes contained in a tree. The desired
program extension goes beyond the idea of refactoring, which is concerned with semantics-preserving restructurings
of programs, and illustrates that update programming has applications that are more general than refactorings. The
definition of the original tree data type and an insert function are as follows.

data Tree a = Leaf | Node a Tree Tree

insert :: Ord a => a -> Tree a -> Tree a
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) = if x<y then Node y (insert x l) r

else Node y l (insert x r)

The program update requires a new function definition size, a changed type for the Node constructor (since a leaf
always contains zero nodes, no change for this constructor is needed), and a corresponding change for all occurrences

1 This integration requires resolving a couple of other non-trivial issues, such as how to preserve the layout and comments of the changed
program and how to deal with syntactically incorrect programs.

202 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

of Node in patterns and expressions. Adding the definition for the size function is straightforward and is not very
exciting from the update programming point of view. The change of the Node constructor is more interesting since the
change of its type in the data definition has to be accompanied by corresponding changes in all Node patterns and
Node expressions. We can express this update as follows.

con Node : {Int} t where
(case Node {s} → Node {succ s}

| Leaf → Node {1}); Node {1}
The update can be read as follows. The con update operation adds the type Int as a new first parameter to the
definition of the Node constructor. The notation a {r} b is an abbreviation for the rewrite rule a b�a r b. So {Int} t
means extend the type t on the left by Int. The keyword where introduces the updates that apply to the scope of the
Node constructor. Here, a case update specifies how to change all pattern matching rules that use the Node constructor:
Node patterns are extended by a new object variable s, and to each application of the Node constructor in the return
expression of that rule, the expression succ s is added as a new first argument (succ denotes the successor function
on integers, which is predefined in Haskell). The Leaf pattern is left unchanged, and all occurrences of the Node
constructor within its return expression are extended by 1. As an alternative to the case update, the rule Node {1}
extends all other Node expressions by 1.

The application of the update to the original program yields the following object program.

data Tree a = Leaf | Node Int a Tree Tree

insert :: Ord a => a -> Tree a -> Tree a
insert x Leaf = Node 1 x Leaf Leaf
insert x (Node s y l r) = if x<y then Node (succ s) y (insert x l) r

else Node (succ s) y l (insert x r)

It is striking that with the shown definition the case update is applied to all case expressions in the whole program. In
our example, this works well since we have only one function definition in the program. In general, however, we want
to be able to restrict case updates to specific functions or specify different case updates for different functions. This
behavior can be achieved by using a further update operation that performs updates on function definitions:

con Node : {Int} t where
fun insert x y:

(case Node {s} → Node {succ s}
| Leaf → Node {1}); Node {1}

This update applies the case update only to the definition of the function insert.
Uses of the function insert need not be updated, which is indicated by the absence of the keyword where and

a following update. We can add further fun updates for other functions in the program to be updated each with its
own case update. Note that the variables x and y of the update language are metavariables with respect to Haskell that
match any object (that is, Haskell) variable.

We can observe a general pattern in the shown program update: A constructor is extended by a type, all patterns
are extended at the (corresponding position) by a new variable, and expressions built by the constructor are extended
either by a function which is applied to the newly introduced variable (in the case that the expression occurs in the
scope of a pattern for this constructor) or by an expression. We can define such a generic update, say extCon, once
and store it in an update library, so that constructor extensions as the one for Node can be expressed as applications
of extCon [13]. For example, the size update can then be expressed by the following expression, which would have
exactly the effect as the update shown above.

extCon Node Int succ 1

One can imagine extensions to text editors like Emacs or Vim that offer generic type correctness preserving updates
like renaming or extCon via menus. The update could then be performed as follows. The programmer selects the item
“Extend Constructor” from a menu of program updates. This constructor update requires the name of the constructor

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 203

Fig. 1. Interactive update specification.

to be updated, the type by which it is to be extended, and a specification of how all the occurrences of the constructor
in the program – used either in a pattern or in an expression – are to be extended to match the changed type. As a result
of selecting the update from the menu, a window pops up that asks for further details about the update (see Fig. 1).

If the cursor is positioned on a constructor at the time the menu is invoked, the system assumes that this constructor
should be changed and inserts the constructor name (here, Node) automatically. Moreover, the system can search for all
places in the program where the constructor is used and provides a list of scopes that require a change—in the case of
a constructor update these scopes are (possibly nested) function names. In our example there is just one scope, namely
the function insert, but in typical binary tree module we would get a longer list of scopes, including functions, such
as delete or find.2 For each scope we now have to specify how pattern/expression pairs or just expressions are to be
updated. The combined specification of a pattern/expression pair is needed since we might introduce a variable into
the pattern that is to be used in the corresponding result expression. For example, in the insert function we want to
extend the Node pattern by a variable s for the size, and we want to use s in the return expression for that pattern to
extend the Node constructor by an expression succ s to express that the size of the tree is increased by one after the
insertion of an element. On the other hand, we also have to be able to express the extension of constructors that occur
in return expressions that do not have a Node constructor in the pattern of their LHS. In our example we want to set
the size of any newly constructed tree to be one.

Although the just described update might look simple, some non-trivial computations take place behind the
scenes—for example, the types of the expressions entered into the LHS/RHS boxes must match the type by which the
constructor is extended, or any new variables that are introduced must not conflict with already existing variables. If
we had used x instead of s, the system could rename it into x’ (also the use in the expression would then be renamed to
succ x’), or not apply the update at all and report an error, depending on the user’s preferences regarding automatic
renaming.

Of course, it is very difficult (if not generally impossible) to write generic update programs that guarantee
overall semantic correctness. Any change to a program requires careful consideration by the programmer, and this
responsibility still exists when using update programs. We do not claim to free the update process from any semantics
consideration; however, we do claim that update programs make the update process more reliable by offering type
preservation guarantees and consistency in updates.

The idea of update programming is, of course, not limited to Haskell. To illustrate how the described concepts
can be employed in other programming languages, we describe a Java version of the presented tree example. In Java,
the abstract data type can be defined as a class Tree, with a constructor Tree and an insert method. We omit the
implementation details of insert, because they are not needed to illustrate the idea of update programming.

public class Tree
{

Object content;

2 Scopes can be combined so that an update can be specified once and can still be applied at different places. However, scopes cannot be deleted
since a safe update must care for all occurrences of the constructor. Finally, if there is only one scope, this can then as well be omitted; the update
is then like a global update.

204 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

Tree left, right;

public Tree ()
{

content = null;
left = null;
right = null;

}
public void insert (Tree t)
{

...
return;

}
}

To extend the class with a tag for size, we add a field size and make corresponding changes to affected member
methods. In this case, the class constructor Tree needs to be changed so that size is initialized when the tree is
constructed; the insert method needs to be changed so that size is increased whenever a node is added. An update
program could be defined as follows:

class Tree : {int size;} d where
meth insert : {size ++;} d
cons Tree : {size = 0;} d

In all three cases the metavariable d matches the definition of the class, method, and constructor, respectively. The
expressed updates are simply inserting a variable declaration (in the case of the class update) and a variable assignment
(in the case of the method and constructor update) in front of the existing definitions. Applying the update to the
original program will yield the following updated Java program.

public class Tree
{

int size;
Object content;
Tree left, right;

public Tree ()
{

size = 0;
content = null;
left = null;
right = null;

}
public void insert (Tree t)
{

size ++;
...
return;

}
}

To give another example, consider the task of generalizing a function definition, which works by identifying
expressions in a function definition that should be made variable. We can express this update by an update function
genFun that takes two parameters, the name of the function to be generalized (f) and the expression e to be generalized
within f ’s definition. The generalization works essentially in three steps. First, a new parameter x is added to the

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 205

definition of f, as the ith parameter, which is expressed by placing {i|x} after the function name f. Second, the
expression e to be abstracted is replaced everywhere in f ’s definition by the new variable x. The replacement is
expressed using the substitution notation {e/x} (read: “replace e by x”). Two special cases of this substitution notation
are {e/} (“delete e”) and {x} (“insert x”), which we have already seen in the size update. Finally, all applications of the
function are to be extended by adding a new argument, which we choose to be the abstracted expression so that the
meaning of the original program is preserved. In HULA this generic update is defined by:

genFun f i e = fun f {i|x} : {e/x} where f {e}
Another application for update programming is the maintenance of programs that have many variants. For example,
there exist many different forms of lambda calculus. We can use the following update to extend a data type Lam for
representing lambda expressions (containing constructors only for variables, application, and lambda abstraction) and
a corresponding evaluation function eval by constants:

data Lam : cs {Con String} where
fun eval : case x of rs {Con c -> Con c}
fun subst : case x of rs {Con c -> Con c}

All other functions that do a pattern matching on the data type Lam also need to be updated, such as the subst function
here. The expression {Con String} expresses to add a new constructor named Con of argument type String to the
data type definition of Lam. The new constructor definition is added after the existing constructors, which is expressed
by placing the expression after the metavariable cs that matches the existing constructors. The update of the uses of
the (changed) data type definition specifies only to update the function definition of eval. This happens by inserting
a case rule after all other existing rules, which are bound to rs. The added rule expresses that constants evaluate to
themselves.

With a similar update we can extend the lambda calculus implementation by let expressions:

data Lam : cs {Let String Lam Lam} where
fun eval : case x of rs {Let v d e -> subst d v e}
fun subst : case x of rs {Let v d e -> ... }

The definition of function subst is not relevant and therefore omitted here for simplicity. We can apply both updates
independently or one after the other (in any order) to obtain a version of lambda calculus with constants and let
expressions. If the original lambda calculus implementation changes, we can reapply the update programs to propagate
the changes through the defined extensions. We can perform similar updates for extending type inference or other
functions as well.

3. Related work

Performing structured program updates is supported by program editors that can guarantee syntactic or even type
correctness and other properties of changed programs. Examples for such systems are Centaur [9,37], the synthesizer
generator [36], or CYNTHIA [51,50]. The view underlying these tools are either that of syntax trees or, in the case
of CYNTHIA, proofs in a logical system for type information. An interesting observation is that the approach taken
in the ML editor CYNTHIA is more powerful than other approaches since it is based on a richer representation of
programs, that is, it exploits the Curry–Howard isomorphism [18,30], which directly relates proofs of type correctness
with programs. In this respect it is very similar to proof editors like ALF [29], however, in contrast to ALF, proofs are
not the main objective of CYNTHIA but rather used as a glueing representation between programs and their properties.

In [12] we have introduced a language-based view of program updates. One part of that work is the development
of a general model of programs, updates, and the preservation of arbitrary properties. We have also discussed a way
of ensuring type correctness for the simply typed lambda calculus that is based on computing required and provided
changes in type assumptions. In [14] we have introduced an update calculus for the implicitly typed lambda calculus
together with a type-change system that can infer possible type changes caused by updates. An extended version of
this system is described in Section 5. In [13] we have defined an update language for a subset of Haskell. We also
have shown how to translate this update language into an update calculus.

206 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

As Klint et al. point out in [21], evolutionary transformation of software have not yet received much attention except
for refactoring. Our paper addresses program transformations beyond refactoring, in particular, those that allow type
changes and semantics changes.

Programs that manipulate programs are also considered in the area of metaprogramming [39]. However, existing
metaprogramming systems, such as MetaML [41] or Template Haskell [40], are mainly concerned with the generation
of programs and do not offer means for analyzing programs (which is needed for program transformation). In fact,
in a recent overview only a few source-level program transformations have been reported [49]. Among these, only
software rephrasing and refactoring work on one and the same language. Refactoring [15] is an area of fast-growing
interest with a few existing tools to perform refactoring automatically [38]. Refactoring (like the huge body of work on
program optimization and partial evaluation) leaves the semantics of a program unchanged. Program transformations
that change the behavior of programs are also considered in the area of aspect-oriented programming [1], which
is concerned with performing “cross-cutting” changes to a program. AspectJ [19] and, Hyper/J [31] are two of the
existing tools that can be used to deal with aspects in Java programs. These tools are used to merge a cross-cutting
concern into one particular object program at a time. It is not possible, for example, to compile and typecheck aspects
independently of programs to obtain type-safe reusable transformations. Composition filters [4] have been defined as
a general extension for the object-oriented programming model.

Our approach is based in part on applying update rules to specific parts of a program. There has been some work
in the area of term rewriting to address this issue. Traditionally, rewrite systems consider the strategy in which rewrite
rules are applied to be more or less fixed. In theorem proving tactics have been introduced to overcome the limitations
of having only fixed strategies [32]. The ELAN logical framework introduced in addition to a fixed set of tactics
a strategy language that allows users to specify their own tactics with operators and recursion [7,8]. Visser has
extended the set of strategy operators by generic term traversals [48], pattern matching operators [45], and other rewrite
strategies that are specifically useful for language processing [46] and has put all these parts together into a system for
program transformation, called Stratego [47]. These proposals allow a very flexible specification of rule application
strategies, but they do not guarantee syntax or type correctness of the transformed programs. Strafunski [26,25] and
the so-called “Scrap Your Boilerplate” approach [23,24] are program-transformation systems that are based on generic
traversal operations that can be extended/modified through combinators to create customized transformations. In
particular, these combinators allow a programmer to specify transformations at specific parts of a program while
not having to be concerned about the remaining syntactic structure, which is taken care of automatically through
the default behavior of the traversal operation. Since object languages are represented as Haskell data types, updates
written in these two approaches do preserve syntactic correctness of object programs, but they cannot guarantee the
type correctness of the generated programs. In [43] Klint et al. extend term rewriting with traversal functions to
traverse a tree automatically, according to a set of built-in traversal primitives. Their approach eliminates the need for
extra rules for carrying data around and having non-sort-preserving transformations.

A specific task related to updates on programs is program integration, which is concerned with the combination of
two variants A and B of a program P . The algorithm developed by Horwitz and others detects whether the updates
that lead from P to A and B , interfere and if not, combines these updates into a single program that includes all
functionality from P as well as the changes from A and B [17]. Algebraic properties of such a program integration
operation have been studied by Reps [35].

A related approach that is concerned with type-safe program transformations is pursued by Bjørner who has
investigated a simple two-level lambda calculus that offers constructs to generate and to inspect (by pattern matching)
lambda calculus terms [6]. In particular, he describes a type system for dependent types for this language. However,
in his system symbols must retain their types over transformations whereas in our approach it is possible and essential
that symbols can change their types (and names).

Lämmel describes a transformation-based approach for evolution of rule-based programs [22]. He introduces a
suite of operators for the transformation. In his paper, evolution relations are defined as a measurement between the
original program and evolved program. Certain properties are studied and identified for the transformation operators.
One particularly interesting relation is type preservation in the sense of type equality of the predicates and functors
between the original program and evolved program. However, this type preservation refers to that all symbols do
not change their types, therefore type correctness is ensured. In this paper, we go one step further to allow variables
change their types while the new program remains type correct.

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 207

Fig. 2. Safe update theorems.

In [20] Klint describes a meta-environment based on the formalism ASF+SDF. A meta-environment is an
interactive development environment for formal language definitions and for generating and testing particular
programming environments. This meta-environment is a potential candidate for the implementation of the update
calculus.

4. Safety of program updates

In this section we describe a generic language-based view of program updates together with a notion of safety for
program updates.

A program p to be updated is an element of a language P , also called object language. A property π on a language
P is given by a boolean function on P , that is, properties are propositions about programs. The fact that p is correct
with respect to the property π is written as π(p). In that case we say that p is π -correct or π-valid. Updates are
specified in an update language U . The meaning of an update program u is a function [[u]] on object programs, that is,
[[]] : U → P → P . The following definition introduces an essential concept of the update programming approach.

Definition 1 (Safety of Updates). An update u is safe with respect to the language property π (or, u is π-safe, for
short) if and only if ∀p ∈ P.π(p) =⇒ π([[u]](p)).

Since U is a language, we can identify properties for U (as we did for P). We use μ to denote a property on U .
To design an update language we have to find characterizations of safe updates, that is, we want to find properties μ

such that μ-correctness implies π-safety. In other words, given P , π , and U , find μ such that μ(u) =⇒ u is π-safe,
or, expanding the definition of π-safety, ∀u.μ(u) =⇒ (∀p.π(p) =⇒ π([[u]](p))). This generic schema for theorems
is illustrated in Fig. 2.

We can now investigate a variety of update languages for different object languages preserving different properties
under varying criteria. We call any instance (P, π, U, μ) of this general setting an update scenario. The existence of
safe update theorems serves as the key question for the significance of any update scenario because if μ-correctness
implies π-safety, we can work on updates completely independently from the object programs to which they will be
eventually applied. This property is as important as static typing is for object programs—the partial correctness of an
update (in the sense of not producing an object program violating π) can be checked without having to execute it (that
is, apply it to an object program).

The focus on type correctness as one important property that an update language should preserve is justified by
empirical studies [33]. However, from a practical point of view, there are also other properties whose preservation is
worthwhile. For example, the information about to what degree updates can preserve layout or comments of updated
programs is an important criterion for offering these updates in a program editor because programmers would probably
not like nor expect their programs to be completely reformatted.

In the next section we will investigate in some detail one instance of the described scenario with P = lambda
calculus, π = type correctness, U = update calculus, and μ = type-change correctness + structural constraint.

208 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

5. An update calculus for lambda calculus

5.1. The object language

We consider lambda calculus together with a standard Hindley/Milner type system as the working object language.
The syntax of lambda calculus expressions is shown in Fig. 3. In addition to expressions e, we use v to range over
variables. For simplicity, we omit constants here.

e ::= v | e e | λv.e | let v = e in e

Fig. 3. Abstract syntax of lambda calculus.

Types are built from type variables (denoted by a) and function types (see Fig. 4). Type schemas are used to enable
polymorphic typing for let-bound variables. We abbreviate a list of type variables a1 . . . an by ā.

t ::= a | t → t
s ::= t | ∀ā.t

Fig. 4. Types for lambda calculus.

FV gives the set of free variables of an expression, a type, or a type environment. Likewise, BV computes bound
variables. We denote by [w/v]e the capture-free substitution of the variable v by the variable w in the expression e.

The type system defines judgments of the form Γ � e : t where Γ is a type assumption, that is, a mapping from
variables (v) to type schemas (s). The inference rules shown in Fig. 5 are standard except for the rule META�, which
defines the typing of metavariables and which is explained below in Section 5.2.1.

VAR�
Γ (v) = ∀ā.t ′ [ti/ai]t ′ = t

Γ � v : t
ABS�

Γ , v : t ′ � e : t

Γ � λv.e : t ′ → t
APP�

Γ � e : t ′ → t Γ � e′ : t ′

Γ � e e′ : t

LET�
{ā} = FV(t ′) − FV(Γ) Γ , v : t ′ � e′ : t ′ Γ , v : ∀ā.t ′ � e : t

Γ � let v = e′ in e : t
META�

Γ (m) = t

Γ � m : t

Fig. 5. Type system for lambda calculus.

Since the theory of program updates is independent of the particular dynamic semantics of the object language
(call-by-value, call-by-need, ...), we do not have to consider a dynamic semantics in the context of this paper.

The main idea to achieve a manageable update mechanism is to perform somehow “coordinated” updates of the
definition and all corresponding uses of a symbol in a program. We therefore consider the available forms of symbol
definitions in more detail. In general, a definition has the following form:

let v = d in e

where v is the symbol (variable) being defined, d is the defining expression, and e is the scope of the definition, that
is, e is an expression in which v will be used with the definition d (unless hidden by another nested definition for
v). We call v the symbol, d the defining expression, and e the scope of the definition. If no confusion can arise, we
sometimes refer to d also as the definition (of v). β-redexes also fit the shape of a definition since a (non-recursive)
let v = d in e is just an abbreviation for (λv.e) d . However, the treatment of let differs from functions in the type
system (allowing polymorphism) and also in the update language since it allows recursive definitions.

Several extensions of lambda calculus that make it a more realistic model for a language like Haskell also fit the
general pattern of a definition, for example, data type/constructor definitions and pattern matching rules. We have
demonstrated this idea by examples in Section 2, and we will explain the relationship in more detail based on the
presented update calculus in Section 5.2.2.

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 209

5.2. The update calculus

The update calculus basically consists of rewrite rules and a scope-aware update operation that is able to perform
updates of the definition and uses of a symbol. In addition, we need operations for composing alternative updates and
for recursive application of updates.

5.2.1. Rules
A rewrite rule has the form:

l� r

where l and r are patterns, which are basically expressions that might contain metavariables (m). Metavariables are
different from object variables and can represent arbitrary expressions. The syntax of patterns is defined in Fig. 6.

p ::= m | v | p p′

Fig. 6. Patterns.

If we remove metavariables, patterns reduce to expressions that do not introduce bindings. Binding constructs will
be updated by a special form, scope update, that takes care of the peculiarities of free/bound/fresh variables and their
types that can occur with updates. Therefore, rewrite rules are restricted to patterns. The typing rule for metavariables
in Fig. 5 is similar to the rule VAR�, but we only allow the binding of types (and not type schemas).

An update can be performed on an expression e by applying a rule l� r to e, which means to match l against e,
which, if successful, results in a binding σ (called substitution) for the metavariables in l. Formally, a substitution is
a mapping from variables to expressions. The fact that a pattern like l matches an expression e (under the substitution
σ) is also written as: l
 e (l

σ
e). We assume that l is linear, that is, l does not contain any metavariable twice. The

result of the update operation is σ(r), that is, r with all metavariables being substituted according to σ . If l does not
match e, the update described by the rule is not performed, and e remains unchanged.

We use the matching definitions and notations also for types. If a type t matches another type t ′ (that is, t
 t ′),
then we also say that t ′ is an instance of t .

5.2.2. Update combinators
More complex updates can be built from rules by alternation and recursion. For example, the alternation of two

updates u1 and u2, written as u1 | u2, first tries to perform the update u1. If u1 can be applied, the resulting expression
is also the result of u1 | u2. Only if u1 does not apply, the update u2 is tried. The composition of two updates u1 and
u2 applies the two updates in that order, even if u1 can be applied. Recursion is needed to move updates arbitrarily
deep into expressions. For example, since a rule is always tried at the root of an expression, an update like 1� 2
has no effect when applied to the expression 1+(1+1). We therefore introduce a recursion operator ↓ that causes its
argument update to be applied (in a top-down manner) to all subexpressions. For example, the update ↓(1+1� 1)
applied to 1+(1+1) results in the expression 1+1. We use the recursion operator only implicitly in scope updates and
do not offer it to the user.

The update operations described thus far do not take into account the scope of identifiers; they are rather like global
search-and-replace rules. In contrast to global updates, scope updates always operate only on the uses of a symbol
introduced by a particular definition.

In a scope update, each element of a definition let v = d in e, that is, v, d , or e, can be changed. Therefore, we
need an update for each part. The update of the variable can just be a simple renaming, but the update of the definition
and of the scope can be given by arbitrarily complex updates. We use the syntax {v�v′: ud}uu for an update that
renames v to v′, changes v’s definition by ud , and all of its uses by uu . We call v�v′ the name update, ud the
definition update, and uu the use update. Note that uu is always applied recursively, whereas ud is only applied to
the root of the definition. However, to account for recursive let definitions we apply uu also recursively to the result
obtained by the update ud . We use x to range over variables (v) and metavariables (m), which means that we can
use a scope update to update specific bindings (by using an object variable) or to apply to arbitrary bindings (by
using a metavariable). Either one of the variables (but not both) can be missing from the name update. These special

210 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

cases describe the creation (�v′) or removal (v�) of a binding. In both cases, the definition update is replaced by an
expression, which is optional for the binding creation but required in the case of binding removal because it is needed
to replace all occurrences of the removed variable. Note that e′ must not contain the variable that is to be removed. In
the case of binding creation, for example, when applying {�v = e′}uu to e, e′ is optional and is used, if present, to
create an expression let v = e1 in e2 where e1 is the result of applying uu to e′ and e2 is the result of applying uu to
e. Otherwise, that is, if e′ is missing, the result is λv.e2.

At first sight it seems that we also need a combinator to generate fresh variables in order to rename variables and
to create new definitions. However, we know exactly all the places of an update where fresh variables are required,
namely only in a renaming update or a binding creation, so that we can integrate the generation of fresh variables into
the semantics for updates.

The syntax of updates is summarized in Fig. 7.

u ::= ι Identity
| p� p Rule
| {x�x : u}u Change Scope
| {�v[= e]}u Insert Scope
| {x�: e}u Delete Scope
| u ; u Composition
| u | u Alternative
| ↓u Recursion

Fig. 7. Syntax of updates.

We use an abbreviated notation for scope updates that do not change names, that is, we write {v: ud}uu instead of
{v�v: ud }uu . The updates of either the defining expression or the scope can be empty, which means that there is no
update for that part. The updates are then simply written as {v�v′: ud} and {v�v′}uu , respectively, and are equivalent
to updates {v�v′: ud}ι and {v�v′: ι}uu , respectively.

Let us consider some examples. We already have seen examples for rules. A simple example of change scope is an
update for consistently renaming variables

{v�w}v�w

This update applies to a lambda- or let-bound variable v and renames it and all of its occurrences that are bound by
that definition to w. The definition of v is usually not changed by this update. However, if v has a recursive definition,
references to v in the definition will be changed to w, too, because the use update is also applied to the definition of a
symbol.

Recall the function generalization update from Section 2. A generalization of a function f can be expressed by the
following update u.

{f:{�w}1�w}f�f 1

u is a change-scope update for f, which does not rename f, but whose definition update ({�w}1�w}) introduces a
new variable w and replaces all occurrences of a particular constant expression (here 1) by w in the definition of f.
The use update of u, that is, f� f 1, ensures that all uses of f are extended by supplying a new argument for the
newly introduced parameter. Here we use the same expression that was generalized in f’s definition, which preserves
the semantics of the program. Although we can express a particular function generalization with the update calculus,
the definition of a reusable update function like genFun requires the extension of the update calculus by abstraction,
application, and variables, which is not difficult and which we have omitted here for simplicity.

To express the size update example in the update calculus we have to extend the object language by constructors
and case expressions and the update calculus by corresponding constructs, which is rather straightforward (in fact,
we have already implemented it in our prototype). An interesting aspect is that each alternative of a case expression
is a separate binding construct that introduces bindings for variables in the pattern. The scope of the variables is the
corresponding right-hand side of the case alternative. Since these variables do not have their own definitions, we can
represent each case alternative by a lambda abstraction—just for the sake of performing an update. A case update

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 211

can then be translated into an alternative of change-scope updates. For example, the translation of the size update
yields:

{Node:m � Int->m}
({Node}({�s}Node�Node (succ s));
{Leaf}Node�Node 1);

Node�Node 1

The outermost change-scope update expresses that the definition of the Node constructor, which is a type bound to the
metavariable m, is extended by Int. The use update is an alternative whose second part expresses to extend all Node
expressions by 1 to accommodate the type change of the constructor. The first alternative is itself an alternative of two
change-scope updates. (Since the ; operation is associative, the brackets are strictly not needed.) The first alternative
applies to definitions of Node which (by way of translation) can only be found in lambda abstractions representing
case alternatives. The new-scope update will add another lambda-binding for s, and the use update extends all Node
expressions by the expression succ s. The other alternative applies to lambda abstractions representing Leaf patterns.

This last example demonstrates that the presented update calculus is not restricted to deal just with lambda
abstractions or let bindings, but rather can serve as a general model for expressing changes to binding constructs
of all kinds.

5.2.3. Semantics of updates
In the definition of the semantics for alternative updates and recursion we need to know whether an update u is

applicable to an expression e, which is the case if the semantics can be used to derive a result expression, that is,
∃e′ : [[u]](e) = e′. Otherwise, when the semantics gets stuck, we say that u is not applicable and write [[u]](e) = ⊥.
As an abbreviation for the semantics rules we use the update operation “try u” that tries to apply the update u to an
expression e and returns the possibly changed expression if u is applicable to e. However, if u is not applicable to e,
try u yields e.

Generally, an update u is applied to an expression e recursively matching the structure of u and e. In the procedure
of application, there are three issues we need to consider.

First, at the point where a rule is applied to an expression, the rule is applicable only if all the free (object) variables
on the left-hand side of the rule are in scope of a enclosing change or delete update. Consider, for example, the rule
f� f 1, which is the use update of the function generalization. Here, f is a free variable of the rule and is contained
in the scope of the current update because the scope update extends the scope by f. We denote this set of variables as
ρS .

We also have to consider the set of variables that are bound by the expression being updated but that are not in
scope of the update, because in the semantics definition we have to ensure that newly introduced bound variables are
fresh, that is, they must not yet be bound in the updated expression. We denote this set of variables as ρB . As an
example consider the situation when we apply the function generalization to a function definition for f that is local
to a function definition for w. In this case, it might happen that f’s definition contains a reference to w. Now if we
extended f’s definition by a new parameter w, all those references would be illegally captured by that parameter and
would not refer to the enclosing w anymore. To prevent this name capture, we have to ensure that we use w only if it
is not bound in the current program to be updated, otherwise we have to rename w appropriately. We also require that
all the free (object) variables of the right-hand side of a rule are contained in the set of bound variables to prevent the
creation of unbound variables.

Moreover, consider the case when a change or delete update is applied. If the bound variable is a metavariable, we
need to match the metavariable against the object variable in the expression and replace all the occurrences of that
metavariable in the update by the object variable. If the bound variable is an object variable, it has to be the same
variable in the expression.

We define the semantics in two steps. In the first step, we instantiate a general update based on the expression being
applied, checking bound variables, replacing metavariables, and renaming fresh variables. In step two, this update is
applied to the expression according to the semantics defined in Fig. 8.

Instantiation takes place in a context of the two aforementioned sets of variables represented by a two-set partition
ρ = (ρS, ρB) where ρS contains the variables that are in scope of the update and ρB contains the variables that are

212 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

bound in the updated expression but that are not in scope of the update. We use two operations for moving variables
between ρS and ρB :

(ρS, ρB)〈v := (ρS ∪ {v}, ρB − {v})
(ρS, ρB)〉v := (ρS − {v}, ρB ∪ {v})

We use the notation v〉e
ρw to express the fact that w is a variable that is fresh with respect to the expression e and

the environment ρB . This is a variable that neither is bound in e nor occurs in the current context (ρB). If v has this
property, w = v, otherwise an appropriate name will be constructed (for example, by repeatedly appending a prime
symbol until a fresh symbol is found). It is not a problem when v occurs in ρS , because in that case the v in ρS will be
either renamed or deleted. We use the abbreviation v〈x�x ′〉e

ρw that expresses the condition that x matches the bound
variable v and the fresh variable generated from x ′ is w. This predicate formalizes two steps of a scope update: (1)
the initial matching of the variable v to which the scope update is applied, and (2) providing a fresh variable, which
might be w, to rename w. The predicate is defined as follows.

v〈x�x ′〉e
ρw ⇐⇒ x

σ
v ∧ σ(x ′)〉e

ρw

The predicate covers two cases: First, if x is a metavariable, say m, we require that if x ′ is a metavariable, then
x ′ = x = m. In this situation we obtain v〈m�m〉e

ρv, which is always satisfied. Second, x is the object variable v and
x ′ = v′ (where v′ might be v) or x = m and x ′ = v′. Then v〈v�v′〉e

ρw is satisfied by v′〉e
ρ = w.

We also use the notations [v〈x]u for the update u with all free left occurrences of x substituted by v, [w〉x ′]u for
the update u with all free right occurrences of x ′ substituted by w, and [v〈x, w〉x ′]u for [w〉x ′]([v〈x]u).

The judgment u
e−→
ρ

u′ denotes that update u is instantiated to u′ with respect to the expression e under the context
ρ. For a rule update, it is necessary to ensure the free variables are bound:

FV(l) ⊆ ρS FV(r) ⊆ ρB

l� r
e−→
ρ

l� r

In the case of change updates, metavariables, if any, will be matched and replaced. Newly introduced variables will
be renamed if necessary:

v〈x�x ′〉(e d)
ρ w [v〈x, w′〉x ′]ud

(e d)−→
ρ〈v〉w u′

d [v〈x, w′〉x ′]uu
e−→

ρ〈v〉w u′
u

{x�x ′: ud}uu
let v = d in e−→

ρ
{v�w: u′

d }u′
u

Note that the use of (e d) in the above rule is to ensure the freshness of w with respect to both e and d , because a
let expression can bind a recursively defined function. Two more rules are needed for instantiating a change update,
which are for beta redex and lambda abstractions. They only differ in that d is not needed in the first two judgments.
Instantiation for insert and delete updates are also very similar and omitted. After instantiation, the update is applied
based on the rules defined in Fig. 8.

The semantics definition of top-down recursion uses an auxiliary operation μ that applies updates only on recursive
occurrences of expressions.

We demonstrate the semantics with a small example. Let u = {f:ud}uu where ud = {�w}1�w and uu = f�f 1
and let e0 = let d in e where d = λv.v+1 and e = f 3. We first show that the result of instantiating u with regard
to e0 and an empty context (∅, ∅) is u itself. That is,

u
e0−→

(∅,∅)
u

This can be inferred from

1. f〈f�f〉(e d)
(∅,∅)f

2. [f〈f, f〉f]({�w}1�w) = {�w}1�w and {�w}1�w
e−→

({f},{f}) {�w}1�w

3. [f〈f, f〉f](f�f 1) = f�f 1 and f�f 1
d−→

({f},{f}) f�f 1

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 213

�[[]]
l

σ
e σ(r) = e′

[[l� r]](e) = e′
ι[[]]

[[ι]](e) = e

{:}chg
[[]]

[[ud]](d) = d ′ [[↓uu]](e) = e′

[[{v�w: ud}uu]]((λv.e) d) = (λw.e′) d ′
[[↓uu]](e) = e′

[[{v�w: ι}uu]](λv.e) = λw.e′

[[↓uu]]([[ud]](d)) = d ′ [[↓uu]](e) = e′

[[{v�w: ud}uu]]ρ(let v = d in e) = let w = d ′ in e′

{:}ins[[]]
[[↓u]](e) = e′

[[{�v = d}u]](e) = let v = d in e′
[[↓u]](e) = e′

[[{�v}u]](e) = λv.e′

{:}del[[]]
[[↓(u ; v� e0)]](e) = e′

[[{v�: e0}u]](let v = d in e) = e′
[[↓(u ; v� e0)]](e) = e′

[[{v�: e0}u]](λv.e) = e′

|[[]]
[[u1]](e) = e′

[[u1 | u2]](e) = e′
[[u1]](e) = ⊥ [[u2]](e) = e′

[[u1 | u2]](e) = e′

;[[]]
[[try u1]](e) = e′ [[u2]](e′) = e′′

[[u1 ; u2]](e) = e′′

↓[[]]
[[try u]](e) = e′ [[μu]](e′) = e′′

[[↓u]](e) = e′′
μ[[]]

[[try u]](v) = e

[[μu]](v) = e

[[↓u]](e) = e′

[[μu]](λv.e) = λv.e′

[[↓u]](e1) = e′
1 [[↓u]]ρ(e2) = e′

2

[[μu]](e1 e2) = e′
1 e′

2

[[↓u]](d) = d ′ [[↓u]](e) = e′

[[μu]](let v = d in e) = let v = d ′ in e′

TRY[[]]
[[u]](e) = e′

[[try u]](e) = e′
[[u]](e) = ⊥

[[try u]](e) = e

Fig. 8. Semantics of updates.

We then show that

[[u]](e0) = let f=λw.λv.v+w in f 1 3

This can be obtained by applying {:}chg
[[]] and the following premises.

4. [[↓uu]]([[↓ud]](λv.v+1)) = λw.λv.v+w
5. [[↓uu]](f 3) = f 1 3

(4) can be further obtained by showing:

6. [[ud]](λv.v+1) = λw.λv.v+w
7. [[uu]](λw.λv.v+w) = λw.λv.v+w

(6) is obtained by applying {:}ins[[]] with the following premises.

8. [[↓1� w]](λv.v+1) = λv.v+w

214 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

(8) can further be obtained by applying ↓[[]] to the following premises:

9. [[try (1� w)]](λv.v+1) = λv.v+1

10. [[μ(1� w)]](λv.v+1) = λv.v+w

(9) is a simple application of TRY[[]] and�[[]]. (10) can be obtained by the repeatedly applying the congruence rules
of μ[[]] and ↓[[]].

The goal of the update calculus is to provide a means for updating programs without introducing type errors.
However, there is no practical way to analyze the semantics and logic of the object program. Logic errors might be
introduced in the updated program, and it is the programmer’s responsibility to manually change the updated program
to eliminate such logic errors. For example, in the update introduced in Section 2, succ s is introduced as a new first
argument to constructor Node, because this update is intended to be applied to the insert function that increases the
size of the node by 1. However, imagine an insert function that does not insert duplicate elements. In this case, the
size of the node does not always increase, so that some Node expressions might receive incorrect size values after the
update.

5.3. A type system for the update calculus

The goal of the type system for the update calculus is to find all possible type changes that an update can cause to
an arbitrary object program. We show that if these type changes “cover” each other appropriately, then the generated
object program is guaranteed to be type correct.

5.3.1. Type changes

Since updates denote changes of expressions that may involve a change of their types, the types of updates are
described by type changes. A type change (δ) is essentially given by a pair of types (t�t), but it can also be an
alternative of type changes (δ|δ). For example, the type change of the update 1� True is Int� Bool, while the type
change of 1� True | odd� 2 is Int� True|Int->Bool� Int.

Recursively applied updates might cause type changes in subexpressions that affect the type of the whole
expression. Possible dependencies of an expression’s type on that of its subexpressions are expressed using the two
concepts of type hooks and context types. For example, the fact that the type of odd 1 depends on the type of 1 is
expressed by the hook Int↪→Bool, the dependency on odd is Int->Bool↪→Bool. The dependency on the whole
expression is by definition empty (ε), and a dependency on any expression that is not a subexpression is represented
by a “constant hook” ↪→Bool.

The application of a type hook C to a type t yields a context type denoted by C〈t〉 that exposes t as a possible type
in a type derivation. The meaning of a context type is given by the following equations.

ε〈t〉 = t
↪→t2〈t〉 = t2

t1↪→t2〈t〉 =
{

t2 if t
 t1
error otherwise

The rationale behind context types is to capture changes of types that possibly happen only in subexpressions and do
not show up as a top-level type change. Context types are employed to describe the type changes for use updates in
scope updates. For example, the type change of the update u′ = 1� w is Int� a. However, when u′ is used as a use
update of a scope update u = {�w}1� w, it is performed recursively, so that the type change is described using a
context type C〈Int〉�C〈a〉.

To describe the type change for u, the type for the newly introduced abstraction has to be taken into account. Here
we observe that the type of w cannot be a in general, because w might be, through the recursive application of the rule,
placed into an expression context that constrains w’s type. For example, if we apply u to odd 1, we obtain λw.odd w
where w’s type has to be Int. In general, the type of a variable is constrained to the type of the subexpression that it
replaces. We can use a type hook that describes a dependency on a type of a subexpression e to express a constraint

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 215

δ ::= τ� τ
∣∣ δ|δ Type change

τ ::= t | τ → τ | C〈τ 〉 | τ|C Extended type
C ::= ε | ↪→t | t↪→t Type hook

Fig. 9. Type changes.

on a type variable that might replace e. Such a constrained type is written as a|C . Its meaning is to constrain a type
variable a by the type of a subexpression (represented by the left part of a type hook):

a|t1↪→t2 = t1
t|↪→t2 = t

t|ε = t

The type change for u is therefore given by C〈Int〉� a|C->C〈a|C〉.
To see how type hooks, context types, and constrained types work, consider the application of u to 1, which yields

λw.w. The corresponding type change Int� a->a is obtained using the type hook ε. However, applied to odd 1,
u yields λw.odd w with the type change Bool� Int->Bool, which is obtained from the type hook Int↪→Bool.
As another example consider the renaming update u = {v� w}v� w. For the update we obtain a type change
C〈a|C〉�C〈b|C〉, which is the same as C〈a|C〉�C〈a|C〉 because the scopes of the two type variables are distinct.
The type hook C results for the same reason as in the previous example. Applying u to the expression λv.1 yields
λw.1 with a type change a->Int� a->Int, which is obtained by using the type hook ↪→a->Int. Similarly, λv.v is
mapped by u into λw.w with a type change a->a� a->a, which is an instance of u’s type change for the context ε.
Finally, u changes λv.odd v to λw.odd w with a type change Int->Bool� Int->Bool. This type change is u’s type
change specialized for the type hook Int↪→Int->Bool.

The syntax of hooks, contexts, and type changes is defined in Fig. 9. To summarize, a type change can be given by
a pair of simple types t� t or by a pair of the more general context or constrained types (“extended types”), that is,
τ� τ . A type change can also be given by an alternative of two type changes δ|δ.

To explain the meaning of nested contexts, we define the composition of type hooks as follows.

ε·C := C
C·ε := C

t1↪→t2·t ′1↪→t ′2 :=
{

t ′1↪→t2 if t ′2
 t1 ∨ t1 is empty
error otherwise

It is easy to verify that with this definition we obtain the following two equalities.

C·C ′〈t〉 = C〈C ′〈t〉〉
t|C·C ′ = (t|C)|C ′

The effect is that the outermost hooks affect context types, whereas the innermost hooks are relevant for constrained
types. Finally, since the inference rules generate, in general, context constraints for arbitrary type changes, we have to
explain how contexts extend to type changes and alternative type changes.

C〈τ� τ ′〉 := C〈τ 〉�C〈τ ′〉
C〈δ|δ′〉 := C〈δ〉|C〈δ′〉

The definitions of free variables and generic instances extend naturally to type hooks, context types, and constrained
types.

Types and type changes can be applicative instances of one another. This relationship says that a type t is an
applicative instance of a function type t ′ → t , written as t

→≺ t ′ → t . The rationale for this definition is that two updates
u and u′ of different type changes t1� t2 and t ′1� t ′2, respectively, can be considered well typed in an alternative u | u′
if one type change is an applicative instance of the other, that is, if t1� t2

→≺ t ′1� t ′2 or t ′1� t ′2
→≺ t1� t2, because in

that case one update is just more specific than the other. Consider, for example, the following update.

{f: succ� plus}f m� f m 1 | f� f 1

216 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

The first rule of the alternative f m� f m 1 has the type change Int� Int whereas the second rule f� f 1 has
the type change Int->Int�Int->Int. Still both updates are compatible in the sense that the first rule applies to
more specific occurrences of f than the second rule. This fact is reflected in the type change Int� Int being an
applicative instance of Int->Int� Int->Int. The relationship is defined in Fig. 10.

REFL→≺
τ

→≺ τ
C→≺

τ
→≺ τ ′

C〈τ 〉 →≺ C〈τ ′〉
τ

→≺ τ ′

τ|C
→≺ τ ′|C

→→≺
τ

→≺ τ2

τ
→≺ τ1 → τ2

�→≺
τ1

→≺ τ ′
1 τ2

→≺ τ ′
2

τ1�τ2
→≺ τ ′

1�τ ′
2

|→≺
τ1�τ2

→≺ τ ′
1�τ ′

2 δ
→≺ δ′

τ1�τ2|δ →≺ τ ′
1�τ ′

2|δ′

Fig. 10. Applicative instance.

5.3.2. Type-change inference
The type changes that are caused by updates are described by judgments of the form Δ � u :: δ where Δ is a set

of type-change assumptions, which can take one of three forms:

(1) x�x ′ :: τ�τ ′ expresses that x of type τ is changed to x ′ of type τ ′. The following constraint applies: if x ′ is a
metavariable, then x ′ = x and τ ′ = τ .

(2) v :r τ expresses that v is a newly introduced (object) variable of type τ .
(3) x :� τ expresses that x is an (object or meta) variable of type τ that is only bound in the expression to be changed.

Type-change assumptions can be extended by assumptions using the “comma” notation as in the type system.
The type-change system builds on the type system for the object language. In the typing rule for rules we make

use of projection operations that project on the left and right part of a type-change assumption. In computing these
projections we have to map extended types τ to simple types t , which is performed by dropping potential hook
variables and constraints as follows.

�t� = t
�C〈τ 〉� = �τ�
�τ|C� = �τ�
�τ1 → τ2� = �τ1� → �τ2�

Now the projections are defined as follows:

Δ� := {x : �τ� | x�x ′ :: τ�τ ′ ∈ Δ} ∪ {x : �τ� | x :� τ ∈ Δ}
Δr := {x ′ : �τ ′� | x�x ′ :: τ�τ ′ ∈ Δ} ∪ {x ′ : �τ ′� | x ′ :r τ ′ ∈ Δ}

The type-change rules are defined in Fig. 11. The rules for creating or deleting a binding have to insert a function
argument type on either the right or the left part of a type change. This type insertion works across alternative type
changes; we use the notation τ→

�
δ (τ→

r
δ) to extend the argument (result) type of a type change to a function type.

The definition is as follows.

τ→
�

(τl� τr) := (τ → τl)� τr

τ→
r

(τl� τr) := τl� (τ → τr)

τ→
�

(δ|δ′) := (τ→
�

δ)|(τ→
�

δ′)
τ→

r
(δ|δ′) := (τ→

r
δ)|(τ→

r
δ′)

The inference rule�� connects the type system of the underlying object language (lambda calculus) with the type-
change system. This rule is rather simple since rule updates cannot contain binding constructs, which means that all
variables used in either e or e′ have to be brought into Δ by scope updates.

We demonstrate the type-change rules by a small example. Again, let u = {f:{�w}1�w}f�f 1. We will now
show that

∅ � u :: C〈Int� Int〉

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 217

��
Δ� � p : �τ� Δr � p′ : �τ ′�

Δ � p� p′ :: τ� τ ′
ι�

Δ � ι :: τ� τ

|�
Δ � u :: δ Δ � u′ :: δ′ δ

→≺ δ′′ δ′ →≺ δ′′

Δ � u | u′ :: δ′′
Δ � u :: δ Δ � u′ :: δ′

Δ � u | u′ :: δ|δ′

;�
Δ � u1 :: τ� τ Δ � u2 :: τ� τ ′

Δ � u1 ; u2 :: τ� τ ′

{:}chg�
Δ, x�x ′ :: τ�τ ′ � ud :: τ� τ ′ Δ, x�x ′ :: τ�τ ′ � uu :: δ

Δ � {x�x ′: ud}uu :: C〈δ〉

{:}ins�
Δr , w : τ � e : τ Δ, w :r τ � u :: δ

Δ � {�w = e}u :: C〈δ〉
Δ, w :r τ � u :: δ

Δ � {�w}u :: τ→
r

C〈δ〉

{:}del�
Δ, x :� τ � u :: δ Δr � e : τ

Δ � {x�: e}u :: τ→
�

C〈δ〉

Fig. 11. Type-change system.

This type change can be inferred from {:}chg� and the following premises:

1. f�f :: C〈Int〉�Int → C〈Int〉 � {�w}1� w :: C〈Int〉� Int → C〈Int〉
2. f�f :: C〈Int〉�Int → C〈Int〉 � f� f 1 :: Int� Int

(2) results from an application of��, and (1) can be obtained by applying {:}ins� and the following premise:

3. w :r Int � 1� w :: Int� Int

which is, again, simply an application of��.
One major limitation to the update calculus is the composition. It is not practical to foresee the object program

when we analyze the updates statically. Therefore we do not know how the first update will change the program.
Hence, in order to guarantee the safety of the update, we require that the first update in a composed update does not
have a type change.

5.3.3. Soundness of the update type system
In this section we define a class of well-structured updates that will preserve the well-typing of transformed object-

language expressions. An update that, when applied to a well-typed expression, yields again a well-typed expression is
called safe (see Section 4). In other words, we will show that typeable well-structured updates are safe. The structure
condition captures the following two requirements:

(A) An update of the definition of a symbol that causes a change of its type or its name is accompanied by an update
for all the uses of that symbol (with a matching type change).

(B) No use update can introduce a non-generalizing type change, that is, for each use update that has a type change
τ�τ ′|δ we require that �τ� is a generic instance of �τ ′� or that one extended type, τ or τ ′, is an applicative
instance of the other.

Condition (A) prevents ill-typed applications of changed symbols as well as unbound variables whereas (B) prevents
type changes from breaking the well typing of their contexts. An intuitive explanation of why these conditions imply
safety for well-typed updates can be obtained by looking at all the possible ways in which an update can break

218 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

the type correctness of an expression and how these possibilities are prevented by the type system or the well-
structuring constraints. We can find out about possible type errors by looking at the type system for lambda calculus
(see Fig. 5): Essentially, type inference fails either in the rule VAR� if the type for a variable cannot be found in the
type environment or in the rule APP� if the parameter type of a function does not agree with the type of the argument
to which it is applied. On the other hand, the rules ABS� and LET� eventually refer to VAR� and APP� to ensure typing
constraints that might fail. Let us now consider how updates can possibly introduce these errors.

Unbound variables. The free-variable problem can be introduced into an expression by an update that renames a
bound variable without accordingly renaming all references to that variables; unrenamed variables might become free,
thus leading to an error in the VAR� rule, or they might be bound by an enclosing λ or let and thus might change the
type that is obtained by the VAR� rule, thus breaking eventually the APP� rule. These kinds of changes are prevented
by condition (A) and the type-change rules. Free variables could also be introduced by rules, such as 1� x (where x
is not bound). However, these kinds of updates are prevented by the type-change system since we cannot derive a type
change for 1� x when we have no assumption about x in the type-change environment.

Incorrect application. An application can become ill typed if the type of the function or the argument changes
without a corresponding change of the other part of the application. Types can be changed by rules that replace
objects of one type by objects of another type as in 1� True. Such a change is only problematic if it is applied
to a subexpression; otherwise, a rule cannot change only one part of an application. However, since application to
subexpressions can only happen through the recursion in use updates, such an update is not possible since it violates
the condition (B) (in the example: Int is not an instance of Bool). Types can also be changed by change-scope
updates. By just changing the type of a variable, say v from τ to τ ′, we can break the type correctness in two different
ways: applications of v as well as contexts of v (that is, applications of other expressions to v) can become ill typed.
Both cases are prevented by conditions (A) and (B) together with the type-change system, because (i) having an update
u = v� e ensures that all occurrences of v are changed (not necessarily by this rule, but no occurrence of v is left
unchanged), and (ii) the type change τ� τ ′ derived by the type system is required to be “generalizing” (that is, τ ′
 τ ,
see below), which ensures that e fits all contexts typewise.

Let us now express the well-structuring constraint more formally. We first identify some properties of change-scope
updates. Let u = {x�x ′: ud}uu and let x�x ′ :: τ|C�τ ′|C be the assumption that has been used in rule {:}chg� to derive
its type change, say C〈τ1�τ2|δ〉.
(1) u is self-contained iff x �= x ′ ∨ τ �= τ ′ =⇒ ∃u′, u′′, p such that uu = u′ | x� p | u′′.
(2) u is smooth iff τ ′
 τ or τ

→≺ τ ′ or τ ′ →≺ τ .
(3) u is (at most) generalizing iff τ2
 τ1.

An update u is well structured iff it is well typed and all of its contained change-scope updates are self-contained,
smooth, and generalizing.

When we consider the application of a well-structured update u to a well-typed expression e, the following two
cases can occur: (1) u does not apply to e. In this case e is not changed by u and remains well typed. (2) u applies to
e and changes it into e′. In this case we have to show that from the result type of u we can infer the type of e′. We
express this result in the following theorem.

For the theorem, we need the notion of type-conform applicability. A change-scope update u = {x�x ′: ud}uu or a
delete-scope update u = {x�: e0}uu , is type-conform applicable to an expression e = (λv.e′) d or e = let v = d in e′
if

(a) u is applicable to e
(b) ↓uu is type-conform applicable to e′,
(c) ud is type-conform applicable to d , and
(d) Γ , v : t � e′ :: t ′ ∧ Γ � d : t =⇒ τ|C = t where τ|C refers to the type of x used when the type change of u is

inferred, that is, it is the same τ|C as in the rules {:}chg� and {:}del� from Fig. 11.

Other updates u are type-conform applicable to e if they are applicable to e.

Theorem 1 (Soundness). If u is well structured and type-conform applicable to e, then:

Δ � u :: C〈τ1�τ2|δ〉 ∧ Δ� � e : t1 =⇒ Δr � [[u]](e) : t2

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 219

where t2 = C〈τ2〉 for some context C〈〉.
Proof. The proof is by induction over the structure of e and u. First, consider the case e = (λv.e0) d and
u = {x�x ′: ud}uu . We can assume

Δ � u :: C〈τ1�τ2|δ〉 and (1)

Δ� � e : C〈τ1〉. (2)

From (2) and rule APP� from the object-language type system it follows that

Δ� � d : t and (T1)

Δ� � λv.e0 : t → C〈τ1〉 (T2)

for some type t . Next, the first rule {:}chg
[[]] from the semantics of updates tells that [[u]]ρ(e) = (λv.e′) d ′ where

v〈x�x ′〉e
ρw (M)

[[[v〈x, w〉x ′]ud]]ρ(d) = d ′, and (U1)

[[↓[v〈x, w〉x ′]uu]]ρ〈v〉w(e0) = e′ (U2)

From (1) and the type-change rule {:}chg� we know that

Δ, x�x ′ :: τ|C�τ ′|C � ud :: τ|C� τ ′|C , and (C1)

Δ, x�x ′ :: τ|C�τ ′|C � uu :: τ1�τ2|δ. (C2)

where we can substitute v for x and w for x ′ due to (M). Since u is type-conform applicable to e, we know that
τ|C = t . Therefore, we can conclude from (C1), (T1), (U1), and the induction hypothesis

Δr , w : τ ′|C � d ′ : τ ′|C
Since w /∈ d ′, we also have:

Δr � d ′ : τ ′|C (*)

Now let us consider uu . First of all, from (M) and (C2) we can conclude

Δ, v�w :: τ|C�τ ′|C � ↓uu :: C〈τ1�τ2|δ〉 (C3)

From (T2) and rule ABS� we know that

Δ�, v : t � e0 : C〈τ1〉
Since ↓uu is well structured and type-conform applicable to e0, we can apply the theorem inductively and obtain

Δr , w : τ ′|C � e′ : C〈τ2〉
which is the same as

Δr � λw.e′ : τ ′|C → C〈τ2〉
Together with (*) it follows from rule APP� that

Δr � (λw.e′) d ′ : C〈τ2〉
which proves this case.

Next, consider the case e = let v = d in e0 and u = {v�w: ud }uu , which is very similar to the previous case, but
slightly more involved due the possible recursion. We can assume

Δ � u :: C〈τ1�τ2|δ〉 and (1)

Δ� � e : t1. (2)

220 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

From (2) and rule LET� of the object-language type system it follows that

Δ�, v : t � d : t and (T1)

Δ�, v : ∀ā.t � e0 : t1 (T2)

for some type t . Next, the last {:}chg
[[]] rule from the semantics of updates tells that [[u]](e) = (λv.e′) d ′ where

[[↓uu]]([[ud]](d)) = d ′, and (U1)

[[↓uu]](e0) = e′ (U2)

Effectively, [[↓uu]]([[ud]](d)) is equivalent to [[↓uu ; ud]](d) according to the semantics definition. It can be easily
verified against the definitions that [[↓uu ; ud]](d) is well structured since u is well structured and it is type-conform
applicable to d .

From (1) and the type-change rule {:}chg� we know that

Δ, v�w :: τ|C�τ ′|C � ud :: τ|C� τ ′|C , and (C1)

Δ, v�w :: τ|C�τ ′|C � uu :: τ1�τ2|δ. (C2)

Since u is type-conform applicable to e, we know that τ|C = t . Therefore, we can conclude from (C1), (T1), (U1),
and the induction hypothesis

Δr , w : τ ′|C � d ′ : τ ′|C (*)

Now let us consider uu . First, from (M), (C2) and type-change rule ↓�, we can conclude

Δ, v�w :: τ|C�τ ′|C � ↓uu :: C〈τ1�τ2|δ〉 (C3)

From (T2) and rule LET� we know that

Δ�, v : t � e0 : t1

Since ↓uu is well structured and type-conform applicable to e0, we can apply the theorem inductively and obtain

Δr , w : τ ′|C � e′ : t2

by rule LET�, together with (*), we can conclude that

Δr � let w = d ′ in e′ : t2

which proves this case. Other cases can be proved similarly. �

Theorem 1 expresses that the derivation of a type change that includes an alternative τ�τ ′ ensures for any
expression e of type τ that u transforms e into an expression of type τ ′. We have to use τ in the theorem because the
type change for u is generally given by context types. For a concrete expression e, the type inference will fix any type
hooks, which allows τ to be simplified to a type t .

Let us consider the safety of some of the presented example updates. The function generalization update from
Section 5.2.2 is safe, which can be checked by applying the definitions of “well structured” and the rules of the type-
change system. The first size update (Section 2) is also safe, although to prove it we need the extension of lambda
calculus by constructors and case expressions. In contrast, the second size update is not safe since the case update
will be applied only to the definition of insert (and not to other functions). The lambda calculus updates are safe;
however, the updates might leave some functions that use expressions of the Lam data type unexpanded. Finally, the
second size update is safe for programs that only use Node expressions in a function insert. Similarly, programs
that use Lam expressions only in a function eval, the lambda calculus updates do not cause non-exhaustive case
expressions. We discuss this aspect briefly in the next section when we talk about extensions of the system.

6. Future work

There are several directions for future work. Regarding the presented calculus, we believe that the following aspects
are most promising with respect to extending its expressiveness and usefulness.

M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222 221

Named type changes. Currently, the type-change system only reports a possible change for the result expression.
For larger updates it would be interesting to obtain, for example, renamings and type changes for all (or at least all
non-local) definitions. This extension seems to be orthogonal to the current system and not difficult to realize.

Conditional update safety. The well-structuring conditions that are required to guarantee safety of updates are rather
strict so that some useful program updates would not be classified as safe. However, in many situations, “complete”
safety is not mandatory. Instead, a form of conditional safety is sufficient. For example, the second size update and the
lambda calculus update could be considered to be conditionally safe in the sense that type safety is preserved for those
object programs that satisfy some constraints (such as referring to non-globally updated objects only in restricted
places). This property is not as strong as unconditional safety, but it is more widely applicable and is still much better
than having no information at all.

Allowing non-generalizing type changes. Currently, well-structured updates can change symbols only to more
general types. This restriction is required to ensure type correctness because other type changes can break the well
typing of contexts, which could only be captured by requiring an update that applies to all possible contexts and
basically means to insert expressions that revert the type change. However, with the concept of conditional update
safety we might be able to relax the covering criterion.

7. Conclusions

We have argued for a structured approach to perform software changes to help improve the reliability of software
maintenance. To this end, we have proposed to perform software updates by programs in an update language that
offers type-safety preservation as a criterion that can be statically enforced. In particular, we have introduced an
update calculus together with a type-change system that can guarantee the safety of well-structured updates, that
is, well-typed and well-structured updates preserve the well typing of lambda calculus expressions. The presented
calculus can serve as the basis for type-safe update languages.

References

[1] ACM, Communications of the ACM 44 (10) (2001).
[2] G. Alkhatib, The maintenance problem of application software: An empirical analysis, Journal of Software Maintenance: Research and

Practice 1 (1992) 83–104.
[3] M.W. Bauer (Ed.), Resistance to New Technology: Nuclear Power, Information Technology, and Biotechnology, Cambridge University Press,

Cambridge, NY, 1997.
[4] L. Bergmans, M. Askit, Composing crosscutting concerns using composition filters, Communications of the ACM 44 (10) (2001) 51–57.
[5] L. Bernstein, Tidbits, ACM SIGSOFT Software Engineering Notes 18 (3) (1993) 1–55.
[6] N. Bjørner, Type checking meta programs, in: Workshop on Logical Frameworks and Meta-Languages, 1999.
[7] B. Borovanský, C. Kirchner, H. Kirchner, P.E. Moreau, C. Ringeissen, Rewriting with strategies in ELAN: A functional semantics,

International Journal of Foundations of Computer Science 12 (1) (2001) 69–95.
[8] B. Borovanský, C. Kirchner, H. Kirchner, P. E. Moreau, M. Vittek, ELAN: A logical framework based on computational systems, in: Workshop

on Rewriting Logic and Applications, 1996.
[9] P. Borras, D. Clèment, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, V. Pascual, Centaur: The system, in: 3rd ACM SIGSOFT Symp. on

Software Development Environments, 1988, pp. 14–24.
[10] B.M. Bouldin (Ed.), Agents of Change: Managing the Introduction of Automated Tools, Yourdon Press, Englewood Cliffs, NJ, 1989.
[11] T. Elrad, M. Askit, G. Kiczales, K. Lieberherr, H. Ossher, Discussing aspects of AOP, Communications of the ACM 44 (10) (2001) 33–39.
[12] M. Erwig, Programs are abstract data types, in: 16th IEEE Int. Conf. on Automated Software Engineering, 2001, pp. 400–403.
[13] M. Erwig, D. Ren, A rule-based language for programming software updates, in: 3rd ACM SIGPLAN Workshop on Rule-Based Programming,

2002, pp. 67–77.
[14] M. Erwig, D. Ren, Type-safe update programming, in: 12th European Symp. on Programming, in: LNCS, vol. 2618, 2003, pp. 269–283.
[15] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, Reading, MA, 1999.
[16] M. Hanna, Maintenance burden begging for a remedy, Datamation (April) (1993) 53–63.
[17] S. Horwitz, J. Prins, T. Reps, Integrating non-interfering versions of programs, ACM Transactions on Programming Languages and Systems

11 (3) (1989) 345–387.
[18] W.A. Howard, The formulae-as-types notion of construction, in: J.P. Seldin, J.R. Hindley (Eds.), To H.B. Curry; Essays on Combinatory

Logic, Lambda Calculus and Formalism, Academic Press, 1980, pp. 479–490.
[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G. Griswold, Getting started with AspectJ, Communications of the ACM 44 (10)

(2001) 59–65.
[20] P. Klint, A meta-environment for generating programming environments, ACM Transactions on Software Engineering and Methodology 2

(2) (1993) 176–201.

222 M. Erwig, D. Ren / Science of Computer Programming 67 (2007) 199–222

[21] P. Klint, R. Lämmel, C. Verhoef, Towards an engineering discipline for grammarware, ACM Transactions on Software Engineering and
Methodology 14 (3) (2005) 331–380.

[22] R. Lämmel, Evolution of rule-based programs, Journal of Logic and Algebraic Programming 60–61 (2004) 143–193.
[23] R. Lämmel, S. Peyton Jones, Scrap your boilerplate: A practical design pattern for generic programming, in: ACM SIGPLAN Workshop on

Types in Language Design and Implementation, 2003, pp. 26–37.
[24] R. Lämmel, S. Peyton Jones, Scrap more boilerplate: Reflection, zips, and generalised casts, in: ACM Int. Conf. on Functional Programming,

2004, pp. 244–255.
[25] R. Lämmel, J. Visser, Typed combinators for generic traversal, in: 4th Symp. on Practical Aspects of Declarative Languages, in: LNCS, vol.

2257, 2002, pp. 137–154.
[26] R. Lämmel, J. Visser, A Strafunski application letter, in: 5th Symp. on Practical Aspects of Declarative Languages, in: LNCS, vol. 2562,

2003, pp. 357–375.
[27] M.M. Lehman, Program Evolution, Academic Press, London, UK, 1985.
[28] B.P. Lientz, E.B. Swanson, Software Maintenance Management, Addison-Wesley, Reading, MA, 1980.
[29] L. Magnusson, B. Nordström, The ALF proof editor and its proof engine, in: Types for Proofs and Programs, in: LNCS, vol. 806, 1994,

pp. 213–237.
[30] P. Martin-Löf, Constructive mathematics and computer programming, in: 6th Int. Congress for Logic, Methodology and Philosophy of

Science, 1979, pp. 153–175.
[31] H. Ossher, P. Tarr, Using multidimensional separation of concerns to (Re)shape evolving software, Communications of the ACM 44 (10)

(2001) 43–50.
[32] F. Pfenning, Logical frameworks, in: A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, Elsevier Science Publishers,

Amsterdam, NL, 2001 (Chapter 21).
[33] L. Prechelt, W.F. Tichy, A controlled experiment to assess the benefits of procedure argument type checking, IEEE Transactions on Software

Engineering 24 (4) (1998) 302–312.
[34] R. Pressman, Software Engineering: A Practitioner’s Approach, 5th ed., McGraw-Hill, New York, NY, 2001.
[35] T. Reps, Algebraic properties of program integration, Science of Computer Programming 17 (1991) 139–215.
[36] T.W. Reps, T. Teitelbaum, The Synthesizer Generator: A System for Constructing Language-Based Editors, Springer-Verlag, New York, 1989.
[37] L. Rideau, L. Thèry, An interactive programming environment for ML, Rapport de Recherche 3139, INRIA, Sophia Antipolis, 1997.
[38] D. Roberts, J. Brant, Refactoring Tools, in: M. Fowler (Ed.), Refactoring: Improving the Design of Existing Code, Addison-Wesley, Reading,

MA, 1999, pp. 309–352 (Chapter 14).
[39] T. Sheard, Accomplishments and research challenges in meta-programming, in: 2nd Int. Workshop on Semantics, Applications, and

Implementation of Program Generation, in: LNCS, vol. 2196, 2001, pp. 2–44.
[40] T. Sheard, S.L. Peyton Jones, Template metaprogramming for Haskell, in: Haskell Workshop, 2002, pp. 1–16.
[41] W. Taha, T. Sheard, MetaML and multi-stage programming with explicit annotations, Theoretical Computer Science 248 (1–2) (2000)

211–242.
[42] A.A. Takang, P.A. Grubb, Software Maintenance: Concepts and Practice, Thomson Computer Press, London, UK, 1996.
[43] M.G.J. van den Brand, P. Klint, J.J. Vinju, Term rewriting with traversal functions, ACM Transactions on Software Engineering and

Methodology 12 (2) (2003) 152–190.
[44] C. Verhoef, How to implement the future, in: 26th Euromicro Conference, 2000, pp. 32–47.
[45] E. Visser, Strategic pattern matching, in: 10th Int. Conf. on Rewriting Techniques and Applications, in: LNCS, vol. 1631, 1999, pp. 30–44.
[46] E. Visser, Language independent traversals for program transformation, in: Workshop on Generic Programming, 2000, Technical Report

UU-CS-2000-19, Universiteit Utrecht.
[47] E. Visser, Stratego: A language for program transformation based on rewriting strategies, in: 12th Int. Conf. on Rewriting Techniques and

Applications, in: LNCS, vol. 2051, 2001.
[48] E. Visser, Z. Benaissa, A. Tolmach, Building program optimizers with rewriting strategies, in: 3rd ACM Int. Conf. on Functional

Programming, 1998, pp. 13–26.
[49] E. Visser, et al., The online survey of program transformation, http://www.program-transformation.org/survey.html.
[50] J. Whittle, A. Bundy, R. Boulton, H. Lowe, An ML editor based on proof-as-programs, in: 9th Int. Symp. on Programming Language

Implementation and Logic Programming, in: LNCS, vol. 1292, 1997, pp. 389–405.
[51] J. Whittle, A. Bundy, H. Lowe, An editor for helping novices to learn standard ML, in: 14th Int. Conf. on Automated Software Engineering,

1999.

http://www.program-transformation.org/survey.html

	An update calculus for expressing type-safe program updates
	Introduction
	Current problems with software maintenance
	Improving the software update process
	The structure of this paper

	Examples of update programming
	Related work
	Safety of program updates
	An update calculus for lambda calculus
	The object language
	The update calculus
	Rules
	Update combinators
	Semantics of updates

	A type system for the update calculus
	Type changes
	Type-change inference
	Soundness of the update type system

	Future work
	Conclusions
	References

