Abstract Syntax and Semantics of Visual Languages

Martin Erwig
FernUniversitat Hagen, Praktische Informatik 1V
58084 Hagen, Germany
erwig@fernuni-hagen.de

Abstract

The efective use of visual langges equires a pecise undestanding of their meaning
Moreover, it is impossible to ve poperties of visual languges like soundness ofansforma-
tion rules or corectness esults without having a formal langgea definition. Although this
sounds obvious, it is surprising that only little work has been done about the semantics of visual
languages, and een wose there is no gnerl frameavork available for the semantics specifi-
cation of diferent visual languges. V& present sut a framevork that is based on ather gn-
eral notion of abstct visual syntax. Thisdmevork allows a Igical as well as a denotational
approad to visual semantics, and it facilitates the formedgsoning about visual langges
and their poperties. W illustrate the concepts of theqposed apmad by defining absact
syntax and semantics for the visual langemVEX, Show ancell, and Euler Cicles. V& dem-
onstrate the semantics in action byoping a rule for visual @asoning with Euler Cales and
by showing the coectness of a Show andllTprogram.

1. Introduction

Investicating the semantics of visual languages is important f@rakreasons: First of all, a
precise definition of semantics is indispensable for a thorough understandiygafiguage.
This in turn is important to appraise a visual language and to compare it to others. Furthermore,
this facilitates the deelopment of gtensions or a re-design of the language. Seconihda
precise specification of a languageemantics, it is in mgrcases only a small stepatard an
implementation, for instance, denotational semantics can be translated adn@dinv into
functional languages, so that an interpreter for the language is immediaéable [17].
Third, with a precise semanticgnous properties of languages can bevgdo In particular
we can prege syntactic transformations to be sound with respect to the semanticgrfple,
B-reduction in VEX can be sk to realize function application, or rules for syllogistic rea-
soning in Euler diagrams can be y&d sound. Finallya clear semantics of visual languages is
needed to inggrate them correctly into otherveronments. This especially applies to heteroge-
neous or multi-paradigm languages, see %angple [10].

Despite the reasons just mentioned, research on visual language semantics is rather spo-
radic. In particulgrthere is no general franverk available which could be used for the formal
specification of visual languages. This situation is quiferdift in tetual languages: there we
can choose among anety of diferent semantic formalisms, such as denotational semantics,
structured operational semantics, action semantrodyieg algebras, etc., and some of these
could, in principle, be empyad for visual languages as well. A possible reasonthis does
not happen might be that some of the components that are necessary for a semantiogkframe
are missing. dking denotational semantics as aaraple, we obseevsthat — at least aarfas

visual programming languages are concerned — the necessary concepts of semantic function
and semantic domain can be used as in tkedk case. Haever, the third component,
abstract syntax, cannot be simply tah for visual languages, and there is noejeant notion

for visual languages yet.

So in the sequel we will first introduce a concept of abstract visual syntax in Section 2
before we demonstrate the specification of logical and denotational semantics in Sections 3 and
4 by two simple @amples. In Section 5 we skdhat also more comptevisual languages can
be dealt with by the presented approach. Section 6 comments on redake@dmnd Section 7
presents some conclusions.

2. Abstract Visual Syntax

A textual languagé is a set of stringsver an alphabeh, that is,L [J A*. The symbols of an
sentence (or ard)w O L are only related to each other by a linear ordering. In contrast, a sen-
tence (or diagram or picturp)of a visual languag€L over an alphabeA consists of a set of
symbols ofA that are, in general, related byeel relationshipsr{, ..., r,} = R. Thus we can

say that a picturp is given by a pairg, r) wheres [A is the set of symbols of the picture and

r O sxRxs gives the relationships that hold it In other vords, p is nothing ot a directed
graph with edge labels dva fromR, and a visual language is simply a set of such graphs.

Usually, languages contain a certain structure, that is, there are precise rules defining which
symbols can occur in which corte and, rgarding visual languages, which symbols magtak
part in which relationships. This structure is recognized and enforced during syntax analysis,
and it can be assumed when defining semantics. Therefore, semantics definitions are often
based on so-calleabstract syntax which defines a language on a more abstraet {gith less
constraints than on the concreteele This means that a description of concrete syntax must
include eery detail about the language whereas the abstract syntax can safely ignore all
aspects that are not needed within the semantics definition.

A precise definition of abstract syntax does nasteand it vould not mak much sense
because there are wdifent levels of “abstractness” that can be dealt with. One reason for
abstract syntax not really Viag found its vay into visual languages might be that, as we
believe, abstract visual syntax must be “more abstract” than in xheatecase to be helpful.

We eplain this by a simplexample. Consider the folldng (textual) grammar describing part
of a concrete syntax foxpressions.

expr::= n-expr | b-expr | if-expr
n-expr::=term | n-expr +term
term::= factor |term * factor
factor::=id | (n-expr)

b-expr::=id | b-expr Ob-expr | ...
if-expr::= if b-expr then expr else expr

A corresponding abstract syntaxowd ignore may details, such as the choice @ylkwvords,
grammar rules for defining assocwdly of operators, or rules restricting the typing of opera-
tions (see also [17]):

expr::=id | expr op expr |if (expr, expr, expr)
op:=+|*|0O]...

1. Relationships with arity > 2 cannalys be simulated by eral binary relationships.

—2_

This grammar is much more concise. It does not introduce nonterminakpfesgons of dif-
ferent types, and it also ignores assoditgtiof operators. (Omitting theeg words from the
conditional does not makthe grammar essentially simpler in thiample.) Further operations
on sentences of the language can rely on syntax being alreadgalhgck parser and can thus
work with the simpler abstract syntax.

In a similar vay, the abstract syntax of visual languages need not be concerned with all the
details that a concrete syntax specification has to care about, see also [8]. This means we can
abstract from the choice of icons or symbols (comparable to the choiegwbids in the te-
tual case) and from geometric details such as size and position of objects (at least up to topo-
logical equvalence, that is, as long as ralat relationships between objects are nfetcaéd).

We can also ignore associdtiies used to resoédvambiguous situations during parsing much

like in the t&tual ekample. Morewer, typings of relationships that restrict relationships to spe-
cific subsets of symbols can be omitted. This corresponds to grouping operations, such as + or
[0, under one nonterminal.

But we can do\en more — and this is the point where abstract visual syntax gets more
abstract than in thexwial case: the abe abstract syntax forxpressions is still gen by a
grammar and thus retains some structural information about the language. This is absolutely
adequate since the description &ywsimple and can be easily used when defining,xame
ple, an interpreter forxpressions. Hwever, to do so for a visual language requires, in most
cases, somefeft in the consideration of contieinformation which unnecessarily complicates
definitions of transformations. Therefore, we suggest wetoabout this structural informa-
tion, too, and to consider a picture just as a directed, labeled multi-graph where the nodes rep-
resent objects and the edges represent relationships between objects. A class of graphs is then
just given by tw types defining node and edge labels, that is, the types of objects and relation-
ships in the abstractly represented visual language.

Definition 1. A directed labeled multi-graph of type (a, B) is a quintuplés = (V, E, 1, v, €) con-
sisting of a set of nodasand a set of edgéswherel : E - V x V is a total mapping defining
for each edge the nodes it connects. The mappinyds— a ande: E - (3 define the node
and edge labels.

Vi andEg denote the set of nodes and edge&.ofhe successors of a node are denoted by
succg(V), which is defined bguccg(v) = {w 0 Vg | (e U Eg: 1(e) = (v, w)}. Lik ewise,predg(v)
denotes/’s predecessors. WheteG is clear from the conké, we also might simply usé E,

succ, andpred. We also sometimes use a shorthand for denoting nodes and edges together with
their labels: we denote a node (or edgejth v(x) =1 (respecirely, e(x) =1) simply byx:l.

The label typest and3 might be just sets of symbols, oryh@an be complestructures to
enable the labeling with terms, semanttues, or een graphs (see Section 5). The set of all
graphs of typed, B) is denoted by (a,). In the sequel we will look at visual languages on
this very abstract keel, that is, the abstract syntax of a visual language is specified as a set of
graphs of a specific type.

Definition 2. A visual language of type (a, B) is a set of graphgL [I'(a, 3).

How does this vier relate to the well-established grammatical approach to syntax? Ctaarly
syntax of languages can be eeniently specified by grammars. Grammars/jge a vay to
generate all sentences of the language aneng suitable parsing algorithm, alldo test
whether a sentence is a member of the language (possilvly gi proof for this by construct-
ing a parse tree for reconstructing the sentence). Concerning abstract syweey, lgyam-

mars are usually not used for parsing; their purpose is justfés ah inductre or
deconpositional viev of language thatatilitates semantics definitions, especjatlgnota-

tional semantics or structured operational semantics. As demonstrated in [7] we can actually
have a (de)compositional/recwsi viev of graphs without resorting to grammars. So we can
achieve a highly abstract comprehension of pictures together with an welvétv of graphs

that facilitates, saydenotational semantics definitions. On the other hand, there are visual lan-
guages whose semantics are best described in a laggbadr. In that case a global, set-theo-
retic view of language is needed, which is justegi by abstract visual syntax (and which might

be obscured when using grammatical formalisms).

As in the tatual case the choice of abstract syntax for a visual language is by no means
unique. Usuallyone has to trade similarity to the original notation for simplicity of the seman-
tics definition. Vi@ will illustrate this point further in Section 4. The use of abstract syntax is not
restricted to the definition of language semantiasjtican be also used as a basis for transfor-
mations between dérent languages or for mapping betweefedént representations of the
same language. This is illustrated in more detail in [8]. Accidenthiyabstract syntax graphs
for the xamples used in this paper are ajdc. This is by no means essential for the pre-
sented formalism. Examples for visual languages that baclic abstract syntax graphs are
state diagrams (syntax and semantics for these are defined in [8]) or a particular representation
of Turing machines (for which syntax and semantics can be found in [9]).

3. Logical Semantics

In mary cases, a logical specification of semantica/sithe syntactic elements simply as sets.
For graphs, the node- and edge-setwig implicit in the definition. In Section 3.1 we define
syntax and semantics of the well-kno Euler diagrams, and in Section 3.2 wevgra visual
rule for syllogistic reasoning and thus illustratevhim establish properties of a formalized
visual language.

3.1 Euler Diagrams

The language of Euler diagrams as described in [11, 20] contains four kinds of basic pictures
expressing logical statements:

S O @

All AisB NoAisB SomeAisB SomeA is notB

Figure 1: Euler Diagrams

Ambiguities of Euler diagrams and semantic problems arising from these are discussed in
detail in [20]. Our aim is not guing in Bvor of or aginst using Euler diagrams for reasoning.
However, as a matter ofact, Euler diagrams are a wide-spread visual notation, and in order to
discuss the notation and compare it with others, it should be understood in the first place. This
Is what abstract visual syntax and the semantic formalism can accomplish.

The concrete syntax of Euler diagrams comprises circles and string-labels together with the
relationshipsnside, intersects, anddigjoint. Labels hge two purposes: first, tlygorovide refer-
ences to set symbols in pictures to be usedptaaations, discussions, etc. Second, their posi-
tion distinguishes tw different set relationships for intersecting circles. In the abstract syntax

—4-

we can therefore omit labels and replacatkersects-relationship by tw edge labels identify-

ing the third and fourth situations, nameghintersects andnic. The names result from the fol-
lowing obserations: in order to ge a formal semantics to Euler diagrams one has to answer
the following questions (among others):

(1) Does the third situation also say: “Soifdas notA” ? Yes, Euler also specifies that
“SomeA is notB” (and “SomeB is A”). Thus we knav:
(@An Bz,
(b)A-B#10, and
(c)B-A=#0.
So this situation describes what we @adiper intersection, that is, we say p-intersects
B.

(2) Is the relatre position of labels irrel@ant, that is, does the lastaanple also say “Some
B is not A” ? This would be reasonable, and although Euleregias one possible
instance an»ample whereB is completely inside (that is, properly included A)he
himself uses the notation in a symmetriaywlater on in his letters. Accordinglywe
ignore relatre positions of labels. So this relationship describes that bd¢hettites are
non-empty which xpresses nothingub the fict that tvo sets are not comparable with
respect to inclusion; we call this relationshgd inclusioneomparable.

Exceptinside, all relationships are symmetric.e/depict a symmetric relationship by an undi-
rected edge which is represented in a directed graphdgitected edges in both directions.
So the abstract syntax graphs for the Euler diagrams of Figure 1 leok lik

inside digoint p-intersects nic
O——O O——O Oo——OO

Figure 2: Abstract Syntax Graphs for Euler Diagrams

The semantics is defined for a diagram redatd auniverse of objectdl. An interpretation is a
mapping from the set of circles in the diagram, that is, nodes of the graph, to subsetsaof
is,f: V - 2Y. Now the semantics can be easily defined:

(V. E)JU={f|f:V - 2V O0e 0 E: valid(f, 1(e), £(©))}

where
Ef(u) O f(v) if | =inside
Of f(v) =0 if | =digoi
valid(f, (u,v),)= O W) n 1) I |.510|nt
Sf(u) n f(v) £ O Of(u) - f(v) 2 O Of(v) - f(u) 2 O if | =p-intersects

Of(u) - f(v) 2 O Of(v) -f(u) 20 if [=nic
3.2 Soundness of Visual Reasoning Rules

Having a precise definition of what Euler diagrams mean it is quite easy to check the visual
rules for syllogistic reasoning. Euleivgs tetual versions of such rules angdpdains them by
pictures. Onexample is:

All AisB SomeCisA
SomeC isB

Although this soundsery intuitive, this rule is formallyot correct since “Some€ is B” does

only hold if C - B # 0. But this cannot be concluded from the premiszsnight well be
included inB. Actually, Euler is avare of this &ct and gies pictures illustrating both cases. The
point is that there is no formal correspondence between propositions and pictures (since there
is no formal semantics). Mothe correct rule is:

All AisB SomeCis A
All CisBor SomeCisB

or equvalently in visual terms:

Lemma 1. (@D
:

Proof. We reformulate this rule in terms of abstract syntax. The premises can be joined into one
graph.

C A B
p-intersects ~inside
C B C B
Orxsrfaraacia @

p-intersects or Olnside ™
The semantics definition ensures for eaglovinterpretation the follwing properties:

(1)ADB
2)AnC=z0
3)A-C=#0O
4)C-Az0

First we obsere from (3) and (4) that neithérnor C is empty By (1) it also follavs thatB is
not empty For the intersection and fi#frence of tv non-empty sets we kno

() XnYz0 - Z#0:20XO0ZOY
(i) X-Y#20 < Z20:Z0XOZnY=0O

Next we translate the conclusion of the rule into logical terms. Thatvs, thashav that the
following is true:

(CnBzOUOC-BzxOOB-CzU)0COB

We can simplify this term: first, siné@ B impliesC n B # [0 (because&€ is not empty), we
know that

CnBzDOUCUOB<CnBz0,

and secondC - B # [0 JC [B is always true which can be easily chedkoy considering all
possibilities with respect to the intersectiorCoiindB. Thus it remains to be sha:

CnBz00O(B-Cz00COB)
We can proe both parts separatefyirst, from (2) and (i) we inferD # [J:

(5)DOAand
(6)DOC

By transitvity it follows from (5) and (1) thdd [B, and this together with (6) and (i) implies
C n B# . Second, we obtain from (3) and (ii) th& # [1:

(7y)DOAand
8DnC=0

By transitvity it follows from (7) and (1) thdd [I B, and this together with (8) and (ii) implies
B-C#0. Thismeansthd&-C# [OCUOB s also true. O

4. Recursive Semantics

In contrast to the predicaé view that was comenient in the prgous section, manlanguages
are defined induactely, and then a semantics definition is easiest\e gihen adopting that
inductive vienv. We illustrate these ideas with the visual language VEX [4], whichigee a
visual notation for the lambda calculuse\6hose VEX, since it is a rather smalit(bomputa-
tionally complete) language and sincg aemantics can be easilgnfied by comparison with
the classical lambda-calculus.

In Section 4.1 we@lain VEX informally, followed in Section 4.2 by tw alternatie
abstract syntax definitions. Sections 4.3 and 4.4 introduce an weldetompositional we
of syntax graphs that is particularly needed for the definition of denotational semantics. Based
on this, a semantics for VEX is therven in Section 4.5.

4.1 Example: VEX

VEX [4] is a purely visual language: each identifier is represented by an (empty) circle that is
connected by a straight line to a so-calieat node. A root node is agin an empty circle with
one or more straight lines touching it, leading to all identifiers with the same name. A root node
might be internally tangent to another circle, it then represents a parameter of an abstraction,
otherwise it denotes a freanable. An abstraction has, in addition to its parameter circle, a
body epression inside it. An application of tvexpressions is depicted by dvexternally tan-
gent circles with an arvoat the tangent point. The head of the arlies inside the gument,
and the tail of the armlies inside the abstraction to be applied. Application order can be con-
trolled by labeling arnes with priority numbers which we will ignore for simplicity

Figure 3 shars the VEX apressions forXx.xX)y andAy.((Ax.yx)2). Now what is the ract
meaning of the ahwe dravings? In [4] graphical serite rules are gien that can be used to
reduce VEX pictures to normal forms. This isweger, a pure syntactical manipulation. A true
semantics definition maps VEX into a semantic domain of functionsylnase, the first step
is a definition of abstract visual syntax for VEX.

1. Labels are sometimes used for illustratian,dbrictly, they are not needed.

—7-

Figure 3: Two VEX Expressions

4.2 Choicesof Abstract Syntax

The VEX concrete syntax consists of symbols ldkcles, lines, and ams, and relationships
like inside or touches.

As already mentioned, there are quitdettént possibilities for the abstract syntax. In a first
approach we can abstract from lines andvesrand replace them by corresponding relation-
ships since lines simply link the use ofaxiable to its definition and ams just indicate the
application of one circle to anothérhis is reflected in the abstract syntax graph of a VEX
expression bydef-edges (that is, edges labeled wdd) that lead from ariable uses to their
definition and byapply-edges leading from thexgression circles to be appliedmard the
argument circles. It remains to represent abstractions. An abstractimemskyi a non-empty
circlec where an (empty) circbethat is internally tangent wrepresents’s parameter and all
other circles, ..., g, insidec define the abstraction bady the abstract syntax we represent
this information by gar-edge fromc to x and bybody-edges ¢, &), ..., (C, ,). Note that we
do not need to distinguish abstraction nodes framable nodes by arxplicit label since the
difference can alays be told by looking at the incident edges — by this the abstract syntax is
more similar to the concrete syntax. Therefore we do not us@ade labels, and thus the
abstract syntax for VEX isgen by graphs of typel(, { def, apply, par, body}).

Figure 4 gves the abstract syntax graphs for the VEX pictures from Figure 3.

Figure 4: Abstract Graphs for VEX Expressions

This representation is rather close to the spatial original and should therefore be easy to grasp.
However, a DAG representing the lambdageession in a rather traditionaby might be better
suited to studyfor example, semantics @-reduction.

Such a representation consists of application-, abstraction-aaiathle-nodes (with corres-
ponding node labels: @, 0).! An @-node has an outgoifign-edge and an outgoirayg-

edge that lead to the function to be applied and thenaent, respectely. A A-node is con-
nected by an outgoingar-edge to its parametean unlabeled node, and by an outgdiody-
edge to the node representing its baddignce, this abstract syntax for VEX uses graphs of type
{@, A}, {fun, arg, par, body}).

Figure 5 shas the abstract syntax graphs that correspond to the VEX pictures of Figure 3.

py)\ body
fly %g arg
X
ar<© body AN

Figure5: Alternatve Abstract Syntax Graphs for VEX

At this point it is important to recall that the informally stated structural properties are not cap-
tured by abstract syntax graphs. This means that the graph Setw is also a graph of the
above type although it is certainly not representing ¥&X expression.

par arg
X—arg

For defining semantics we can safely assume structurally correct graphs/beedebayby a
syntax analysis phase or an ediffine structural assumptions can then appear implicit in the
semantics definition since we need onlyegsemantics for structurally well-formed graphs,
that is, syntactically correct pictures.

Although the second representatiofetd adantages in treating certain aspects of seman-
tics, it does only poorly reflect the visual structure of the VEpression, and might thereby
complicate the understanding of the origivigial language. The decision of which represen-
tation to choose depends on what is done with the semantics definition: fovijugtagmean-
ing to VEX pictures, the first approach might befisignt, havever, when trying to pree, for
example, soundness @freduction, or deving an implementation, the second representation
would probably bedvored.

Next we would like to define the semantics on the basis of the abstract representations just
given. W\é therefore need a structuredyof accessing all the elements of a syntax graph. In
particular we need an induet vienv of graphs that alles the step-by-step decomposition of
graphs. V& will address this issue in thexbtévo subsections. The concepts presented there can
also be used to map betweerfatiént syntax representations.

4.3 An Inductive Graph Model

We can vigv a graph in the style of algebraic data types found in functional languag®sLlik
or Haslell: a graph is either emptgr it is constructed by a graghand a n& nodev together

1. Note that we do not need node labels to distingushhes. As in the pwous approach, uses ddnables are
linked by edges to the corresponding definitions. This mechanism is a perfect substitute for the “equal name”-
method of the teual lambda-calculus. Therefore, nodes representirighles are left unlabeled.

—9—

with edges fronv to its successors mand edges from its predecessorg Ieading tov. This
way we can construct grapkpeessions with a constant construdampty and a constructay
taking as aguments a triplepfed-spec, node-spec, succ-spec), callednode context, and the
graphg to be etended. Herenode-spec is a node identifier not already contained possibly
followed by a label (foremple,d:@) andpred-spec (succ-spec) denotes a lidtof predecessor
(successor) nodes possibktended by labels for the edges that come from (lead to) the nodes.
For instance,d>fun, €] denotes a list of tav predecessor noddsande where the edge coming
from d has labefun and the edge coming froahas no label at all. Similaglypar>a, body>a]
denotes a single succesadhat is reached via wdifferently labeled edges.

The first graph from Figure 5 isvgn by the follaving expression:

N ([, d-@, [furb, arg>c]) (N (I, ¢, [I) (N (], b:A, [par>a, body>al) (N ([, &, [I) Empty)))

Herea, b, ¢, andd are arbitrarypairwise diferent node identifiers. In the sequel we make
of two abbreiations: (1) empty sequences can be omitted, and (2) a casddamstructors
is replaced by a singlg*-constructor So the abee term can be simplified to:

N* (d:@, [funsb, argrc]) (c) (b:A, [par>a, bodys>a]) (a) Empty

Note that there are, in general, matifferent graph xpressions denoting the same graph, for
example, the abae term denotes the same graph as:

N* ([d>fun], b:A, [par>a, body»a)]) (d:@, [arg>c]) (¢) (a) Empty
The relationship between grapkpeessions and multi-graphs is formally defined as\idlo

y(Empty) = (O, O, O, O, 0O)
YN ([PXqs s PrXal, VL [y92S1, -0 YoSil) 9) =
(VO {v}, EO{ey, ... enersh
LO{(e, (1. V), (€0 (P V), et (% SD), ---r Eneme (% S,
v O{(v. D} e0{(en X)), v € %)y Ener Yo -0 Eneme YD)

where
(VE 1,v,8)=v(0),{e .-.enimt " E=0,{P1, .-, Pn S1» --»St O V,andv O V

Thus, multi-graphs can senas a kind of normal form for grapRpeessions. The folleing
result is important, since it guarantees thgtgnaph can be weed inductvely:

Theorem 1. Any directed labeled multi-graph can be represented by a graph expression. [

The proof is gien in [7]. There we also define a formal semantics of graph types and graph
constructors.

4.4 Pattern Matching on Graphs

The main use of graph constructors in the odrdéthis paper is not touild nev graphs bt to
take part in pattern matching on graphs. Especially useful for graphs is the conaetpieof
patterns [6]: usually matching a pattern lé&N (p, vil, s) g to a graph epression binds the node
contet inserted last t@, v, |, s and the remaining graph ¢p However, in order to mee in a
controlled vay through the graph, it is necessary to match thexdaofta specific node. This is

1. Lists ofer a comenient vay for dealing with multiple edges betweerotmodes. In this respect, bagsuld
also be fine, Wt lists can be sorted which simplifies the processing of xemmple, successors, in a specific order

- 10 -

possible ifv is already bound to the node to be matched. Then thextomteis bound to the
remaining wariables. Br instance, matching the pattexh(p, b:l, s) g acainst either graph
expression from the pvéous subsection results in the fallmg bindings:

p — [dfun],| - A, s - [par>a, body»>a], g —» “g-term”

whereg-termis an arbitrary representation of the matched graph without Imadd its inci-
dent edges, forxample,

“g-term’ ON* (d:@, [argrc]) (c) (a) Empty)

Formally, graph pattern matching is defined on the basis of the represented multi-goa@hs. F
given nodev assumés can be written as:

G = (VH{V}, EX{e}, ..., b,
1+{(e1, (1, V), (€0 Py V), Ene1s W SD))s -y e (V5 S}
vH{(v,)}, e+{(ey, Xq), -, €n X)) Ene1 YDs -0 Enem YD)

whereS+T denotes disjoint set union and where the disjoint unioki isrchosen maximally
that is, there is ne' [E such that therexests €, (x, y)) O 1 with x=v or y=v. Then matching
the patterrN (p, vil, s) g to G produces the bindings:

P - [PXy, - PXals | - 18D, S = [ypsy, .., VSl 9 » (M E 1, v, €)

This means that the meaning of pattern matching does not depend on the representation chosen
by a particular graphxgression. In other ards, we hee the freedom to choose graptpees-
sions as we lig; we mak use of this later on in this paper when we apply semantics definitions
to example graphs. Then we shall choose representations thatintalctve decompositions
of graphs simple so that we need neither transform grgplssions nor map them to the rep-
resented multi-graphs.

Patterns can be made more selectiy adding labels that must be present or by replacing
list variables by lists of a specific lengtheWan also ignore bindings by simply omitting the
corresponding parts of the pattern, faample, we can match the abstraction nbdénding
the parameter/body nodefite by using the pattern:

N (b:A, [par>p, body>€]) g

Actually, p ande will be bound to the same node,Since we did not specify gitning for the
predecessor list, no binding will be produced. If vemted to ensure that the matched node has
no predecessors weowld have used the pattemN ([], b:A, [par>p, body>e]) g instead. This,
however, fails to match ourxeample graph.

Cascading patterns B0N* c; C, ... ¢, g can be matched amst a grapl® as follovs: letg;,
..., Oy be auxiliary ariables to be bound to intermediate decomposed graphs. fiksb,
N c; g; is matched agnstG, and the bindings produced by this match, especially the node
bindings inc; and the rest grapty, are then used to matd¥f ¢, ... ¢, g acuinstg,, that is,
N ¢, g, is matched agjnstg,, N c3 g3 is matched a@nstg,, and so on, untN ¢, g, is matched
aqinstg,.1. Theng is bound tog,. In this way, N* patterns can actually be used to wen
niently find paths (of fizd length) in the graph.

-11 -

4.5 Denotational Semantics

Now we can define the denotational semantics of VEX.fép each syntax graph of a (syn-
tactically correct) VEX epression into aalue of a suitable domal for the lambda-calculus
(for example, Scot8 constructiorD,, or Plotkins graph modePw [2]). Let d be a wariable
denoting alues fronD. It is interesting to note that in contrast to the denotational semantics of
the textual lambda-calculus we do not need@ anvironment for passing arounéwable bind-
ings; we can rather empldhe VEX root nodes to carry semantalues. It vould be also pos-
sible to map the abstract syntax tetteal lambda-epression and to rely on semantics already
defined for the lambda-calculus. Wever, this would mean one further intermediate represen-
tation and, as noted, a sligthly more complicated semantics definition with the need for an en
ronment.

We define the semantics by wirng in a controlled \ay through the abstract graph, that is,
semantics are gen with respect to specific node cotisain the graph, and in the recwesdef-
initions for the semantics of, sayodey, the semantics functiddl is applied to the conks of
V's successors. Henc8, has two parameters: a graph and a node determining thextonte
Using the second proposal for abstract syntax we can distinguish thariglicases: first, the
semantics of a node carrying a semangilti® is the &lue itself. (Such aalue is assigned by
the rule for abstractions.) Second, the meaning of an application noderisgiapplying the
semantics of the node connected byftimeedge, which isxpected to be a functiorailue, to
the \alue denoted by thegument node. Finallythe semantics of an abstraction is defined to
be a function &lue (\ denotes the semantic abstraction function) which mapwsalned to
the \alue denoted by the body of the abstraction when the parameter node is dalbéel
that in order to change the label of the parameter pood we hae to decompose from the
graph and re-insert it with thewmdabel and the old conte(that is, with predecessarand no
SuCCessors).

S[[V,N(v:d)g] =d
S[[v, N(v:@, [furf, arg>al) 9]l = SI[f, 9]l (S[a, g)

S[[v, N* (v:A, [par>p, body>b]) (r, p) 9] =
Ad.S[[b, N (r, p:d, []) 9]

Now the semantics of a gra@representing a VEXx@ression is gien by applyingS to the
root of G.

root(G) = {v 0 Vg | predg(v) = I}
g1 GJ = SJ[the(root(G)), G

Here, the functiorthe simply etracts the one element from a sirgte set and is undefined
otherwisethe({x}) = x.

We have given an alternate semantics definition for VEX based on the other abstract syn-
tax approach in [9].

We can use the denotational semantics to “compute” the meaning for particular VEX
expressions. As arxample we determine the function denoted by the second VEX picture of

—-12 -

Figure 3. Iér corvenience we repeat the abstract syntax representation with added node identi-
fiers in Figure 6 todcilitate the understanding of the fallmg dervation.

A
Fal
fun Q 7

Figure 6: Abstract Syntax for Lambda Expression((AX.yx)z)

The graph G,) is formally defined by the folleing expressions. The representations are cho-
sen to ma& subsequent pattern matching easy and ve paoper bindings for remaining
graphs:

=N* (6:@) Empty

=N* (4:A, [par7, body6]) ([6>arg], 7) Gg
G3=N* (3:@, [furr4, arg5]) (5) G4
Gy =N* (1:A, [par2, body3]) ([65fun], 2) G

Now the meaning of the graygdy is:

S Gy = S[[the(roo(Gy)), Gy] = SI[1, G4]
= Ad.S[[3, N ([6>funi, 2:d) Ga]]
= Ad.(S[[4, N ([6>furl, 2:d) G4] (SI[5,N (5) G,4I))
= Ad.(Ad".S[[6, N* ([6>arg], 7:d") ([65furl], 2:d) Gg) O
= Ad.(Ad".S[[6, N* (6:@, [fur2, arg>7]) (2:d) (7:d") Empty]]) D)
= Ad.(Ad".(ST[2, N* (2:d) (7:d") Empty]] (S[[7, N* (2:d) (7:d") Empty))) D)
= Ad.(Ad.(d d") D)
= Ad.d O

Note thatS[[5, N (5) G4]] = U because the semantics of fregiables is not defined. Thus the
meaning of the VEX picture is a function that applies iggiarent to the undefinedhe.

5. A Larger Example

In this section we consider abstract syntax and semantics of a more xompé language:
Shav and Ell. The language is interesting fordweasons: first, it is a member of the rather
large class oflata flowlanguages and thus indicatesM&emantics could be defined for gan
other visual languages. Second, it demonstratesfiwtied use of nested syntax graphs which
goes bgond grammatical descriptions of visual languages.

Shav and Ell (STL) [15, 14] combines data flowith the concept o€ompletion which
means to fill in empty bes in a data fls graph by either computation or database search.
Computations are represented by so-cabbed-gaphs which are agclic directed multi-
graphs whose nodes are rectangles connected hysakobox is empty or it contains either

- 13-

simple data, such as numbers or functions, or another whole box-graph. In that case the box is
calledcomplex and can be eithetosed or open. Data can flow along the arnes from one box
to anotherWheneer two boxes connected by an awaontain diferent \alues, the box-graph
Is said to benconsistent. An open box containing an inconsistent box-graph prateaghis
inconsisteny, that is, the box-graph containing the inconsistent box also becomes inconsistent.
In contrast, when a closed box gets inconsistent, all that happens is that the box caneot recei
or propa@gte ai values, that is, an inconsistent closed box can heedes deleted. it#h the
concept of inconsistegcconditionals can bexpressed without ivéeng boolean &lues.

Figure 7 shavs an STL program implementing the logical AND.

7
—1]

L
Lo

Figure7: STL program for Logical AND

The program contains twparameters (the twtopmost empty ba@s) and one result (the
empty box on the left). If both gmments are “1”, then the upper (closed) complax remains
consistent, and the “1” can Wodirectly into the result box. Moreer, the lawver (closed) com-
plex box gets inconsistent and cannot emit the “0”. On the other hand, ifgumaent is “0”,
then the upper compiebox gets inconsistent and cannot send data to the result box and to the
lower box. Then, the “0” can flofrom the laver box into the result box.

We choose an abstract syntax that mainly vedlohe concrete syntax. In particular:

(1) Nodes are labeled by constants (feample, intgers), function symbols (such as O),
(representing empty STL beg), and complete graphs. Additionatlyey carry anopen-
or closed-tag. (In the folleving we will mention these tags only when needed.)

(2) Edges are labeled by pairsjj wherei means that the edge contribs to theth param-
eter of the taget node angsays that thgh component of thealue at the edgg’source
node flavs via this edge. [f=*, this means that the completalwe flavs via the edge.

(3) Each edge = (v, w):(i, j) (that is, fromv to w with label {, j)) that crosses a border of a
complex boxu is replaced by a menodex with labelk (lying insideu) and two edges;
ande, as followvs:

(i) If wis insideu, thene; = (v, u):(k, j) (ending au) ande, = (X, w):(i, *)
(connectingk to the taget ofe).
(i) If vis insideu, thene; = (v, X):(1,]) ande, = (u, w):(i, k).
Here,k ranges from 1 ta (m) for all n incoming (m outgoing) edges and represents the
argument position of the node.

(4) The (top-leel) box-graph isxdended according to rule (3) as if it were enclosed by a
(closed) box hang edges ending at the roots andrieg the sinks.

The abstract syntax of the STL program from Figure 7 isvshd-igure 8. Br later reference
we hare added small node numbers to the labels. Nodes with constants as labels are surrounded

14 -

Figure 8. Abstract Syntax of the STL Program

by circles and can thus be distinguished fromvipentroduced nodes.dfmally, we use inte-
gers as labels of méy introduced nodes and quoted es as constant labels. This means,
the label of node 4 is 2 whereas the label of node 8 is "1.
If OP is the set of constants and operations used by STL programs, then STL abstract graphs
without comple boxes hae typerl (ag, B) with (let IN={"} x IN):

0g=(OP O {0} OIN O IN) x {open, closed}
B=INx(NU{*})

Since comple boxes are represented by nodes labeled with abstract STL graphs, the node type
can be inductiely defined to include graphs of increasing nesting:

Qi+ =05 O I (a, B)

Hence, the type of arbitrary STL abstract syntax graphseéndiyl = U; 5 o ' (0, B).

We can nw define the semantics of each STA® as a functio®"” —. D™ when we tak a
domain of semanticaluesD (for example, for intgers) and add to it a specialwe¢ for deal-
ing with inconsisteng (see belw). The first equation selects all roots of the graph, asfigns
variables as e labels, and yields a functiowver these ariables:

SIN* (@, virl,sy) ... ([, veny) 91 =
A(dy, ..., dp) SIIN*([], va:dy, sp) - ([, Vi,) 911

The used cascade pattern with the ellipstereds asdr as possible, that is, it selects all nodes
labeled by intgers and hang no predecessors. The recuesapplication ofS denotes the
result tuple (by applying another semantic funcno all sinks of the graph) together with
the consistencstatus of the whole graphvgn byC.

SIIN* ([pal va:1, [D) - (Pl Viym, [1) 911 = (S'I[Py, 91 --.. S'[[Pm, 1), CL 91D

(Note that by definition of abstract syntax each sink Rastly one predecessp8’ moves in
reverse direction through the abstract graph: it recelgsidetermines the tuple oales for all

- 15 -

predecessors and applies the function denoted by the current node to it. This function is
denoted by the semantic functibrdefined belw. In the pattern we assume that the predeces-
sors (y;) are ordered with respect to the first label compongof (he connecting edges. This
ensures that the parameters appear in the correct Naterthat the alues of the predecessors

are not takn as a whole,ut only the specific components as specified by the second label part
(s) of the connecting edges. This is avke by the application of projecting functiols
(wherell«(x) = X).

S'IV: N ([p>(1,sp), -0 Pk, S91, v:f) g = FILED (Msy(S7[[pa, 91D, -, MS(S’IL Pk 91))

The semantic functiorfS and S’ only define the meaning of consistent STL-graphs. An incon-
sistent node or graph is defined to return thle@e< which is defined to be equal to all other
values ofD. In this way, an inconsistent (closed) node that is connected by an edge towa node
that is labeled by a constant or not labeled at all doesfeot #fe result o¥. A graph is incon-
sistent if ay of its open nodes is inconsistent. bpén be a predicate that is true only for open
nodes. The consistenof nodes/graphs is denoted Gy C:

CIl[v,G] = (open(v) O S’[[v, G] #9)
CIGI =0OvOVg Cllv, GI

Now the semantics of an STL graph is finallyem by:

OMy(SIGI) if N(SIGI)
6] =0 1 2
o otherwise
If G contains no open bes, the propagion of inconsistencneed not be tan into account
because in that cas® and C always yieldtrue. Thus the semantics for graphs without open
boxes simplifies to:

JG] =SI[[C]
SIIN*([pal, va:1, [I) - (Pl Viem, [) 911 = S’[[Py, 911, -+ S'[[P 91D

It remains to define the functions denoted by node labels. An operatDr{lixe +) denotes
itself. A constant is interpreted as a function that checks whether all incomahges are
equal toc, and an unlabeled node checks all incomialgies for equalityFinally, the seman-
tics of a node labeled by a complete STL graphvsrgbyS.

FIf:D" - DM] =f

Flc:D] =A(dy, ...,d,).ifd;=...=d,=c then c else ¢
FILol =A(dq, ...,dy).if d=...=d, then d; else ¢
FIG:TT=9CGI]

The first line includes the case for constant labels, that@s,This means in particulahat the
definition of S’ reduces in this special case to:

S’ v N ([P (1, 81), -, Pk, 89], v:d) gl =d

In the reminder of this section we demonstrate the semantics definitionvoygptitte correct-
ness of the STL program of Figure 7, that is, vemtsto shw that the program indeed com-
putes the logical AND. Le® be ay graph @pression representing the abstract syntax graph
shawvn in Figure 8. Then we ka to proe:

—16 -

Theorem 2. [G]] = A(dq, dy).if d;=d,=1then 1 else 0.
Proof. We use the folleing abbreiations:

Glviilq,... vl =

if G =N*(pg, V1, S) - (P Vi Sn) G’ then N* (pq, vqilq, S1) .. (P Viilny S0) G else T
eq:=A(dy, ...,d,).ifd;=...=d, then d; else ¢
€. :=A(dy, ...,dy).ifd;=...=d,=cthenc else ¢

SinceG contains no open bes we can wrk with the simplified semantics, that &, G]| =
S[[G]. Thus

S GI =S[[C]
=S[IN* ([, 1:1, [(1,%)>2]) (0. 4:2, [(1,)>3]) 91l
= A(dy, dp) S[[G|1:dy,4:d,]1 (= A(dy, dp). S[[N* ([1,1:dy,[(1,%)>2]) ([],4:d,[(1,%)>3]) 91)
= A(dy, dp).S[IN ([12>(1,9)], 11:1, [9141

Again we can ignor€ and use the simplified definition f8f. Thus we can continue (omitting
braclets around the one-tuple):

= /\(dl’ dz)S’[[12! gll]]
= A(d1, €).S[12,N ((5(1.1), 13:(2.1)], 120) g15]

=A(dy, dp).FL O] (M1(S’[[5, 9121, M1(S’[[13,9121)) (A)
We net have to determin&’[[5, 9;,]] andS’[[13,9;5,].

S'[[5, 9121
= S’[[S5, N ([2)(1!*)! 3)(2’ *)]7 565) g5]]
=FIGs] (N«(S'1[2, g51), M+(S[[3, g51))
= GsN1(S[[2, 9511, S'[[3,951 (B)

To proceed we moneedS’[[2,051, S’[[3,95]], andS[Gs]. Note in the follaving thatgs and
thus all reduced graphs dexd from that hae their origin in the grapks|1d,,4:d,, that is,
nodes 1 and 4 ke assigned the semantiglwes (ariables)d; andd,.

S'[2,95]
=S'[[2,N ([1>(1,9)], 2:0) 9]
=F[ol (N«(S’[[1, 921))
=eq (S’[[1,N(1dy) 911)
=eq (dp)
= dl

The dervation forS’[[3, gs5] is almost identical and yields:

S'[3,9s0 =d
For §] G5] we obtain:

- 17 -

S Gs] =SI[[Gs]
=S[[N* ([, 6:1, [(1,%)>8]) ([, 7:2, [(2,*)>8]) ¢’]
= A(ds, dy).S[[Ge|6:d3 7:0,]
= A\(dg, dg).S[[N* ([8>(1,%)], 9:1, [) ([8>(1,)], 10:2, [I) o1l
= /\(ds, ds).(S’[[8,991, S’[[8,g9])

In the nat two lines we gre only the alues for the first component of the paince the sec-
ond component is identical.

= A\(d3, dy)-(S’[[8, N ([6>(1,%), 7>(2,%)], 8:"1)gg], --.)
= A(ds, dg).(FI 811 (M«(S’[[6, 9g 1), M=(S[[7, 9s1)), --.)
= A\(d3, dg).(eqy(ds, dy), eqy(ds, dg))

We can insert the results f8'[[2, g5, S’[[3,951, andS[Gs]| into (B) and obtain:

S'[[5, 9121
= \(d3, dg).(eq(d, da), eqy(da, dg)) (dy, dy)
= (eqy(dy, dp), eqy(dy, dy))

Next we determin&’[[13,9;,]]. This works analogous to the deaition of S’[[5, g;,]]. Since
0,3 is different formg,,, we formally hae to dewe S’[[5, g,3] from anev, but it is olvious
that it results in the same function®§[5, g;,]. So we get:

S'[[13,912]
=S’[[13,N ([5>(1,2)], 13G13) 913
=F[G13] (Mx(S’[[5, 9131D))
= N\ds.eq0(ds) (eg(d, dy))
= eqo(eds(dy, dy))
= if dy=d,=1 then 0 else 0

To understand the last step considey tases: itl;=d,=1, theneq,(d,, dy) = 1, andeqy(1) =9.
Otherwisegq,(d;, dy) =90, and sinc& is equal to all &lues,eqy(®) = 0.

Finally, we can insei®’[[5,09;,]] andS’[[13,9;,] into (A) and we obtain (note that, has
no efect on a one-tuple):

JGl =
= N\(dy, dp).FT OT (My(S’[[5, 91211), M1(S[[13,9121))
= A\(dy, dy).eq (eqy(dy, dy), if dy=d,=1then ¢ else 0)
=A(dy, dy).if dj=d,=1then 1else 0
Again, to understand the last step consider theviotip two cases:

(1) If dy=d,=1, theneq,(d;, dy) = 1 and the secondgression yield®. Thus the ajument
pair ofeqis (1,9), andeq(1,) = 1.

(2) If d4#1 ord,#1, theneq,(d4, do) = ¢, but nav the second@ression yields 0. Thus the
argument pair ogq is (0, 0), andeq(¢, 0) = 0.

This completes the proof. U

- 18 —

6. Related Work

6.1 Syntax of Visual Languages

There has been quite a lot obtkk concerning the syntax of visual languages, forvamvoew,
see [16]. Havever, all these formalisms are concerned with the specification of concrete syntax
and address the related aspects of parsing and syntax directed editors.

Only few papers deal with abstract visual syntax. In [1, 18, 19] the authors recommend the
separation of abstract syntax from concrete syntaweker, this is only partially achied by
those approaches, since yheequire a one-to-one correspondence between concrete and
abstract syntax, and thus abstract syntax is intrinsically couplgdciosely to concrete syn-
tax. Also, that wrk is only concerned with translation of visual languages, aspects of seman-
tics definitions are not discussed. More on abstract visual syntax as used in this paper can be
found in [8].

6.2 Semanticsof Visual Languages

Besides semantics definitions for specific languages, such as [14], there has been not much
done about semantics of visual languages in geneeaig\&hd Lee [21] takan algebraic we
of modeling pictures. Their goal is to get a formal basis for visual reasoning by axiomatic char-
acterizations of what can be seen in a picture. Tdr& of Bottoni et al. [3] is centered around
the formal understanding of and reasoning with images. Both approaches are based on concrete
visual syntax and are not ¢gg@ted at the semantics specification of vigwagramming lan-
guages.

The term “semantics” is sometimes used with edéht meaning, for@mple, in [13] it
means a set of pictures satisfying @egi specification, that is, the semantics is a visual lan-
guage itself and not a mathematical domain describing the computations performed by a visual
language.

6.3 Graph Representation

Using graphs to describe pictures is a common and wide-spread approaetetigeneral
models that apply to a broad range of visual languagesvar&famples are Harsl'higraphs
[12] and the theory of graph grammars [5].

Higraphs are a kind of amam of hierarchical graphs and Eulexfvi diagrams. Higraphs
have a concise formal semantics, and by modeling a visual langlages a higraph, the
semantics of/L is implicitly defined. Higraphs puide a perfect representation for those visual
languages thatxactly fit that model. Haever, since higraphs la a fixed structure, their
applicability is restricted, and only a certain class of visual languages caprbssed in terms
of them. Hence, although quite nyaapplications can, in principal, be described as higraphs,
several of them require changes of their concrete syntax, and some languages cannot be
described at all. Moresr, the lack of an induate viev of higraphs mads denotational speci-
fications dificult, if not impossible.

Graph grammars, on the other hand,vjate a firly general model of visual languages.
Graph grammars areeky paverful, and thg have been xtensvely used to describe graph
transformations. Graph grammars gngplage body of theoretical results, andytreso pro-
vide, in a certain sense, an induetviev of graphs. So whshould we need yet another graph
model? A major difculty with graph grammars is that theonsider the graphs theperate on

- 19 -

as global ariables that can be updated destuatyi This means that changes performed by
grammar rules are implicitly propated, and thus a declaxagitreatment of graphs is prohib-
ited. Things are complicated by thecf that the semantics of graph grammars themmseds
rather comple due to adanced embedding rules and nondeterminism. In contrast, the induc-
tive graph viev presented in this paper is quite simple, and it treats graphplastgarame-

ters of transformations.

7. Conclusions and Future Work

We have presented a general franogk for the specification of visual language semantics. A
rather unrestricted form of abstract visual syntasegiby graphs is the backbone of the for-
malism. The approach applies to quite a wide range of visual languages, and wercan e
employ different semantics formalism, such as denotational or logical semantics.

A drawback of the approach presented api§ that visual information is mapped com-
pletely to a tetual description. \& are currently>¢ending the formalism by a heterogeneous,
that is, semi-visual, notation so that certain relationships, such as agjaceintersection,
need not be encoded in graph edgaschn be &pt in visual form [9]. This will ma& seman-
tics definitions and other transformations much more readable.

8. References

1. M. Andries, G. Engels & J. Reks (1996) Ha to Represent aisual Program®orkshop
on Theory of Mual Languges Boulder Colorado.

2. H.P Barendrgt (1981)The Lambda Calculus — Its Syntax and Semaritiosth Holland,
Amsterdam, 615 pp.

3. P Bottoni, M.FE Costabile, S. hwaldi & P. Mussio (1995) &rmalising isual Languages.
IEEE Symp. oniSual Languges Darmstadt, Germanpp. 45-52.

4. W. Citrin, R. Hall & B. Zorn (1995) Programming withswal ExpressionsEEE Symp. on
Visual Languges Darmstadt, Germanpp. 294-301.

5. B. Courcelle (1990) Graph Reiting: An Algebraic and Logic Approach. Irtandbook of
Theoetical Computer Sciencbl. B (J. van Leeuwen, ed.) Elger, Amsterdam, pp. 193-
242.

6. M. Erwig (1996) Actve Ratterns8th Int. WWbrkshop on Implementation of Functional Lan-
guages Bonn, Germay) LNCS 1268, pp. 21-40.

7. M. Erwig (1997) Functional Programming with GrapBsd ACM SIGPLAN Int. Confon
Functional Pogramming Amsterdam, The Netherlands, pp. 52-65.

8. M. Erwig (1997) Abstract Mual Syntax2nd IEEE Int. Wrkshop on Theory ofidtal Lan-
guages Capri, Italy pp. 15-25.

9. M. Erwig (1998) \flsual Semantics — Or: Whabd See is Whatat ComputelEEE Symp.
on \isual Languges Halifax, Nova Scotia, to appear

10. M. Erwig & B. Meyer (1995) Heterogeneoussdal Languages — Injeating Misual and
Textual ProgramminglEEE Symp. oniSual Languges Darmstadt, Germanpp. 318-
325.

- 20 -

11
12

13.

14.

15.

16.

17.

18.

19.

20.

21.

L. Euler (1986 PBriefe an eine deutsche Prinzessin. Vieweg, German.
D. Harel (1988) On ual Formalisms Communications of the ACM 31(5), 514-530.

R. Helm & K. Matrriott (1991) A Declarate Specification and Semantics fasval Lan-
guagesJournal of Visual Languages and Computing 2, 311-331.

T.D. Kimura (1986) Determingcof Hierarchical Datafi Model. Report WUCS-86-5,
Washington Uniersity, St. Louis.

T.D. Kimura, J.WChoi & J.M. Mack (1990) S and Ell: A Visual Programming Lan-
guage. InMsual Programming Environments (E.R Glinert, ed.) IEEE Computer Science
Press, Los Alamitos/CA, pp. 397-404.

K. Marriott, B. Meyer & K. Wittenkurg (1996) A Surey of Visual Language Specification
and Recognition\orkshop on Theory of Visual Languages, Boulder Colorado.

P.D. Mosses (1990) Denotational Semantics Handbook of Theoretical Computer Sci-
ence, Vol. B (J. van Leeuwen, ed.) Elger, Amsterdam, pp. 575-631.

J. Relers & A. Schirr (1995) A Graph Grammar Approach to GraphiaediRy.|EEE
Symp. on Visual Languages. Darmstadt, Germanpp. 195-202.

J. Relers & A. Schurr (1996) A Graph Based Fravoek for the Implementation ofisual
EnvironmentsIEEE Symp. on Visual Languages. Boulder Colorado.

S.-J. Shin (1994)he Logical Satus of Diagrams. Cambridge Uniersity Press, Ne York,
197 pp.

D. Wang & J.R. Lee (1993) isual Reasoning: itsdfmal Semantics and Applications.
Journal of Visual Languages and Computing 4, 327-356.

—-21 -

