
A Visual Language for Representing and Explaining Strategies in Game Theory∗

Martin Erwig
Oregon State University

erwig@eecs.oregonstate.edu

Eric Walkingshaw
Oregon State University

walkiner@eecs.oregonstate.edu

Abstract

We present a visual language for strategies in game the-
ory, which has potential applications in economics, social
sciences, and in general science education. This language
facilitates explanations of strategies by visually represent-
ing the interaction of players’ strategies with game execu-
tion. We have utilized the cognitive dimensions framework
in the design phase and recognized the need for a new cog-
nitive dimension of “traceability” that considers how well
a language can represent the execution of a program. We
consider how traceability interacts with other cognitive di-
mensions and demonstrate its use in analyzing existing lan-
guages. We conclude that the design of a visual represen-
tation for execution traces should be an integral part of the
design of visual languages because understanding a pro-
gram is often tightly coupled to its execution.

1 Introduction
Game theory has had a broad impact on the scientific

world, with applications in economics, computer science,
and many social sciences. From this breadth arises a need
for representing and explaining concepts in game theory to
an equally broad audience.

But in addition to scientists and other experts that apply
game theory in one way or another as part of their job, the
general public needs to be educated as well. In general, it is
becoming more and more important to educate the general
public about scientific findings and to increase scientific lit-
eracy. Broad public support for science and research, which
is needed to justify the research (and its funding), can be
achieved only by establishing a basic understanding of the
scientific principles. How the lack of scientific literacy can
negatively impact scientific research and education can be
observed today in the United States in sometimes bizarre
discussions about issues like the teaching of evolution or
funding for stem cell research.

Why does game theory deserve public attention? In ad-
dition to offering a mathematically grounded way to strate-
gize in particular situations, game theory has had a huge

∗This work is partially supported by the National Science Foundation
under the grant CCF-0741584.

impact providing descriptive explanations of naturally oc-
curring phenomena. One of the best examples is insight
into why humans and animals cooperate and how such co-
operation has evolved, described in Robert Axelrod’s sem-
inal book The Evolution of Cooperation [2]. The book fo-
cuses on one of the most important and well-known games
in game theory: the Prisoner’s Dilemma. In addition to co-
operation, the iterated form of this simple game has been
used to describe situations from the use of performance en-
hancing drugs in sports [12] to the nuclear arms race of the
Cold War era [16].

Therefore, a notation that can help experts and lay people
alike with describing and understanding games and strate-
gies should not only be regarded as the basis for poten-
tial programming and simulation tools, but also as a lan-
guage/medium to communicate and explain scientific re-
sults to a broad audience.

Although several visual notations already exist for con-
cisely and clearly defining different types of games, the ex-
isting representations of strategies for iterated games are
pseudo-code, inflexible and unscalable tables, and unstruc-
tured text, which leaves open the question of a visually ap-
pealing notation that can be used to explain game strategies
and how they work.

In game theory, a game is a formal representation of a
situation in which players interact and attempt to maximize
their own return. Players interact by making discrete moves
and a player’s return is quantified by a payoff value. Play-
ers are only concerned with maximizing their own payoff.
An iterated game simply has the same set of players play
the same game repeatedly with the payoffs of each iteration
accumulating.

The Prisoner’s Dilemma is a game in which each player
must choose to either “cooperate” or “defect”. Defection
yields the higher payoff regardless of the other player’s
choice, but what makes the game interesting is that if both
players cooperate they will do better than if they both de-
fect. In 1980 Axelrod held an Iterated Prisoner’s Dilemma
tournament. Game theorists from around the world submit-
ted strategies to the competition. The winning strategy was
“Tit for Tat”, submitted by Anatol Rapaport. Tit for Tat was
much simpler than many of its opponents, it cooperates on
the first move and thereafter plays the last move played by

1



its opponent. Thus, if an opponent always cooperates, Tit
for Tat will always cooperate, but if an opponent defects,
Tit for Tat will retaliate by defecting on the next turn. The
surprising success of such a simple strategy turned out to be
a breakthrough in the study of cooperative behavior [2].

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

A formal definition of the Prisoner’s
Dilemma is shown on the right in a nota-
tion known as “normal form”. While nor-
mal form can technically be used to rep-
resent any game in game theory [16], its
use is usually restricted to games with two players, each
of whom must select one move from a finite list of moves
without knowledge of the other player’s move. The payoffs
for each player are given by a pair of numbers in the cell in-
dexed by each player’s move. In this game, for example, if
“Me” chooses to cooperate (indicated by the “C”) and “Op-
ponent” chooses to defect (“D”), the relevant cell contains
the pair 0,3 indicating a payoff of 0 for “Me” and a payoff
of 3 for “Opponent”.

In this paper we introduce an integrated notation for
defining game strategies and game execution traces that is
based on this well-known representation. The emphasis is
not just on the visual language for describing strategies, but
rather on the design of a notation that allows the combined
representation of strategies and game execution traces. The
ultimate design goal is to obtain a representation that sup-
ports explanations of how strategies work. We have utilized
the cognitive dimensions framework in the design phase
of our notation. Having realized that the motivation for
the integrated notation and the explanatory component was
only partially covered by existing cognitive dimensions, we
have identified a new cognitive dimension of “traceability”,
which measures the ability of a notation to represent execu-
tion and the relationship between a program and its execu-
tion.

The remainder of this paper is structured as follows. In
Section 2 we introduce the notation for strategies, traces,
and their composition. In Section 3 we describe the design
process based on cognitive dimensions. This section also
shows how some crucial design decisions could not be sup-
ported by existing cognitive dimensions and thus provides
the motivation for the new cognitive dimension of traceabil-
ity that is defined and illustrated with further examples in
Section 4. We discuss related work in Section 5 and present
some conclusions in Section 6.

2 A Notation for Game Theory
The notation we have designed is composed of three dis-

tinct but related components. The first is the notation for
defining strategies, defined in Section 2.1; the second is the
representation of game traces, defined in Section 2.2; and
the third is a view which demonstrates how any given game
instance within a game trace occurred, given the players’

strategies and the game trace, defined in Section 2.3.

2.1 Strategy Notation

Our notation is based on the well-known normal-form
game representation that we have briefly shown in the pre-
vious section. This representation views a game as a ma-
trix indexed by moves that contains the payoff result for
each possible combination of moves in its cells. More for-
mally, if the set Mi represents the set of moves available
to player i, the domain of an n-player game is given by
D = M1× . . .×Mn, and a game is a mapping G : D→Rn so
that the number r j in the tuple (r1, . . . ,rn) = G(m1, . . . ,mn)
represents the payoff for player j in the game that results
when player i plays move mi. Since we consider only 2-
player games, our domain will always be D = M1 ×M2,
and games are given by mappings G : D→ R2.

A strategy is defined by a list of rules (given below the
dotted line) and a possibly empty horizontal list of initial
move patterns (given above the dotted line). A rule L→ R
is given by a matching pattern (L) and a move pattern (R).
Figure 1 demonstrates our visual notation for strategies with
a definition of Tit for Tat.

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

C

C D

2,2 0,3

Opponent

M
e
D 1,13,0D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e...

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e...

C

C D

2,2 0,3

Opponent

M
e
D 1,13,0

Figure 1. Definition of Tit for Tat

A move pattern is a special case of a simple pattern,
which is obtained from the normal-form matrix notation
by marking a subset of cells in the matrix. Formally, a
simple pattern can be represented by a binary partition of
the matrix domain D into marked and unmarked cells, and
this partition is uniquely determined by the set of marked
cells. A move pattern for player 1 is a simple pattern such
that the marked set equals {m}×M2 where m ∈ M1. So,
for example, the initial move of Tit for Tat is defined by
C×{C,D}= {(C,C),(C,D)}.

If present, a list of k initial move patterns defines the first
k moves of the player that uses this strategy. In the case of
Tit for Tat, the first move is always C. Note that the moves

2



(and patterns) in the strategy are defined from the perspec-
tive of the player “Me”. A strategy for the player “Oppo-
nent” can be obtained from a “Me” strategy (and vice versa)
by flipping rows and column markings in all matching and
move patterns, as defined by the function flip.

flip({m}×M) = M×{m}
flip(M×{m}) = {m}×M
flip(L→ R) = flip(L)→ flip(R)

A game play is given by a pair of moves, one for each
player. That is, p ∈ D = M1 ×M2, and a game trace is
defined as a sequence of game plays, p1 . . . pn.

The meaning of a set of rules is defined relative to an
existing game trace, and the meaning of a single rule is
given by the move pattern on the right. The first rule whose
matching pattern matches the current game trace is selected,
and its move pattern defines the next move.

Matching patterns, as found on the left side of rules, take
one of the following five forms where Pi is the set of cells
representing a simple pattern. The conditions under which
each pattern matches a game trace p1 . . . pn are shown on
the right.

Recent •••Pn−k . . .Pn if ∀i ∈ {n− k, . . . ,n}, pi ∈ Pi
Initial P1 . . .Pk••• if ∀i ∈ {1, . . . ,k}, pi ∈ Pi

Always P•••P if ∀i ∈ {1, . . . ,n}, pi ∈ P
Sometimes •••P••• if ∃i ∈ {1, . . . ,n}, pi ∈ P

Default (nothing) always matches

Both rules in the definition of Tit for Tat utilize the recent
matching pattern—they both consider only the most recent
entry in the trace. The definition of Grim Trigger given in
Figure 2 is an example of a strategy that utilizes both the
sometimes pattern and the default form.

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

C

C D

2,2 0,3

Opponent

M
e
D 1,13,0

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e... ...

Figure 2. Definition of Grim Trigger

Grim Trigger is like Tit for Tat in that it will continue
to cooperate as long as the opponent cooperates, but unlike
Tit for Tat, Grim Trigger never forgives. Once an opponent
defects, Grim Trigger will defect forever thereafter. Col-
loquially, the visual definition would read “if the opponent
has defected any time in the past, then defect; otherwise, co-
operate”. Also note that the inclusion of a default matching
pattern obviates the need for initial moves.

Strategies also often make use of “mixed strategies”,
which are strategies in which a move is selected randomly
based on some probability distribution. Thus a mixed pat-
tern can be used in place of a move pattern anywhere a move
pattern would otherwise appear.

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C 80%

20%

A mixed pattern is represented by
multiple selected moves, where the
shading of each selection is altered to
correspond to its likelihood of selection.
Annotations describe the distribution more exactly. The ex-
ample shows a mixed pattern that will cooperate with 80%
probability and defect with 20% probability.

Two more strategies to be used in the following discus-
sion are Tit for Two Tats, which is shown in Figure 3 and
defects only after two consecutive defects of the opponent,
and Opponent Alternator, shown in Figure 4.

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

C

C D

2,2 0,3

Opponent

M
e
D 1,13,0

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e...

Figure 3. Tit for Two Tats Strategy

The yellow color used in the matching pattern of the Op-
ponent Alternator not only helps to distinguish an “Oppo-
nent” from a “Me” strategy, it also supports the integrated
display of rules and traces as shown in Section 2.3. Note
that since the Opponent Alternator wants to do the opposite
of its own last move, it is the column that must be colored.

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

C

C D

2,2 0,3

Opponent

M
e
D 1,13,0

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e...

Figure 4. “Opponent” Alternator

2.2 Representing Traces
As defined earlier, a game play is given by a pair of

moves. Visually, a game play is represented by the inter-
section of two move patterns, as shown on the right. The
resulting game outcome is not only indicated by the inter-
secting frames of the move patterns, but also by the darker

3



cell shading that result from the overlay of the pattern col-
oring.

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

In this example, both players chose to
cooperate, resulting in a payoff of 2 for
each player.

For representing game traces, we intro-
duce a more abstracted view of a game play. The normal
form representation of the game is stripped of headers and
labels and represented as a simple grid of potential out-
comes. The outcome that was achieved in a particular game
play is indicated by filling in the corresponding box in the
grid.

Figure 5 shows a trace of iterated Prisoner’s Dilemma
played Tit for Two Tats against Opponent Alternator. Here
we can clearly see the pattern of outcomes that results when
these two strategies face each other.

Figure 5. Example Game Trace

A second view of a game trace utilizes colors on a green-
red gradient for outcome shading to represent the quality of
the payoff from the perspective of either one of the players
or for both players combined. The shading color is scaled
linearly based on the rank of the outcome so that the best
possible outcome from the given perspective will be bright
green, the worst possible bright red and intermediate out-
comes will be hues of yellow-green, yellow, and orange.

Figure 6 shows the same trace as above, first from the
perspective of “Me”, playing the Tit for Two Tats strategy
and then from the perspective of “Opponent” playing the
Alternator strategy. At a glance, it is clear that Alternator is
winning.

Figure 6. Traces Showing Individual Payoffs

A trace representation can be useful for analyzing the
output of two strategies, but for understanding how a trace
was generated, we also provide a notation for explaining
how a pair of strategies produce a given game play.

2.3 Relating Strategies to Traces
By selecting a specific game play from a high-level view

of a trace, we can zoom in to a detailed visual explanation
as shown in Figure 7, which shows an explanation of the

fourth game play in a trace of Grim Trigger vs. Opponent
Alternator. The selected game play is enclosed in a red box
with earlier game plays in the trace shown on the same row
to the left. The matching rule from the Me strategy is shown
above the game trace, and the matching rule from the Op-
ponent strategy is shown below the game trace. Game pat-
terns from the matching rules are shown centered above the
matched game plays, and their patterns are mapped onto the
trace. The different colors highlight the different places in
the trace where the patterns matched.1

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

D

C D

2,2

3,0 1,1

0,3

Opponent

M
e

C

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e... ...

D

C

C D

2,2

3,0 1,1

0,3

Opponent

M
e

Figure 7. Game Play Explanation

In this way a user can see exactly how a specific outcome
occurred given the trace that preceded it. For any previous
game play that is relevant to the selection, a matching pat-
tern will appear, and the outcome of that play will fall within
the pattern.

A further expanded view (omitted here for lack of space)
can be given in which the strategies are given in full, with
matching strategies indicated by an asterisk, to allow the
user to view the entire strategies of each player in conjunc-
tion with the trace.

Also, due to space limitations, we had to focus in this
paper on only one game, the Prisoner’s Dilemma. Other
games can be dealt with similarly. For example, the well-
known game of Rock-Paper-Scissors can be inspected at:
http://eecs.oregonstate.edu/∼erwig/rps.pdf.

3 Discussion of Language Design
Throughout the design process we utilized the cognitive

dimensions framework supplemented with our new cogni-
tive dimension of traceability (discussed in depth in Sec-
tion 4). In this section we discuss some of the decisions that
were made using these intellectual tools.

Individual cognitive dimensions often conflict with each
other. To use them effectively requires identifying the di-
mensions that are most relevant considering the goals of the

1When a Me and an Opponent pattern match and overlap in one game
play, the overlapping cells are colored in green.

4



language, then weighting these more heavily when making
decisions involving tradeoffs. Since we believe that trace-
ability greatly impacts understandability, and facilitating
strategy explanations was one of our primary goals, trace-
ability emerged as our most heavily weighted dimension.

A central element of both strategy notation and game
traces is the normal-form game representation. By basing
our language on this ubiquitous and concise notation, we
attain a high closeness of mapping with the target domain.
Our decision to utilize this notation was made very early on,
and many subsequent decisions were centered on conveying
various meanings within this framework.

That a game play should be represented by marking the
corresponding outcome in a game instance, and that a game
trace should be composed of a sequence of such game plays
seemed intuitive, and is justified by a high level of role-
expressiveness for these aspects of the language. How to
represent player moves and matching patterns was less ob-
vious. Since traceability was of such high importance, we
knew that we wanted these aspects of our language to inte-
grate well with game traces.

3.1 Design of Move Patterns

D

C
Our initial design for player moves is shown

at right—a vertical rectangle with a horizontal
slider dividing it into two areas. The primary
strength of this design is that it concisely repre-
sents mixed strategies. Patterns with pure right hand sides
would simply have the slider dragged all the way to one side
or the other, representing a 100% probability of choosing
the given strategy. This syntax could be extended to games
with more than two moves by adding more parallel sliders,
partitioning the rectangle into the desired number of areas.

We struggled to integrate this notation with program
traces, however. We decided that move patterns, like match-
ing patterns, should be represented on a normal form repre-
sentation of the game itself. This would increase closeness
of mapping and consistency, and we hoped it would lead to
better traceability.

Our final design, as described in Section 2.1 portrays a
move by outlining the corresponding row or column on a
normal form game representation. In the definition, we de-
scribe a move pattern as a special case of a simple pattern
where the marked cells are all in one row or column (de-
pending on the player). We extend the outline to include the
corresponding row or column label to make this otherwise
hidden dependency more explicit.

When move patterns from each player are combined, we
get a game play, and the outcome is defined by the intersec-
tion of the two moves. Marking the relevant cells by outlin-
ing them (rather than coloring) enables game plays, in turn,
to be combined with pattern matches, which are indicated
by color. Making sure all of these elements combined well

together was critical to attaining a high level of traceability.
We found, however, that just using outlines to indicate

moves made the outcomes difficult to detect at a glance,
indicating poor perceptual mapping. To counter this im-
pression, we added a light shading to move outlines such
that when they are overlaid they produce a darker shading
(which we actually exaggerate) to clearly indicate the out-
come of the game. Although the shading causes some con-
flict with pattern matching, the use of a gray shading vs.
colorful patterns mitigates this issue, and we considered the
tradeoff to be worth the change.

Fortunately, this change also facilitated a solution to the
problem of representing mixed strategies, which we had set
aside. As described above, mixed strategies are represented
by adding additional outlines and adjusting the amount of
each that is shaded. When a mixed move pattern is resolved
into an actual move (that is, a move is selected from the
distribution), the mixed pattern is replaced with a regular
move pattern in the trace. This decision violates consis-
tency, which is unfortunate, but not doing so would make
game traces much more confusing and cause a huge sac-
rifice in traceability, which made us accept this deficiency.
We also considered using different degrees of shading to
represent mixed strategies, but it turned out that differences
in shading were too subtle.

Finally, we decided to gray out the game representation
that move patterns are defined on. The game beneath a
move pattern represents a game that is only a future pos-
sibility which has not happened yet and is fundamentally
different from realized games in a game trace or in matching
patterns (which correspond directly to games in the trace).
This decision was also made for consistency reasons—the
notation reflects the fact that future games and realized
games are semantically different objects.

3.2 Design of Game Traces

Game traces can be viewed at two abstraction levels. The
first is at the level that strategies are defined. Here we can
view an explanation of the trace relative to the strategies
that produced it as described in Section 2.3. Many of the
design decisions that were involved in making this level of
abstraction work are described in the previous section, but a
few others warrant mentioning. First, aligning the match-
ing pattern of the applicable rule with the corresponding
game plays in the trace was an easy decision made to max-
imize role-expressiveness and minimize hidden dependen-
cies. Second, we had to consider a tradeoff between low dif-
fuseness and hidden dependencies in determining whether
or not to only show the matching rule of each strategy, or
to show the strategy in its entirety with the matching rule
indicated separately. Ultimately, we decided that each had
a role in the language and decided on the dual explanation
and expanded explanation views.

5



The second trace abstraction level is the high-level view
described in Section 2.2. Our goal here was to simplify the
notation as much as possible to allow users to focus solely
on the game trace. We believe that the simplified game rep-
resentations used in this view maximize traceability, terse-
ness, and visibility while maintaining reasonable levels of
consistency and role expressiveness.

By examining the game trace with minimal distractions,
our hope is that users can clearly see how strategies interact
with each other by the pattern (or lack thereof) represented
in their game trace. The high-level view also includes a
way to visualize the success of a strategy or combination of
strategies by color-coding the outcome based on the quality
of the payoff. We believe that this representation provides
excellent perceptual mapping as it makes the relative suc-
cess indicated by a trace recognizable at a glance.

4 Traceability as a Cognitive Dimension
Traceability measures a notation’s ability to represent

and to relate to its semantics. A more general name for
this aspect would be something like “semantic accountabil-
ity”, but since in many cases the semantics is represented
by a trace, we have chosen the more concrete name. The
rationale for investigating the traceability of a notation is to
get a sense of the overall understandability of the notation
and, in particular, of how much program understanding can
be supported by the trace notation.

The investigation of traceability requires a definition of
the trace notation, which depends on the program notation.
This also means that traceability can be investigated only
for those notations for which the notion of a trace makes
sense, which will be most program notations.

In our domain of iterated games in game theory, a trace
is given by a sequence of individual game instances. When
considering imperative languages, a trace may be a series
of memory fragments. A trace for lambda calculus is given
by a sequence of lambda expressions. In each case the se-
quence of elements in a trace is not arbitrary, but rather the
result of an effect caused by part of the program (a pair of
rules, a statement from the imperative program, or an appli-
cation of a lambda abstraction to an expression).

Traceability involves two distinct, but closely related as-
pects. First, it expresses how well traces can explain the
meaning of a program. Second, it reflects how integrated
the notations for traces and programs are, and in particular,
how well a specific program part can be related to the part(s)
of the trace it is affecting.

In this context, we should also mention the distinction
between “static” and “dynamic” traces. A static trace rep-
resents the time component explicitly, that is, spatially. For
example, our notation features static traces, representing the
passage of time by moving left to right along the horizontal
axis. On the other hand, typical debuggers for imperative

languages produce a dynamic trace, where the passage of
time is represented by replacing one state with another.

It seems that static traces are prefereable in princi-
ple since they reduce the need for memorizing trace ele-
ments and can thus reduce the cognitive load on the viewer
whereas complex dynamic traces often prompt users to re-
run the program because old state can be “forgotten”. On
the other hand, when the trace notation becomes too com-
plex or too large, a dynamic trace might be required as a
modularization device to make the communication of the
huge amount of information possible at all.

4.1 Interaction with Existing Cognitive Dimensions

The existing cognitive dimension of closeness of map-
ping measures how well a program relates to its abstract
semantic domain. In contrast, traceability measures how
well a program relates to a concrete representation of its
semantic effects. Therefore, traceability is similar in na-
ture to closeness of mapping, but uses a trace as a different,
more concrete target. Traceability may be considered some-
thing of a second-order cognitive dimension since it reflects
closeness of mapping between program and execution no-
tation rather than program notation and abstract domain.

The ultimate goal of traceability is to make programs
easier to understand. We believe that by visually relating a
program to its effects, relationships between a program and
its output can be made clearer and easier to understand by
people. Other cognitive dimensions have this same motiva-
tion. One is visibility, which considers how easily elements
of a program’s representation can be viewed. Traceability
considers how easily a program’s relationship to its execu-
tion can be viewed. In some sense, traceability is an exten-
sion of visibility from static representation to a program’s
execution.

Traceability is also related to the existing cognitive di-
mension of progressive evaluation. Progressive evaluation
considers whether or not a program can be executed before
it is completely written. The intention is to help a user check
their program’s correctness as they are writing it. Although
traceability is primarily concerned with viewing the execu-
tion of completed programs, by increasing the visibility of
program execution, it may also help increase a user’s confi-
dence in program correctness.

In designing our notation for strategies we recognized a
tradeoff between traceability and abstraction. We consid-
ered adding an abstraction mechanism to our language that
would have allowed other strategies, referenced by name,
on the right-hand side of a strategy definition. Besides the
usual well-known benefits of abstraction, this change would
have also made our language fundamentally more expres-
sive, allowing us to create strategies with more complex
matching patterns (for example, multiple existential pat-
terns).

6



This abstraction mechanism, however, made it much
more difficult to illustrate how strategies interact with a
game trace. In other words, it negatively affected traceabil-
ity. Since high traceability was one of our primary design
goals, we decided not to adopt this language feature despite
its benefits elsewhere.

4.2 Independence of Trace Role and Integration

Traceability as a measure for program understandability
depends on how much the trace plays a part in understand-
ing the program and how well the trace can be related to the
program. By examining traceability for several existing lan-
guages we would like to demonstrate that these two aspect
are orthogonal.

In some languages, such as Logo [7] or Alice [1], the
trace is the program output, that is, it does not need motiva-
tion or additional definitions and thus is an integral part of
understanding programs. On the other hand, in traditional
imperative languages or lambda calculus [3] a trace is only
employed to show intermediate results, which means that
looking at a trace requires a mode of executing a program
that is different from running the program just for its result
and that is typically employed only if the result asks for an
explanation.

The prominent role of traces in Logo or Alice does not
imply a tight integration of traces and program notation,
which is obvious since in both cases the program notation
is textual, but the traces are pictures or animations. Explicit
mechanisms to annotate the program notation and synchro-
nize it with the visual program output are required to enable
tracing. In this respect, the situation for Logo and Alice
is very similar to that of debugging interfaces of traditional
imperative languages.

On the other hand, traces explaining the evaluation of
lambda calculus expressions are highly integrated with the
program notation since each part of the trace is a (partially
evaluated) program (that is, a lambda expression). All that
is needed as additional notation is typically the underlining
of the subexpression being reduced in the next step.

4.3 Traceability as a Notation Design Tool

To elevate the notion of traceability to a cognitive di-
mension we should give advice as to what kind of changes
in notation could increase traceability [4]. Such guidelines
are important if we want to have traceability not only as an
evaluative tool, but also as a design toool.

One strategy to improve traceability is to share notation
between traces and programs to support the identification of
program parts with relevant parts of the trace. Also, aiming
for modular program notation allows the isolation of pro-
gram parts to facilitate the combination with traces.

Moreover, based on the observations in Section 4.2, we
believe that observing and making explicit the two aspects

of role and integration for a particular language, helps to
find ways to improve the language. For example, to increase
traceability of Alice we could try to define a notation that
lets program (parts) be associated with the animated objects,
which would increase the integration aspect tremendously.

5 Related Work
Our notation builds on the normal-form representation of

games—a matrix of payoffs indexed by each players’ move.
While very common, it is not the only well-used game rep-
resentation.

Games in extensive form are represented as trees. De-
cisions and variables are represented as non-leaf nodes and
payoffs as leaves. Moves are represented as edges from a
decision node to its children. This representation can more
easily represent games in which a single player must make
more than one decision, games involving random variables,
and games with more than two players. This increased flex-
ibility, however, comes at the expense of terseness.

Multi-agent influence diagrams are high-level graphs
showing the relationships between variables and the deci-
sions made by agents in a game [9]. This representation
excels at showing relevance in real-world games with many
external variables, but usually omits the move and payoff
information required to define a game precisely.

Some aspects of our design could be extended to these
other representations. Matching patterns of previous pay-
offs, for example, could work with extensive form games
by simply replacing matrices with trees and marking the
outcomes by highlighting the corresponding leaves. Move
patterns could be represented by highlighting edges from
decision nodes; these could be combined to form a game
play, represented by a complete path from the root to a leaf
node. There are many obstacles that would have to be ad-
dressed for such an approach, however. Inheriting from
the normal-form representation, our notation assumes im-
perfect information, which means that a player makes his
move without knowledge of the other player’s move for this
game. Extensive form games often lack this assumption,
however. Extensive form games also easily accommodate
situations in which a player must make more than one de-
cision in a single game, which is not something our current
design considers.

Representing strategies is a surprisingly unexplored
field. Strategies are typically defined textually or with
psuedo-code. One attempt at providing a more user-
friendly means to specify strategies for the Iterated Pris-
oner’s Dilemma competition provided tables enumerating
every possible combination of moves for the past one to
three rounds of play, allowing the user to specify an action
for every case [8]. Besides not scaling past a few games of
recent history, there are a many common strategies that are
simply not expressible in this notation.

7



The cognitive dimensions framework provides a termi-
nology relating programming language design to cognitive
issues in programming [6]. The framework has been built
upon and extended many times, for example, [5, 14, 17].
Actively encouraging extensions, Alan Blackwell outlines
some guidelines for proposing new dimensions in [4]. We
have tried to take these guidelines into account in our defi-
nition of traceability in Section 4.

Our visual notation for strategies employs the idea of vi-
sual rewrite rules that is part of many visual languages. Two
well-known examples are AgentSheets [11] and StageCast
creator [13]. In the AgentSheets approach, for instance, a
program is given by a set of visual rewrite rules that map one
graphic state, represented as a 2D tile, to the next. When a
program is run, these rules are applied repeatedly producing
an animation. These animations can be considered a form
of dynamic trace which helps to visualize and understand
the effects of the rules. AgentSheets lacks a mechanism,
present in our language, to explicitly relate an element of
the current state to the corresponding rules that generated
that state, which would be difficult since the state manipu-
lated is more complex than that of game instances. More-
over, AgentSheet rules can refer only to the previous state,
which means that actions described by rules cannot be pred-
icated on the history of the state, and existential or forall
quantifications cannot be expressed. Since AgentSheets
offers many more general-purpose programming elements
than our game theory notation, it is not surprising that it
is more difficult to achieve the same degree of traceability,
an observation that reflects the tradeoff between traceability
and abstraction.

Software visualization considers the representation of
programs and their execution to facilitate reasoning and
understanding throughout the software development cycle
[15]. Our new cognitive dimension of traceability extends
these considerations to the language design phase. Petre
and de Quincey state, in an overview of the field of soft-
ware visualization, “Currently, it is still arguable that what
is visualized is what can be visualized, not necessarily what
needs to be visualized” [10]. By addressing traceability in
the language design phase, languages can make their pro-
grams more amenable to visualization, which will make it
easier to increase visualization coverage to those areas that
most need it.

6 Conclusions and Future Work
This work is part of our effort to develop a new paradigm

of explanation-oriented languages, which are languages
whose objective is not only to describe the computation of
values, but also to create explanations of how and why those
values are obtained. By directing the language designer’s
attention to the notation of traces and the integration with
the program notation the cognitive dimension of traceability

advocates the design of notations with explanatory value.
As we have demonstrated, the presented notation for

game strategies and traces exhibits a high degree of trace-
ability and can thus serve as an explanatory tool for game
theory for a broad audience.

For future work we intend to apply design explanatory
notations in other domains of public interest (for example,
to explain simple probabilistic reasoning) using the trace-
ability criterion as a design guideline. Moreover, we plan to
consider the redesign of existing languages to improve their
traceability.

References
[1] Alice 3.0. http://www.alice.org.
[2] R. Axelrod. The Evolution of Cooperation. Basic Books,

1984.
[3] H. P. Barendregt. The Lambda Calculus – Its Syntax and

Semantics. North Holland, 1984.
[4] A. Blackwell. Dealing with new Cognitive Dimensions.

Workshop on Cognitive Dimensions: Strengthening the Cog-
nitive Dimensions Research Community., University of Hert-
fordshire, 2000.

[5] R. Dondero Jr and S. Wiedenbeck. Subsetability as a New
Cognitive Dimension? Proceedings of PPIG 18, 2006.

[6] T. Green and M. Petre. Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’
Framework. Journal of Visual Languages and Computing,
7(2):131–174, 1996.

[7] B. Harvey. Computer Science Logo Style (2nd ed.). MIT
Press, 1997.

[8] G. Kendall, P. Darwen, and X. Yao. The prisoner’s dilemma
competition, 2005. http://www.prisoners-dilemma.com.

[9] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. Games and Economic Be-
havior, 45(1):181–221, 2003.

[10] M. Petre and E. de Quincey. A gentle overview of software
visualisation. PPIG Newsletter, 2006.

[11] A. Repenning and T. Sumner. Agentsheets: a medium
for creating domain-oriented visual languages. Computer,
28(3):17–25, 1995.

[12] B. Schneier. Drugs: Sports’ prisoner’s dilemma. Wired
News, August 2006.

[13] D. Smith, A. Cypher, and L. Tesler. Programming by exam-
ple: novice programming comes of age. Communications of
the ACM, 43(3):75–81, 2000.

[14] M. Stacey. Distorting design: unevenness as a cognitive di-
mension of design tools. Adjunct Proceedings of HCI, 95,
1995.

[15] J. Stasko. Software Visualization: Programming As a Multi-
media Experience. MIT Press, 1998.

[16] P. Straffin. Game Theory and Strategy. The Mathematical
Association of America, 1993.

[17] S. Yang, M. Burnett, E. Dekoven, and M. Zloof. Representa-
tion Design Benchmarks: A Design-Time Aid for VPL Nav-
igable Static Representations. Journal of Visual Languages
and Computing, 8(5-6):563–599, 1997.

8


