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Abstract— We propose an efficient service management tech-
nique that enhances the quality of experience (QoE) of 4G
users by enabling them to locate the best available network
service provider (NSP) among many existing NSPs. We also
propose a practical method that 4G users can use to implement
the proposed technique in a purely distributed manner. Using
simulations, we show that the proposed technique i) increases
network service availability by allowing 4G users to quickly
find available NSPs, ii) are very scalable by performing well
regardless of the number of users in the system, and iii) are
implementable in decentralized fashion by relying on information
that can be observed locally and without any cooperation.

Index Terms—Distributed service management; data traffic;
scalable techniques; 4G networks.

I. INTRODUCTION

The fast-growing popularity of wireless mobile applications

and devices has generated explosively increasing demands for

network resources. New mobile applications, ranging from

watching live games via real-time streaming to delivering

important healthcare information to practitioners and from

locating your favorite restaurant via GPS to keeping up with

your friends via Facebook, are emerging and quickly reaching

millions and millions of users. Existing, traditional wireless

services also continue to blossom at dramatic rates, creating

extra demands for network resources. The proliferation of

these wireless mobile services and applications is funda-

mentally reshaping how resources and services ought to be

allocated and managed. As new enabling technologies, such as

cognitive radios [1, 2], are on the horizon, we anticipate a shift

from the traditional subscription business model, where users

subscribe to and receive service from one network service

provider (NSP) at all time, to more liberal models, where users

can freely seek and trade service dynamically and in real-time

from multiple, different NSPs. This new mobility trend calls

for new network management techniques, where resources are

allocated only when needed, and services are managed and

controlled dynamically by end-user devices themselves with

little to no involvement from any centralized NSPs. With this

in mind, the focus of this paper is on developing dynamic

management techniques that can meet, and effectively cope

with, these expected high service demands.

The key challenge of the management task at hand arises

from the highly dynamic and complex nature of this emerging

network environment, which is expected to handle potentially

large numbers of heterogenous devices/users, each possibly

having different quality of experience (QoE) desires. This

environment gives rise to unique characteristics, which make

it too difficult for users to model/predict its dynamics and

behaviors [3–7]. As such, learning-based techniques that do

not require prediction models, but can still manage well the

network resources by learning through their interactions with

the environment are particularly well suited to this type of

environment, whose behavior is, by nature, too complex to

predict, but the QoE to be achieved as a result of using the

environment can easily be assessed/observed [8–14]. Instead

of using prediction models, these techniques rely on learning

algorithms, such as reinforcement learners [15, 16], to learn

from past and present interaction experience to decide what to

do best in the future. For example, albeit it may be difficult to

predict which NSP is going to offer the best service in the near

future (e.g., less congested, has more available resources, etc.),

the QoE can easily be quantified once the user subscribes to an

NSP. In essence, learning techniques enable 4G users to learn

from interaction experience and use the acquired knowledge

to choose the proper actions that lead to the maximization of

their own/intrinsic objectives, thereby “hopefully" maximizing

their QoE to be received in the long run.

One interesting observation came from our initial study is

that when users aim to maximize their intrinsic objectives,

their collective behavior as a whole often leads to making

each other’s QoE worse. That is, when the users’ private

objectives are not so carefully chosen/designed, the learning

based techniques may lead to poor performances.

In this paper, we propose efficient management tech-

niques that indeed allow 4G users to maximize their received

QoE levels through careful design, coordination and alignment

of the users’ objectives. Specifically, we propose user objective

functions that are aligned with system objective, so that when

users go after them, their behavior as a whole also results in

increasing each user’s long-term received QoE. The proposed

techniques enhance the users’ QoE by allowing them to

quickly locate the best available NSP. Furthermore, we propose

a distributed/practical function computation method that 4G

users can use to compute their objectives. Using Matlab sim-

ulations, we show that the proposed management techniques

i) enhance network service availability in that they allow 4G

users to quickly find available NSPs, ii) scale well with the

number of users in the system, and iii) are implementable in
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decentralized fashion by relying on information that can be

observed locally and without any cooperation.

The rest of the paper is organized as follows. In Section II,

we describe our system model. Section III states the studied

problem. In Section IV, we present our proposed management

techniques. We evaluate the performance of the proposed

techniques in Section V, and finally conclude the paper in

Section VI.

II. 4G NETWORK MODEL

We consider a 4G data/IP network, as shown in Fig. 1,

that consists of m NSPs all providing real-time services (e.g.,

Internet access, real-time online gaming, streamed multimedia,

IP telephony, etc.) to n 4G users (e.g., smartphones, tablets, e-

readers, iPads, and other IP-enabled devices). In this work, we

assume a free-subscription service model, where users are free

to seek and trade service dynamically and in real-time from

multiple, different NSPs. That is, 4G users do not have to be

subscribed to one NSP all the time, rather they can switch to

and receive service from any NSP at anytime. For example, a

user can have multiple accounts with multiple different NSPs,

and depending on the user’s perceived/desired QoE (including,

quality, price, policy, etc.), a user can decide to switch to any

other NSP. Once a user subscribes to and receives service from

an NSP for a period of time, the user can easily quantify the

QoE of the service offered by the NSP. Data rates can for e.g.

be a way of quantifying the amount/quality of service that the

NSP offers the 4G user. Other examples of quality metrics

are the signal reliability and the data packet success rate of

the communication carried on the NSP’s network. Here, we

assume that once a 4G user switches/subscribes to a particular

NSP, the user can easily quantify the QoE of the service

received from the NSP. Hereafter, let Vj represent the total

amount of service NSP j offers.

Fig. 1. 4G network access model.

In this paper, we are interested in data traffic, such as web

browsing, file downloading, and emailing. That is, we assume

that all 4G users want to connect to the 4G network to receive

data services. Unlike the case of voice traffic, a user’s QoE for

data traffic generally increases proportionally to the amount of

data service/rate the user receives. This is reasonable when the

amount of service is not too low or, more formally, when it

is above a certain required threshold ̟. But when the amount

of received service is below ̟, the user’s QoE decreases

exponentially with the received service. Here, the higher the

amount of received service, the better the QoE perceived by

the user. But when the user’s amount of received service is

less than the required threshold, ̟, the QoE is unacceptable.

Formally, the QoE, qi(t), of 4G user i subscribed to NSP j at

time step t can be written as:

qi(t) =

{

r(t) if r(t) ≥ ̟

̟e−β(̟/r(t)−1) otherwise
(1)

where r(t) is the amount of service received by 4G user i at

time episode t, and β is a design parameter that captures the

sensitivity of the user’s QoE to the amount of received service

when the amount becomes less than the required threshold, ̟;

the higher the β value, the faster the QoE goes to zero. For

illustration, we show in Fig. 2 the QoE user i receives from

NSP j as a function of r(t) for β = 10 and ̟ = 2.
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Fig. 2. QoE function: β = 10 and ̟ = 2.

Let cj represent the maximum number of users that NSP j
can support while satisfying all 4G users’ required QoE thresh-

olds. Here, cj = Vj/̟, where Vj denotes the total amount

of service that NSP j can offer. If we assume that all users

subscribed to a particular NSP receive equal shares of service,

then when the number of users, nj(t), subscribed to NSP j ex-

ceeds the capacity cj , the amount of received service each user

receives becomes less than ̟. Therefore, as nj(t) increases

beyond cj , users’ QoE decreases exponentially, meaning that

all 4G users subscribed to NSP j will be unsatisfied with

the amount of service they receive when the number of users

exceeds the capacity.

III. PROBLEM STATEMENT

The aim of this work is to develop efficient network

management techniques for 4G systems. Specifically, we fo-

cus on proposing objective functions that are i) efficient in

that they lead to the maximization of 4G users’ long-term

received QoE levels, ii) scalable in that they maintain high

performances even when the number of 4G users is large,

and iii) distributed in that 4G users can implement them in a

decentralized manner. 4G users will implement the proposed

techniques via existing learning algorithms to enable them to
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efficiently find good service opportunities by locating the best

available NSPs, thus increasing the QoE level that each 4G

user receives in the long run.

The challenge lies in that we want to propose distributed

techniques that enable 4G users to learn and locate good

NSPs without requiring any collaboration from other users

or from the NSPs themselves. Techniques that learn through

system interaction are particularly well suitable for such a 4G

environment, whose behavior is too complex to predict. These

techniques allow users to learn from experience by interacting

with the environment, and rely on their gathered knowledge

to select the proper actions that maximize their own/intrinsic

service objectives, so as to maximize their long term received

QoE. With this in mind, the question that arises here and that

we want to answer in this paper is: which objective function

gi should each 4G user aim at maximizing so that its received

QoE level is maximized by finding the best available NSP?

Although the techniques that we propose in this paper are

designed for any learning algorithms, we use in this work the

ǫ-greedy Q-learner [15] (with a discount rate of 0 and an ǫ
value of 0.05). Therefore, at each episode (or time step) t,
each user i aims at maximizing its own objective function

gi(t) using its own Q-learner; that is, at the end of each time

episode, each user takes the action with the highest entry value

with probability 1− ǫ, and takes a random action (among all

possible actions) with probability ǫ. After taking an action,

the user computes then its QoE that it receives as a result

of taking such an action (i.e., as a result of subscribing to

the selected NSP), and uses it to update its Q-table. A table

entry Q(a) corresponding to action a is updated via Q(a)←
(1 − α)Q(a) + αu, where α (set to 0.5 in this work) is the

learning rate, and u is the received service from taking action

a. All the results presented in this paper are based on this Q-

learner (more details on the Q-learner can be found in [15]).

IV. DISTRIBUTED SERVICE MANAGEMENT

In this section, we first begin by presenting the proposed

efficient objective functions that maximize the users’ QoE lev-

els, and then develop distributed computation methods that 4G

users can use to implement these proposed functions.

A. Learnability and Alignedness

Let gi denote the QoE objective function that user i aims to

go after so as to maximize its QoE. Now, let z(t) represent the

joint move of all users in the system at time t, and −i represent

all users other than user i. zi(t) and z−i(t) are then used to

specify the parts of the system state controlled respectively

by user i and users −i at time t, and z(t) can be written as

z(t) = (zi(t), z−i(t)). Here, the QoE function, qi, is a function

of z(t), and hence, qi(t) can precisely be written as qi(z(t)).
For simplicity of notation, we often omit throughout this paper

the dependency of these states on time t. For example, z(t)
will often simply be written as z.

For the joint actions of multiple 4G users to lead to good

overall received QoE level, two requirements must be met.

First, we must ensure that a user aiming to maximize its own

QoE objective also leads to maximizing the system QoE level,

defined as the sum of all users’ QoE levels, so that each user’s

long-term average received QoE level is indeed maximized.

This means that the users’ objective functions (gi(z) for user

i) need to be “aligned" with the system QoE level function

for a given system state z. Intuitively, the higher the degree of

alignedness of a user’s objective function gi, the more likely

it is that a change of state will have the same impact on both

the user’s and the system’s received QoE level.

Second, we must ensure that each user is able to discern the

impact of its own actions on its own objective, so that a proper

action selection allows it to quickly learn about good service

opportunities. This means that the user’s objective function

should be learnable; i.e., more sensitive to its own actions

than the actions of other users. For a given state z, the higher

the learnability, the more dependent gi(z) is on user i’s moves.

The alignedness and learnability requirements are unfortu-

nately in conflict with one another [17], and therefore, the

challenge in designing efficient objective functions for 4G

users lies in finding the best balance between these two re-

quirements. This balance guarantees that 4G users can learn to

maximize their own objectives while their collective behavior

does not make each other’s received QoE worse.

B. Difference Objective Functions

In general, a highly aligned objective function will expe-

rience low learnability rate, and a highly learnable function

will have low alignedness degree [18]. We propose to use

for our 4G system the difference objective functions [19],

which are shown to provide a good balance between aligned-

ness and learnability. These difference functions have been

shown to perform well in various domains, such as multi-

robot coordination [20], air traffic control [21], and dynamic

spectrum access [13, 22]. Formally, the difference objective

function di(z(t)) (or simply di(t)) for a 4G user i subscribed

to NSP j can be written as

di(t) =

n
∑

k=1

qk(z(t))−

n
∑

k=1,k 6=i

qk(z−i(t))

= nj(z(t))qi(z(t))− nj(z−i(t))qi(z−i(t)) (2)

where again z(t) represents the full system state (i.e., joint

move of all users in the system), and z−i(t) specifies the parts

of the system state controlled by all users other than user i;
i.e., z−i(t) represents the parts of the state on which user i
has no effect. Note that these difference functions are aligned

with one another, because the second term of Eq. (2) does not

depend on user i’s actions. But they do have a good learnability

level, because subtracting the second term from the first term

removes most of other users’ effects from user i’s objective

function. Intuitively, since the second term evaluates the value

of the system without user i, subtracting it provides an ob-

jective function that essentially measures user i’s contribution

to the overall achievable system QoE level, making it more

learnable without compromising its alignedness quality.
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C. Distributed Function Computation Method

We now propose a computation method that can be im-

plemented by users to compute the objective functions in a

distributed manner in spite of the large number of interacting

users and the high dynamics of the network environment.

Formally, the full system state z can be decomposed into

two components: zoi , a component observable by user i; and

zhi , a component hidden from user i. Basically, the observable

component, zoi , represents all what user i knows about the

system state. The question now is that given the observable

component zoi only, can each user i compute its objective

function accurately enough?

The approach we propose for computing these proposed

objective functions assumes no cooperation among users.

Essentially, we propose a method that estimates the full system

state given the observable component of the system state only,

and then use these estimates (of the full state) to estimate the

objective functions. Specifically, the user’s estimated function

that we propose for the function di (given in Eq. (2)) is

d̂i(t) = n̂j(z(t))q̂i(z(t))− n̂j(z−i(t))q̂i(z−i(t)) (3)

where q̂i(z) ≡ E[qi(z)|z
oi ], q̂i(z−i) ≡ E[qi(z−i)|z

oi],
n̂j(z) ≡ E[nj(z)|z

oi], and n̂j(z−i) ≡ E[nj(z−i)|z
oi]. Here,

E[·] can be the expectation operator or any estimation function.

Now, assuming that the total amount of service Vj each

NSP offers is known, and that all users subscribed to the same

NSP will receive roughly the same amount of service, the

number n̂j(z(t)) can be estimated to Vj/ri(t) and the number

n̂j(z−i(t)) can be estimated to Vj/ri(t) − 1. Likewise, the

function values q̂i(z(t)) and q̂i(z−i(t)) can respectively be

estimated to qi(ri(t)) and qi(
ri(t)Vj

Vj−ri(t)
) (the function qi is given

in Eq. (1). Thus, di(t) can be estimated to

d̂i(t) =
Vj

ri(t)
qi(ri(t))− (

Vj

ri(t)
− 1)qi(

ri(t)Vj

Vj − ri(t)
) (4)

Note that d̂i(t) depends on ri(t) only (assuming Vj is known),

an information that can be observed locally without any

cooperation. Hence, the proposed functions can be imple-

mented/computed in a fully decentralized manner.

V. SIMULATION RESULTS

In this section, we evaluate the effectiveness of the dif-

ference objective functions in terms of their ability to find

the best available NSP. Specifically, we assess their ability

to 1) easily find/locate available data services, and 2) scale

well with the number of 4G users. We evaluate these two

performance metrics of the proposed functions and compare

them with those of the intrinsic/greedy function qi.
For this, we consider a 4G system consisting of m NSP,

and a large number, n, of 4G users, all independently and

distributively seeking to receive data service from the system.

Each 4G user is allowed to freely choose any NSP, and users

are allowed to switch between NSPs at any time. In our

simulations, we set the average value of NSP’s offered services

to 20, the threshold ̟ to 4, and the number of NSPs to 10.

A. Impact of Network Load

We measure and compare the performances of the proposed

difference and the intrinsic functions in terms of their ability

to find an NSP that satisfies/meets the required data service

threshold. For this, we plot in Fig. 3 the percentage of satisfied

4G users for various network loads, where a user is considered

to be satisfied when its received QoE is above the required

threshold, ̟. Here, we plot the performances against the

normalized network overload, which is defined as the ratio

of the total number of users minus the system capacity (in

number of users) to the system capacity, where the system

capacity is
∑m

k=1 Vk/̟. The figure clearly shows that the
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Fig. 3. Network availability: ̟ = 4, β = 20, Vk = 20 for all k.

proposed difference function di outperforms substantially the

intrinsic function. That is, the proposed objective function

leads to a much higher network service availability than the

intrinsic function, and the availability of the network can

reach up to 80% when compared with the ideal scenario.

The proposed techniques can then be thought of as distributed

management methods of network resources that result in a

great enhancement of the users’ QoE. Here, the percentage

of satisfied users (or network availability) is normalized with

respect to the ideal performance, which is used here as an

upper bound. The ideal performance corresponds to when the

users distribution among all NSPs is done in a centralized

fashion with full knowledge of the system state.

Also, observe that as the network load increases, the

proposed difference function maintains high performance,

whereas the performance achievable under the intrinsic func-

tion drops rapidly. Therefore, we conclude that not only are the

proposed functions practical in that they can be implemented

in a decentralized manner, but they are also very scalable.

B. Impact of NSPs’ Offered Service Variability

We also study the impact of the variability of the amount

of service offered by the NSPs. For this, we show in Fig. 4

the percentage of satisfied users under each of the two studied

objective functions when varying the coefficient of variations

of Vj across all j’s while keeping the average value to 20
( 1
m

∑m
k=1 Vj = 20). Observe that the proposed technique

outperforms the intrinsic technique regardless of the variability

of the offered services across the NSPs. It can also be seen that
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Fig. 4. Impact of Service Variability: ̟ = 4, β = 20, 1

m
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Vj = 20.

the proposed technique maintains relatively high performance

independently of the coefficient of variations.

VI. CONCLUSION

This paper proposes distributed and scalable management

techniques that improve 4G users’ QoE by enabling them to

quickly find the best available NSP. They allow 4G users

to maximize their received QoE levels through careful de-

sign, coordination and alignment of their objectives. More

specifically, we propose objective functions that are aligned

with system objective, so that when users maximize them,

their collective behavior results in increasing the long-term

received QoE of each user. We also propose a practical

computation method that 4G users can use to compute the

proposed objective functions. We show via simulations that

the proposed techniques are capable of enhancing network

service availability, are very scalable, and are implementable in

a decentralized fashion by relying on local information only.
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