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Abstract. A method for preferred color reproduction with a psycho-
physical study based upon a real-life scene demonstrated application
is presented. A color correction matrix optimization algorithm is first
introduced which applies additional hue constraints on top of the CIE
delta E magnitude error to emphasize the importance of hue in the
subjective quality of color reproduction. An application is implemented
by applying matrices optimized for the three dominant memory colors:
skin, sky and green based on each pixel’s categorical classification
which is obtained through an explicitly defined boundary model. A
psychophysical study was carried out to systematically investigate
observers’ hue preference in terms of the reproduction of individual
memory colors as well as when multiple memory colors exist in the
scene simultaneously. Conclusions suggest that observers’ prefer-
ence for individual memory colors is consistent with regard to scene
composition. When a scene with multiple memory colors is evaluated,
skin is given the highest priority in the overall preference scale, fol-
lowed by sky and then green. In practice, the optimized
preferred color reproduction may be achieved by first locating the
matrices for individual memory colors through a rank order
study, and then applying them based on each pixel’s classification.
© 2012 SPIE and IS&T. [DOI: 10.1117/1.JEI.21.3.033021]

1 Introduction
Among the many factors that can affect the subjective quality
of an image, color reproduction is widely agreed to be a
major one. Observers are able to judge the quality of the
color reproduction of an image without knowledgeof the
original scene with the help of a capability developed from
everyday life experiences and some memory colors such as
human skin tone, blue sky and green vegetation are often
used as important references during this evaluation process.
Memory colors refer to certain colors associated with our
daily life in such a way that observers can easily connect an
object with a certain color in their memory. Memory colors
have two important attributes: 1. these colors exist in fairly

consistent manners in nature; 2. they appear often enough
such that every observer has his own memory for these
colors. As just mentioned, skin tone, sky blue, and green are
dominant memory colors and the quality of their reproduc-
tion can greatly affect the subjective quality of a reproduced
color image.

As a common practice for digital image pipelines, color
constancy is an essential and sometimes the only functional
block in terms of color processing. Most of the color con-
stancy algorithms consist of a two-stage process: during the
first stage, the white point of the scene is estimated, and a
diagonal matrix is applied to white balance the image; during
the second stage, which is the concern of this paper, a color
correction matrix is optimized for the specific image sensor,
and the resulting matrix is applied to the white balanced
image so that the data in the device color space can be trans-
formed into a device independent standard color space. The
optimization of this color correction matrix can be achieved
by minimizing a cost function such as the color difference
defined by CIE76, CIE94 or CIEDE2000 using the naïve
least-squares regressions or with constraints such as the
white point preserving least squares regressions and the
weighted white point preserving least squares regressions.1,2

These methods focus on minimizing the magnitude error
whose mathematical representation can vary from a simple
equation like CIE76 ΔE�

ab to a quite sophisticated form
such as the CIEDE2000 ΔE�

00. However, the rotational hue
error, which can be of greater importance (demonstrated by
the example on page 108),3 is left out of consideration. In a
three-dimensional (3-D) color space defined by lightness, hue
and chroma, it is intuitive thinking to include the rotational
hue error into the matrix optimization process given the fact
that color names such as red, yellow and green are defined
along planes with constant hues and for the same amount of
magnitude error, skin color can be reproduced in a reddish or
a greenish tone where the latter case is visually objective.
While this hue constrained matrix optimization method
can be applied in a very general manner, we would like to
explore its usage in preferred color reproduction in this work.
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Memory colors and preferred color reproduction have
been studied extensively in the literature and a plethora
of work can be found in the patent industry dealing with
specific implementations. Previous research through different
methodologies,4–11 has shown that memory colors of skin
tone, sky blue, and foliage green do not have the same
chromaticities as the original object colors especially when
given image context such as sky, skin or plant present in
the reproduced image. No strong correlation was found
between the subjective quality of the color rendition and
color accuracy and that significant hue shifts were found
which in many cases are probably in the direction of the
most impressive or pleasing chromatic attribute. Evidence
has shown that the above colors are remembered with
increased purity or saturation and the observation is consistent
across different racial groups. These research results have
been translated into specific implementations in practice
with examples documented in Refs. 12–16. In Ref. 12 mem-
ory colors are processed using a coefficient group interpolated
or extrapolated frommultiple precalculated coefficient groups,
or through a look up table. In this method, the degree of cor-
rection can be adjusted with ease and at least two of the hue,
chroma and lightness signals are processed simultaneously. In
Ref. 13 an apparatus is described for preferred color reproduc-
tion by first transforming the pixel values into lightness,
chroma and hue, and then consistently and smoothly moving
the hue values within a predefined region toward predeter-
mined preferred colors or away from predetermined objection-
able colors. This work also specifically defines preferred hue
lines for certain patches on the Macbeth Color Checker. Gen-
eral methods are introduced without detailed mathematical
descriptions.12,13 Other publications include methods such as
the image-wide histogram manipulation based on the detected
skin pixels,14 modeling skin color using Gaussian distributions
in the Yu 0v 0 space and transform those pixels into the pre-
ferred color zone,15 or to find the memory color pixels in cer-
tain CbCr zones and apply some operator to these pixels to
achieve preferred reproduction.16

This work contributes to the literature by explicitly build-
ing a link between color correction matrix optimization and
preferred color reproduction. We also report results from a
psychophysical study which leads to some general recom-
mendation for the optimized preferred color reproduction
of real-life scenes based upon the proposed hue constrained
matrix optimization method. In Sec. 2, we give a statement
of the problem by reviewing the color processing steps in
digital image pipelines including the necessary color space
transformations and demonstrate the importance of direc-
tional hue error in preferred color reproduction. In Sec. 3,
the proposed method is discussed. In Sec. 4, we report some
experimental results from a psychophysical study using rank
order and paired comparison evaluations, followed by dis-
cussions and conclusions in Sec. 5.

2 Statement of the Problem
In this section, we review the color image formation process
and the essential color space transformations that convert
image data from the device dependent RGB color space
to the approximately perceptually uniform CIELAB color
space. Related reviews can be easily found in the public
domain. We feel necessary to include it in this text for
completeness and reference purposes. We will also briefly

review some of the existing techniques for color correction
matrix optimization, and demonstrate the importance of the
rotational hue error at the end of this section.

2.1 Color Image Formation Process
In color processing, a widely adopted model for describing
the formation process of a color image is through the
convolution of the spectra of the illuminant, the surface
reflectance of the scene, and the sensitivity of the image
acquisition system (in our case an image sensor) over the
entire spectrum. For any specific pixel location ði; jÞ corre-
sponding to the ith row (i ¼ 1; 2; : : : ;NUMrow) and the jth

column(j ¼ 1; 2; : : : ;NUMcol) of an image, if λ represents
the wavelength of the electromagnetic wave in nanometer,
given an illuminant with a spectral power distribution EðλÞ,
the corresponding surface reflectance Ri;jðλÞ, and the relative
spectral sensitivity of the image sensor Si;jðλÞ, the resulting
value of the pixel Pi;j can be formulated as:

Pi;j ¼
Z
λ
EðλÞRi;jðλÞSi;jðλÞdλ; (1)

where global illuminant is assumed. Si;jðλÞ ¼ SkðλÞ in which
k ¼ 1; 2; : : : ;NUMcha(NUMcha is the number of color
channels of the sensor) depending on the arrangement of
the pixel array. With the color filter array (CFA) arranged in
Bayer pattern (NUMcha ¼ 3) as in most of the commercial
image sensors, four values are obtained within each 2 × 2
quadrant among them one is red, one is blue, and two are
green. This NUMrow × NUMcol × 1 array can be interpolated
into to an NUMrow × NUMcol × 3 array such that every pixel
has all three of red, green, and blue signals to form a full
color image.In practice, the effective range of λ is limited by
means such as infrared filters to around 400 to 700 nm in
order to match the visible spectrum of the Human Visual
System (HVS) whose characteristics are described by the
International Commission on Illumination (Commission
international de l'éclairage, CIE) color-matching functions.

In Fig. 1(a), we show the relative spectral sensitivity of the
image sensor used for this study whose responses are
denoted by SrðλÞ,SgðλÞ and SbðλÞ for red, green, and blue
channels, respectively. In Fig. 1(b), the CIE color-matching
functions are plotted and we denote them with x̄ðλÞ,ȳðλÞ
and z̄ðλÞ.

We will now rewrite Eq. (1) in matrix format for mathe-
matical manipulability. Let N be the number of points from
sampling the effective wavelength range (for example, N ¼
31 if we sample 400 nm to 700 nm for every 10 nm), and
M be the number of reflective surfaces involved in the scene
under consideration, then the following equation can be
written:

"R
G
B

#
D

¼
" Sr
Sg
Sb

#
· diagðEÞ · R; (2)

or in a more condensed form:

RGBD ¼ S · diagðEÞ · R; (3)

whereRGBD is the sensor’s original response (3 ×Mmatrix)
with a subscript D for the notation of device, S is the sensor’s
relative spectral sensitivity (3 × N matrix), diagðEÞ is the
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spectral power distribution of the illuminant (N × N matrix),
and R is the scene’s spectral reflectance (N ×Mmatrix).

Similarly, the tristimulus values for the same stimulus and
reflectance surfaces can be written as:

"X
Y
Z

#
¼

" x̄
ȳ
z̄

#
· diagðEÞ · R; (4)

or:

XYZ ¼ xyz · diagðEÞ · R; (5)

where XYZ is the tristimulus values (3 ×M matrix) and xyz
is the CIE color-matching functions (3 × Nmatrix).

2.2 Color Space Transformations
Equations (3) and (5) hint that if a perfect linear transforma-
tion exists through a 3 × 3 matrix between RGBD and XYZ,
an exact mapping could then be found between the sensor
device and the HVS. Unfortunately, this mapping hardly
exists and it can at most be optimized in the least-squared-
errors sense.7 Researchers have also found that RGBD and
XYZ are not perceptually uniform color spaces. In practice,
the device color space is converted into a standard color
space such as sRGB with a transformation optimized for
criteria based upon a perceptually more uniform color
space such as CIELAB.

If RGB is a 3 ×M matrix in the linear sRGB space,
diagðMWBÞ is a 3 × 3 diagonal white balancing matrix, and
MCC is a 3 × 3 color correction matrix which is the focus of
this study, then the following equation can be written:

RGB ¼ diagðMWBÞ · MCC · RGBD: (6)

While the actual processing within the digital pipeline may
stop here, for matrix optimization purposes, we need to con-
tinue with the transformation from RGB to XYZ which is
defined by:

XYZ ¼ M709 · RGB; (7)

and for D65:3

M709 ¼
"
0.4124 0.3576 0.1805

0.2126 0.7151 0.0721

0.0193 0.1192 0.9505

#
: (8)

The above XYZ values can now be transformed to the
perceptually uniform CIELAB space as:

L� ¼ 116 · fabðY∕YnÞ − 16

a� ¼ 500 · ½fabðX∕XnÞ − fabðY∕YnÞ�
b� ¼ 200 · ½fabðY∕YnÞ − fabðZ∕ZnÞ�; (9)

where Xn,Yn and Zn are the tristimulus values of the refer-
ence white point, and

fabðtÞ¼
�
t1∕3; if t > ð6∕29Þ3
1∕3 · ð29∕6Þ2tþ16∕116; otherwise

: (10)

The aim of the color correction matrix optimization process
is to solve for MCC so that certain criteria can be satisfied.
One example is to define a cost function which could be the
average CIE76 ΔE�

ab, CIE94 ΔE�
94 and CIEDE2000 ΔE�

00 of
the test target patches used for the optimization and the con-
dition for the optimization is to minimize this cost function.

In this work, we constrain the optimization process so that
the hue of certain target colors can be precisely reproduced
without overly worrying about the total magnitude error or
perceptual uniformity of the modeling process. In order to
improve the mathematical manipulability as well as for
demonstration needs, we choose to use CIE76 ΔE�

ab in the
study and the color difference referred to hereafter will be
ΔE�

ab. We also used ΔE�
94 during the preliminary experiment

stage for comparison purposes and the results were very
similar. Given a reference set of L�

ref ,a
�
ref and b�ref , the

color difference between the actual data L�,a� and b� and
the reference is defined as:

ΔL� ¼ L� − L�
ref

Δa� ¼ a� − a�ref
Δb� ¼ b� − b�ref

ΔE�
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔL�2 þ Δa�2 þ Δb�2

p
: (11)
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Fig. 1 (a) Spectral sensitivity response of the sensor used in this
study; (b) CIE color-matching functions.
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2.3 Previous Work
Existing techniques for the optimization of color correction
matrix include the naïve least-squares (LS) regressions
which minimizes ΔE�

ab, white-point preserving least-squares
(WPPLS) regressions1 which is a constrained form of LS
with additional requirement that the sum of each row of
the matrix is one, weighted white-point preserving least
squares (WTWPPLS) regressions which increases the weight
of certain patches of the test target for more visually pleasing
colors.2

Generally applicable to the above mentioned or other
algorithms as well as the topic discussed in this work, the
transformation between the device data RGBD and the
tristimulus data XYZ including linear constraints can be
modeled linearly, and a solution can be analytically derived.
Taking the simplest naïve least-squares method as an exam-
ple, given the reference tristimulus XYZref , the problem can
be described as finding a solution to minimize the following
cost function:

fLS ¼ kXYZref − XYZk2; (12)

where k · k is the L2 norm of ð·Þ and
XYZ ¼ M709 · MWB · MCC · RGBD ¼ M · RGBD; (13)

in which M ≐ M709 · MWB · MCC is the target matrix to be
solved for without considering chromatic adaptation.

Taking the first derivative of Eq. (12), set it to zero and use
the substitution in Eq. (13), we can arrive at the following
equations:

MT · ðXYZref −M ·RGBDÞ ¼ 0

XYZref ¼M ·RGBD

XYZref ·XYZT
ref ¼M ·RGBD ·XYZT

ref ; (14)

where the superscript T denotes the transpose of a matrix,
and the final solution is:

M ¼ ðXYZref · XYZT
refÞ · ðRGBD · XYZT

refÞ−1: (15)

The solution found by Eq. (15) will probably fail to minimize
the color difference in a perceptually uniform color space
since it is at best optimized on a least-squares sense. None-
theless, it is a good initial value for the numerical approach
that follows in the optimization process. More advanced ana-
lysis in the linear domain can be found.17,18

2.4 Taking Directional Hue Error into Account
The above discussed constrained or nonconstrained methods
utilize magnitude errors as their metrics while discarding any
information about the directional hue error, which could be
of much greater importance than the magnitude error espe-
cially when preferred color reproduction is concerned. In
Fig. 2, we plot two color samples: skin and sky on the
a�b� coordinates with L� ¼ 65. The target a� and b� values
are calculated using the light skin and blue sky patches from
the Macbeth color checker under D65 and the circles have a
radius of eight. The just noticeable difference in the CIELAB
space is around 2.3 (Chapter one, page 31),19 from a practical
point of view as well as for better distinguishability, we
choose a radius of eight in the figure.

This figure shows that depending on the directional hue
error, with the same magnitude of color difference from the
target, skin can vary from reddish to yellowish to greenish,
and sky can vary from cyan to blue to purple. Given the range
of possible variations, observers may have quite different
opinions about the quality of the color reproduction of
the image.

3 Proposed Method
To address the above directional hue error and preferred
color reproduction issue, we propose a hue constrained
method for the optimization of color correction matrix
based upon the white-point preserving method which can
be described by a constrained optimization problem as find-
ing a set of parameters represented by vector x such that the
cost function fðxÞ is minimized:

arg min
x

fðxÞ ¼ εðΔL�;Δa�;Δb�Þ (16)

subject to:

cneqðxÞ < 0 ceqðxÞ ¼ 0; (17)

where x ¼ ½x11; x12; x21; x22; x31; x32� is a vector containing
elements of the 3 × 3 matrix M defined in Eq. (18):

M ¼
" x11 x12 x13
x21 x22 x23
x31 x32 x33

#
; (18)

and M is constrained by the white-point preserving
condition:

x13 ¼ 1 − x11 − x12

x23 ¼ 1 − x21 − x22

x33 ¼ 1 − x31 − x32: (19)

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

skin

sky

Fig. 2 Target skin and sky colors on a�b� coordinates at L� ¼ 65.
The circles have a radius of 8.
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In Eq. (16),ΔL�;Δa�;Δb� are the difference vectors between
the actual data set and the reference set defined by Eq. (11),
εð·Þ is the definition of the optimization criteria which can
take different formats. In this study, we use ΔE�

ab for a
24-patch Macbeth Color Checker and:

εðΔL�;Δa�;Δb�Þ ¼
P

24
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔL�2

i þ Δa�2i þ Δb�2i
p

24
; (20)

where the subscript i represents the ithði ¼ 1; 2; :::; 24Þ patch
of the standard test target.

Before introducing the general definition of Eq. (17), the
following terms are needed: rotational hue error, chroma
error and lightness error. The rotational hue error Δh is
the difference in degrees between the actual hue h and the
referece hue href :

Δh ¼ h − href ; (21)

in which hue angle is limited to be between 0 deg and
360 deg. Let us denote hint ¼ tan−1ðb�∕a�Þ whose unit is
radians then

h ¼
�
hint∕π · 180; if hint ≥ 0

ð2π þ hintÞ∕π · 180; if hint < 0
: (22)

Chroma error Δc is defined as the difference between the
actual and the reference chroma values:

Δc ¼ c − cref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ref þ b2ref

q
; (23)

and lightness error is:

ΔL ¼ L − Lref : (24)

The directions of the rotational hue error and chroma error
are demonstrated in Fig. 3 using the light skin patch as an
example where the lightness error is not plotted since its
meaning is more straightforward. In this figure, the straight
blue line defines a constant hue along which the rotational
hue error is 0°, and the blue arc defines a constant chroma
line along with the chroma error is zero. The signs of the
rotational hue error and chroma error are marked correspond-
ingly on both sides of each of the constant lines.

Equation (17) represents a set of inequality conditions
cneqðxÞ < 0 and a set of equality conditions ceqðxÞ ¼ 0.
For example, if we would like to constrain the hue error
of the light skin patch (i ¼ 2) to be equal to −4°, the chroma
error of the blue sky patch (i ¼ 3) to be positive, and the
lightness error of the foliage patch (i ¼ 4) to be equal to
zero, the following can be written:

cneqðxÞ ≐ ½−Δc3� < ½0�

ceqðxÞ ≐
�Δh2 þ 4

ΔL4

�
¼

�
0

0

�
: (25)

Equations (16) and (17) define a constrained nonlinear opti-
mization problem and one of the solutions can be found
using the sequential quadratic programming (SQP) algo-
rithm. Descriptions of the SQP algorithm can be found in
Refs. 20–22 and its general method can be summarized as
follows (according to the Matlab optimization toolbox
help document by Mathworks):

Given the objective function f, the nonlinear inequality
constraint vector cneq and nonlinear equality constraint
vector ceq, the Lagrangian is defined as:

L ¼ f þ
X
j

ξjcneqj þ
X
k

ξkceqk; (26)

where ξ is the Lagrange multiplier and its subscripts j and k
are determined by the number of constraints. Equation (26)
can be represented in a simplified format as:

L ¼ f þ
X
j

ξj · gjðxÞ; (27)

whose Hessian is the second-order derivative of the
Lagragian:

H ¼ ∇2L ¼ ∇2f þ
X
j

ξj∇2gj: (28)

At each major iteration k, a quasi-Newton approximation of
the Hessian is calculated using the BFGS (Broyden-Fletcher-
Goldfarb-Shnno) method as:

Hkþ1 ¼ Hk þ
qkqTk
qTk sk

−
HT

k s
T
k skHk

sTkHksk
; (29)

where

sk ¼ xkþ1 − xk qk ¼ ½∇fðxkþ1Þþ�: (30)

A quadratic programming (QP) subproblem can be obtained
by linearizing the nonlinear constraints as:

min
d∈Rn

1

2
dTHkdþ ∇fðxkÞTd

∇gjðxkÞT þ gjðxkÞ ¼ 0; j ¼ 1; : : : ; me

∇gjðxkÞT þ gjðxkÞ ≤ 0; j ¼ me; : : : ; m:; (31)

which can be solved by a quadratic algorithm such as the
interior point method23 or the trust region reflective method24

and its solution can be used for a new iteration until the con-
straints are met.

−10 0 10 20 30
−10

−5

0

5

10

15

20

25

30

a*

b*

∆h<0

∆h>0

∆h=0

∆c>0

∆c<0

∆c=0

target color

Fig. 3 Directional hue error and chroma error.
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4 Experiments
In this section, we report the results from a psychophysical
study including a rank order experiment and a forced choice
paired comparison experiment in order to systematically
investigate observer preferencefor rotational hue error in
terms of individual memory colors as well as how the differ-
ent colors interact within the same scene to arrive at a recom-
mendation for the optimized overall reproduction.

4.1 Test Scenes
Hue constraints applied during the matrix optimization
process will affect the overall color accuracy as reported in
Ref. 25 and can also lead to some trade-offs between satura-
tion and noise. In order to eliminate any possible influence

from saturation and noise trade-offs,26 only carefully selected
scenes with sufficient lighting are used in this study. To better
isolate the different aspects of the problem and stay focused,
we limit the study to the preference for memory colors and
try to make other aspects such as artifacts from chromatic
aberration not visually detectable. We also assume that
among the dominant memory colors, sky and vegetation can
mostly be found outdoors, whereas skin can be seen both
outdoors and indoors.

Figure 4 depicts eight of the eleven scenes used during the
study. Images not listed in the figure are indoor images taken
in an office with neutrally colored background, one with a
male Caucasian as the main object and some colorful objects
in the background (named “Caucasian” for later references),
one with the same background except with a male Asian as

(a) House (b) OutdoorPortrait

(d) Lake

(f) GreenFlowers

(c) Creek

(e) FlowerPots 

(g) MixedFlowers (h) OrnamentalGrass

Fig. 4 Partial list of the test scenes.
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the main object (named “Asian”), and the last one has the
colorful objects in the previous two scenes except they
are now the main objects (named “Toys”).

In the above scenes, the “House” image has all three
of skin, sky, and green colors as well as some skin-colored
artificial object (the roof). The “OutdoorPortrait” image is a
cropped version of the “House” image in which we intend to
increase the proportion of the skin and see how this change
affects observers’ preferences. The “Creek” image has rela-
tively rich textures and the only memory color in the scene is
the different shades of green. The “Lake” image is mainly
composed of sky and grass, with some skin-colored roof
in the background. The “FlowerPots” scene is consisted of
purely artificial objects in which some of the pots may fall
into the category of skin color. The “GreenFlowers” scene
has different shades of green and some colorful flowers
with rich textures. The “MixedFlowers” scene is rich in
texture with bright-colored flowers. The “OrnamentalGrass”
scene has shades of green in both of the foreground and the
background and the color of the grass is not easy for obser-
vers to recall from their memory.

All of the above scenes have a resolution of 1852 × 1324
except the “OutdoorPortrait” scene which is cropped to
1200 × 900.

4.2 Test Setup and Procedure
The evaluations were performed in a dark room with a
EIZOColorEdge CG241W high-end monitor. All observers
have normal color vision and they were asked to adjust the
seating until their eyes were aligned with the center of the
monitor before the evaluation starts. The viewing distance
is about 85 cm.

A full length evaluation includes a rank order experiment
followed by a paired comparison experiment. Before the full

experiment was executed, a pilot rank order study was first
carried out to assist the selection of constraints.

4.3 Rank Order Study
The rank order study was performed in a few steps. The first
step was a pilot experiment using the “House” image. With
the Macbeth color checker in the scene, we used the light
skin patch (patch 2), the blue sky patch (patch 3) and the
foliage patch (patch 4) as target colors for skin, sky, and
green, respectively. Through varying the hue constraint for
each patch from −12° to −12° with a 2° step, 13 matrices
were calibrated for each color and they were applied globally
to the image, creating 13 images numbered from 1 to 13
correspondingly. With these three sets of images, the skin
varies from a sunburned red to a very sickly yellow, the
sky varies from a very greenish cyan to a purple, and the
grass varies from a dry-looking yellow to a very plastic-
like bluish green. By removing some of the variations that
are overly visually objective, only nine images for each
color were kept for the evaluation: images one through
nine for skin and green and images two through 10 for sky.

In the pilot study, four subjects (two Chinese, one Korean,
and one US born Caucasian; among them three are naïve
observers and one is the main author) were asked to do a
rank-order evaluation for the three sets of images. For each
set to be displayed, the images were adjusted such that the
area of interest for all images can be displayed on the same
screen as demonstrated in Fig. 5 for the skin set. The obser-
vers were given the following instructions:

“In this experiment, you need to evaluate the quality of
the designated areas (skin/sky/green) in terms of the quality
of their color reproduction. Based on your everyday experi-
ence, please give the order of the images from the one you
PREFER the most to the least.”

Fig. 5 Rank-order experiment screenshot.
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Assume NUMobs observers participated in the experiment
using NUMsti stimuli thena NUMobs × NUMsti matrix r can
be constructed to record the ranks of all stimuli given by the
observers. The element located at the ithði ¼ 1; 2; : : : ;
NUMobsÞ row and the jthðj ¼ 1; 2; : : : ;NUMstiÞ column
of r corresponds to the rank given by the ith observer to
the jth stimulus. For example, in a 4 × 9 matrix, a five at the
2nd row and the 3rd column means that observer two ranked
the 3rd sample the 5th place during the test. We can then
compute a raw score matrix sraw like this:

srawði; jÞ ¼ NUMsti − rði; jÞ; (32)

and the rank score vector s ¼ ½s1; s2; : : : ; sNUMsti
� can be

calculated as:

Sj ¼
PNUMobs

i¼1 ½NUMsti − rð1; jÞ�
NUMobs · ðNUMsti − 1Þ ; j ¼ 1; 2; : : : ;NUMsti:

(33)

With Eq. (33), the rank score of each stimulus is normal-
ized to between zero and one and a higher score indicates
that the stimulus is ranked as having better quality for the
given criteria. In the extreme cases, a score of 1 indicates
that the stimulus was unanimously ranked as the best and
a score of zero means that the stimulus was unanimously
ranked as the worst. The rank scores from this pilot study
were calculated and analyzed but the details of it are left
out of this discussion since the size of the observer pool is
too small for any conclusions. The results from this pilot
study, however, clearly indicate that the observers can distin-
guish the differences among the stimuli and do have their
own preferences.

After the above pilot experiment, a full length evaluation
was carried out during which each observer was asked to do
the rank order experiment first, followed by a forced choice
paired comparison experiment. The following text introduces
the details of the rank order study and the paired comparison
study will be discussed in a later section. A total of 14 sub-
jects (one expert who is the main author and 13 naïve obser-
vers) participated in this full test including the ones in the
pilot study, among them ten are Chinese (four females one
in her 30’s, three in their 40’s; six males, four in their 30’s
and two in their 40’s). One is a Korean male in his 30’s and
three are US-born Caucasian males in their 30’s. One of the
Chinese male in his 40’s was too extreme in his evaluation
and was noticeably inconsistent during the evaluation there-
fore his results were excluded from the later data analysis. It
is not the intention to study how age, gender or ethnic origin
affect the preference for memory color reproduction in this
study so all of the data will be analyzed without distinguish-
ing each observer’s biological background.

The rank scores of the “House” scene are plotted in
Fig. 6 below. As most of the observers described that
they prefer the reproduction to be “natural” or “real” from
this figure, we can tell clear trends of their preferences
regardless of the descriptions. For skin tone, image seven
corresponds to 0° of hue error and a negative error (images
one to six)means a more reddish reproduction. This figure
shows that a mild reddish reproduction for skin is preferred
and too much yellow deteriorates the subjective quality of
the reproduction. For blue sky, it is obvious that a mild

positive hue error makes the most preferred reproduction and
too much green lowers the reproduction quality by making
the observers think that it is “fake” and “nonrealistic.”
Grass color is more preferred to have some mild negative
hue error which makes the grass look more vivid and
sufficiently watered and too much blue can result in a plastic
look in the rendered image which is not preferred. We
expected the scores to be monotonically decreasing on
both sides of the peak but the actual plots are slightly differ-
ent. Possible reasons may include how the images were
arranged on the screen, the relatively small difference
between consecutive variations and the relatively small
size of the subject pool.

For the full length experiment, two additional indoor
images (“Caucasian” and “Asian”) were included for the
skin tone preference evaluation and the rank results are
shown in Fig. 7 in which the scores from the “House”
scene are also plotted. This figure indicates that observers
have very similar preference for Caucasian and Asian skin
tones in terms of rotational hue error. The curve for the
Asian skin is smoother than that for the Caucasian skin
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Fig. 6 Full rank order test of the “House” scene.
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probably because the Asian skin has a lower overall reflec-
tance level and the difference caused by the same amount of
rotational hue error is perceived at a lesser degree than that of
the Caucasian skin.

We also would like to study whether the observers’ pre-
ference can be affected by the image context. To do so, with
similar set up described earlier for the “House” scene, a dif-
ferent resizing scale was used so that more contexts around
the color of interest can be seen by the observers as shown in
Fig. 8. This experiment was included in the full length
experiment for 10 observers (one expert who is the main
author and nine naïve observers) and nine data sets are con-
sidered as valid (invalid dataset was described earlier). The
results from this experiment are plotted in Fig. 9 which also

shows the scores from the test using the same images but
displayed with fewer contexts.

Figure 9 shows that the basic trends of observer prefer-
ence do not vary with image context despite the relatively
small observer pool. The correlation coefficients between
the scores from scenes with fewer and more contexts are
0.8791, 0.8997, and 0.8769 for skin, sky, and grass, respec-
tively. With a sufficiently large observer pool, we would
expect to see less fluctuation in the scores and better corre-
lated curves. In this experiment, we found that although
clearly instructed to focus on the color of interest, observers
tend to use the surroundings and other factors such as con-
trast to assist their decision making process especially when
subtle differences need to be distinguished which could also
be a cause for the fluctuations.

4.4 Applying Multiple Matrices to a Single Image
In the above rank order study, each image was color cor-
rected globally with a matrix optimized with hue constraints
set for a single color. A global color correction offers its
advantage in the simplicity of operation while the overall
chromatic accuracy is compromised. When multiple colors
need to be manipulated within the same scene, one way is
to try to add more constraints during the optimization pro-
cess and solve for a global matrix. However, this possibility
did not prove itself to be the best option during the study
since too many constraints could cause convergence problem
or compromise the overall color accuracy to an unacceptable
degree.

We instead take a different approach for the simultaneous
manipulation of multiple colors. In a previous article,27 the
authors discussed a pixel clustering technique using raw
image data, which could be used for the detection of memory
color pixels and further developed to be applicable for the
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Fig. 7 Rank scores of skin reproduction from multiple scenes.

Fig. 8 Screen shot for rank order test with more contexts.
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sRGB space. In this work, a simpler approach,16 is taken
which does not rely on device dependent parameter calibra-
tion processes and detects memory color pixels in the YCbCr
space that can be conveniently calculated from the sRGB
data. Assuming a pixel rgbWB ¼ ½r; g; b�T is a 3 × 1

vector representing the three color channels of the pixel
after white balancing, MminDE, Mskin, Msky and Mgreen are
3 × 3 matrices optimized for the best color accuracy, skin,

sky and green, respectively. We then process this pixel
with the following procedure:

rgbCC ¼ ½rCC; gCC; bCC� ¼ rgbWB •MminDE; (34)

Cr ¼ rCC − gCC Cb ¼ bCC − gCC; (35)

colortype ¼

8>>><
>>>:

green; if Cb < Cr & Cb > 10 · Cr

sky; if Cb < −0:4 · Cr & Cb > −0.6 · Cr

skin; if Cb < −0:1 · Cr & Cb > −1.25 · Cr & rCC < 1.75 · gCC
other; otherwise

; (36)

rgb ¼

8>>><
>>>:

rgbWB · Mgreen; if color type is green

rgbWB · Msky; if color type is sky

rgbWB · Mskin; if color type is skin

rgbWB · MminDE; if color type is other

(37)

where rgb is the final reproduction of the pixel.
Figure 10 depicts the detected memory color pixels

(highlighted pixels) of the “House” scene obtained through
the above procedure with an additional 5 × 5 Gaussian filter
applied for noise suppression. This procedure offers a
reasonably good detection rate with some artificial objects
falling into the memory color categories as shown in the
example of Fig. 10 in which the tiles on the roof are detected
as skin color. More advanced techniques such as face detec-
tion can certainly be exercized to improve the accuracy of the
pixel detection process but it is a topic beyond the scope of
this study and the possible side effects of false positive detec-
tion are not studied in this work.

4.5 Paired Comparison Experiment
A forced choice paired comparison experiment was carried
out to study how the observer preference is affected when
multiple memory colors present in the image simultaneously.
Based on the pilot rank order study, two matrices were cho-
sen for each memory color and a total of eight combinations
can be obtained for each scene using the procedure described
in Sec. 4.3 with exception of the indoor scenes for which
only skin color is taken into account and 4 combinations
were created for each scene. For each of the scenes, an addi-
tional image corrected using the matrix without any hue con-
straint is also included. We would like to study observers’
sensitivity to subtle differences when the considered memory
color is put in context of the complete scene and the two
indoor matrices were chosen to have constraints that are
close to each other. The constraints used for these matrices
are summarized in Table 1.

In order to reduce the length and therefore observers’
stress level from the full evaluation which included the rank
order experiment discussed earlier and the paired compari-
son experiment, the sky variation for all other outdoor scenes
were dropped except for the “House,” “OutdoorPortrait,” and
the “Lake” scenes. The “Lake” scene only has some skin
colored pixels on the roofs of the houses in the background

which do not occupy a big enough portion to attract the
observers’ attention in the evaluation, we could have cho-
sento drop its skin variation but decided to keep it in order
to check the observers’ consistency when those skin varia-
tions just serve as redundant stimuli. At the end, 3 scenes
were processed with nine different manipulations, andeight
scenes were processed with five different manipulations,
resulting in a total of 188 pairs of images for comparison.

The average time for an observer to complete the rand
order and paired comparison tests is about 60 min with
the shortest being 40 min and the longest being 100 min.
During the experiment, the observers were encouraged to
describe what they pay attention to for each type of scene,
and how their priorities were set when making a decision.
They were also encouraged to describe freely about their
feelings of the images. This evaluation puts the observers
under a certain stress level but most of them managed to
handle it and were able to reduce the stress and improve
their focus by describing the decision-making process to
the main author who sat in the same room the full time during
the evaluation.

We implemented a graphical user interface (GUI) to dis-
play the image pairs and record the observers’ preferences.
At the beginning of the paired comparison experiment, the
instruction is given as follows:

“In this experiment, images will be presented to you in
pairs. Based on your everyday experience, please select the
one that you think has a better color reproduction quality.
Please ignore any other aspects rather than color. If it’s
difficult to make a decision, you are encouraged to select
intuitively and you MUST make a choice.”

The GUI then starts to display the images in pairs, and
records the observer’s choices in the background. All pairs
of a scene are displayed before the GUI starts on the next
scene. Within each scene, the order of the pairs displayed
and the locations of the images on the GUI (left or right) are
randomized. Between consecutive pairs, images of white
noise are displayed for 1.5 s to reduce the effect of iconic
memory. The background of the GUI is 20% gray converted
to sRGB and Fig. 11 is a screenshot of the GUI:

For each scene, a N × N matrix is constructed to record
each observer’s preference where N is the number of differ-
ent manipulations for the scene. If we denote this matrix as
Ck for observer k then a one at Ckði; jÞ represents that the
observer selected image j as his preferred reproduction for
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the comparison between stimuli i and j. A 0.5 is assigned
along the diagonal of the matrix since an image is never com-
pared against itself and if done so we expect the preference to
be purely random given sufficient trials. For each scene, a
probability matrix P can be calculated by dividing the
sum of the matrices from all observers by the number of
observers K:

Pi;j ¼
P

K
k¼1 Ckði; jÞ

K
; i; j ¼ 1; : : : ; N: (38)

The quantified interval scales from this experiment can
then be calculated using the inverse cumulative distribution
function. To handle singular points caused by unanimously
agreed selections, an approach suggested in Ref. 14 is taken
which breaks the whole matrix into overlapping matrices that
do not contain singular points and align the overlapped data
points to form the final scales. The 95% confidence error
bar plots of the scales are shown in Fig. 12 where for better
reference, the data points are coded with letters: skin is repre-
sented by “S” or “s”, blue sky is represented by “B” or “b”
and green by “G” or “g”. An upper case letter indicates that
the correction for that color corresponds to the more pre-
ferred matrix whereas a lower case letter indicates that the
less preferred matrix is used for the correction of a certain

color. For example, “SbG” represents that the image is cor-
rected with more preferred matrices for skin and green and
less preferred matrix for sky, and “none” is used to indicate
images corrected with matrix with no hue constraints. This
notation system is used for subplots (a) through (h).
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Fig. 9 Comparison of rank scores with different contexts.

skin pixles

sky pixels

green pixels

Fig. 10 Detected memory color pixels.

Table 1 Matrix constraints used for the paired-comparison stimuli.

Outdoor Better Worse

Skin Δh ¼ 0° Δh ¼ −6°

Sky Δh ¼ −4° Δh ¼ 2°

Green Δh ¼ −6° Δh ¼ 0°

Indoor Better Worse

skin Δh ¼ −4° Δh ¼ −8°
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Fig. 11 Screen shot of the paired comparison GUI.
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Fig. 12 The calculatedz-scores from the forced choice paired comparison experiment.
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FromFig. 12(a) for the “House” image,we canobserve that
the group with more preferred skin matrix is more
preferred compared to the group corrected with the less
preferred skin matrix, indicating that observers give their
highest priority to the reproduction of skin when it presents
in the foreground while the color reproduction of the other
parts is not unpleasant enough to overrule their opinion.
We can also tell that sky was given higher priority compared
to green since there are small patches of grass scattered in the
background while the sky occupies a significant portion in a
continuous manner. There are also different shades and many
details including shadows in both of the grass and foliage,
which make the green areas less important than the sky area.
The unconstrainedmatrix happened to reproduce the image in
which the skin tone has toomuch red in it and was not surpris-
ingly ranked as the least preferred. In Fig. 12(b) for the
“OutdoorPortrait” image, the same trends hold except that
the effect of green variation is smaller since the area of
grass is now even smaller, while some observers were still
able to distinguish the subtle differences in the background,
some of them just randomly made their selections for those
comparison pairs. For the “Lake” scene, the unconstrained
matrix happened to reproduce the sky and grass in a manner
that is very similar to stimulus one, as we can see In
Fig. 12(d) thatit is rated as the most preferred reproduction.
We mentioned earlier that stimuli two and six, three and
seven, four and eight, and five and nine are essentially redun-
dant pairs and are used to check the observers’ consistency. If
the observers are consistent with their selections then we
should expect the pattern of stimuli six through nine to resem-
ble that of stimuli two through five. However, the relative
scales of stimuli seven and eight do not fully agree with
the expectation and a possible explanation is that the subjects
especially naïve observers start to notice more details and pay
attention to other things such as contrast therefore shifting
their priorities as the experiment went along (summarized
from the observers’ own descriptions). Regardless of this dis-
crepancy, however, Fig. 12(d) clearly indicates that stimuli
two and six are both in the most preferred tier which were
corrected using the more preferred sky and green matrices.

As mentioned earlier, the sky variations were dropped for
the “Creek” scene and among the stimuli, two and three have
the better sky matrix, and two and four have the better green
matrix. This scene has different shades of green and rich
details, most of the observers described that they had trouble
imagining how the actual scene looks, some spent time
debating between the images and some just made their deci-
sions intuitively or somewhat randomly. The skin matrices
do not produce differences that are noticeable enough so
the scales mainly depend on the green matrices showing
that the reproduction with the more preferred green matrix
is still rated higher than the reproductions with the less pre-
ferred green matrix [see Fig. 12(c)]. With the “FlowerPots”
scene, some of the pots were detected to have skin colored
pixels and the more preferred matrix made them more red
whereas the less preferred matrix made them more yellow,
most of the observers preferred the less red version of
reproduction as we can see in Fig. 12(e) where stimuli
four and five have slightly better scores. For the comparison
between two and three, and four and five, most observers
made their decisions randomly and a small percentage of
observers tried hard to distinguish the details in the

background until they found some before their decisions
were made. Given enough training and a large enough obser-
ver pool, we would expect that stimuli two and three will
have very similar scales and so would stimuli four and
five. The un-constrained matrix made some of the pots
overly red and it fell into the least preferred tier without sur-
prise.The “GreenFlowers” scene [Fig. 12(f)] has rich details
in the foreground and some artificial objects in the back-
ground. While the stimuli processed using the unconstrained
matrix overall are more preferred, the scale differences
among them are small, and the chromatic differences are
casted by the rich details and contrast variations, which
made it difficult for the observers to decide their preferences,
most of the decisions were made in a random manner as
expected. Similar analysis can be made for Fig. 12(g) and
12(h), for them the observers mostly selected their preference
in a coin-toss fashion. Given a large enough observer pool,
we would expect the samples to have very similar scales.

For the “Caucasian” scene [Fig. 12(i)], stimulus one is
reproduced using the un-constrained matrix (noted as “none”
in the plot), which made the skin tone overly red, stimulus
two is reproduced using the procedure described in
Sec. 4.3 with the more preferred skin matrix (noted by “S”)
and the same procedure is used for stimulus three (noted by
“s”)with the lesspreferredskinmatrix.Stimulus four isglobally
corrected using the more preferred skin matrix (noted by “gS”)
and stimulus five is globally corrected using the less preferred
skin matrix (noted by “gs”). The samemanipulations were fol-
lowed for the “Asian” [Fig. 12(j)] and the “Toys” [Fig. 12(k)]
scenes. It is clear from the “Caucasian” and the “Asian” plots
that as long as a human face appears in the foreground of the
scene and the proportion and details of the face are significant
enough to catch the observer’s attention hewould give the high-
est priority to the skin tone before seeking differences from
other details.Whenevaluating the “Toys” scene, it is interesting
to see how different sensitivities the observers have: some
observers can notice the different color reproductions of the
same object with a quick glance, and some did not notice
them even at the end of the evaluation. Some of the observers
tried hard to recall the colors of the soda cans in the scene and
asked the author how the original objects look when debating
about their choices. Although there is a good amount of ran-
domness in the evaluation of this scene, the results shown in
Fig. 12(k) along with that for the “FlowerPots” scene in
Fig. 12(e) can help us conclude that it is probably the best to
use the matrix calibrated for the smallest overall color error
for scenes consisted of artificial objects.

It is worth noting that we did not make every possible
effort for the matrix calibration process to be perfect.
When taking the test images and the calibration images,
the geometries of the test target or the controls of the camera
were not perfectly calibrated. If everything was done in a
nearly perfect fashion, the absolute scale differences in
Fig. 12 may be different in some of the plots but we expect
the same trends to be observed for the stimuli generated
using constrained matrices. The nonperfectness is part of
the intention of this work whose proposed method does
not require perfect calibration conditions while still achiev-
ing the desired reproduction.

Another interesting finding is that with the knowledge of
a specific observer’s preferences from the rank order experi-
ment, his behavior during the paired comparison evaluation
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can be well predicted, indicating that the matrix combination
for optimized reproduction can be revealed from the rank
order evaluation alone.

5 Conclusions
In this paper, we have presented a hue-constrained matrix
optimization method to address the importance of the rota-
tional hue error for preferred color reproduction. By
constraining the hue angles of certain patches on a standard
test target, we can effectively manipulate the reproduced
colors such as skin tone, sky blue, and vegetation green to
be subjectively more preferred. We also performed a psycho-
physical study with carefully selected real-life scenes in
order to determine how an optimized color reproduction can
be achieved with the proposed method.

For individual memory colors:

• Skin is preferred to have some mild negative angular
hue error which yields a healthy looking complexion.

• Sky is preferred to be a pure blue as described by the
observers which corresponds to a mild positive hue
error. Observers do not like too much green which
makes a cyan sky or too much red which results in
a purple sky, but cyan is better tolerated than purple.

• Large areas with uniform or nearly uniform colors are
more important than areas that are variation and/or
texture rich.

• The nature of a memory color determines its position
on the priority list when observers evaluate a reproduc-
tion with multiple memory colors. Skin is placed on
top of the list when a human face is significant enough
in the scene to attract the observer’s attention. Sky is
normally distributed with only small amount of varia-
tion in hue or contrast and holds the second place on
the list. Grass and vegetation can have many shades of
green and can vary in their overall reflectance levels
and is given the 3rd place on the list.

For the preferred reproduction of scenes:

• The preferred matrix for the reproduction of each indi-
vidual memory color can be found through a rank order
experiment with a sufficiently large observer pool.

• For outdoor scenes, a procedure similar to what
described in Sec. 4.3 can be used for the preferred over-
all reproduction and more advanced techniques such as
face recognition could be exercised to enhance the color
pixel detection accuracy. For indoor scenes, skin tone
may be the only memory color to be concerned and a
similar approach can be taken as for outdoor scenes.

• For artificial objects, it may be the best to use the
matrix calibrated for the smallest overall color error
or in other words, the best overall color accuracy
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