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Preface

Since the 1960s, RNA secondary structure analysis has been performed for a wide variety of
groups of RNAs, including rRNAs and RNA virus genomes [1], and this has been followed
by RNA 3D structure analysis [2]. Owing to the instability of RNA structures, the number
of the detected structures is much smaller for RNAs than for proteins, specifically 1523
RNA-only structures compared with 151,577 protein-only structures in the Protein Data
Bank (PDB) [3] as of 2020. In silico structure prediction is, therefore, a powerful approach
to overcoming these limitations and revealing a comprehensive view of RNA structures. The
most prevalent and high-performance structure prediction method is based on a thermody-
namic model that takes the primary sequence as an input and predicts a representative
structure according to its stability. Free energy changes are estimated as a metric of structure
stability by approximation of those for each sub-structure using the melting temperature for
short oligos or based on structures in databases [4–6]. To compute the probability of RNA
secondary structures based on thermodynamic models, it is necessary to compute the sum of

the exponential of the free energy changes. This is formulated as
P

ζ∈Ω xð Þ
edG ζ,xð Þ=RT , where

dG(ζ, x) is the free energy change of sequence x and structure ζ, R is the gas constant, T is
the absolute temperature, andΩ(x) represents the set of all possible structures of sequence x.
dG(ζ, x) for every possible subsequence x can be efficiently computed by a dynamic pro-
graming (DP) technique using the subproblems dG(ζ, x

0
), where x

0
is a subsequence of x.

After computing the DP variables obtained for the full sequence, the partition function and
probability of the structure can be computed following a canonical distribution. Previous
benchmark studies have carried out the comprehensive assessment of RNA secondary and
3D prediction tools with multiple structure databases [7, 8], indicating not only sufficiently
high prediction accuracy but also computational limitation in robustness and performance
stability for many prediction methods.

In terms of accuracy and computational time, one of the main limitations of in silico
structure analysis is the prediction of long RNAs. For example, the estimation of free energy
changes is assumed to show low accuracy for distant base pairs because models are fitted to
results obtained from short RNAs. The rapid exponential increase in possible structures
relative to sequence length is also a critical problem for feasibility. While the improvement of
applicability and performance has been actively studied for in silico structure analysis [9],
experimental techniques have also been applied to solve those problems at the same time, for
example, high-throughput structure probing methods including SHAPE-seq [10] and
DMS-seq [11].These methods utilize high-throughput sequencing to capture cleavage or
modification events introduced by chemical reagents or enzymes as a signature of reactive
sites regardless of the length or condition of RNA samples. This is based on the principle
that the probability of these events is correlated with the probability of being unpaired in
RNA secondary structures. By comparing the determined and predicted accessibilities, both
scores have been found to be consistent at a transcriptome-wide level [9]. Owing to the
various sources of biological and technical noise, there is a challenge in extracting reproduc-
ible results from high-throughput data including such noise [12, 13]. However, the inte-
gration of multiple datasets relying on different techniques may uncover the true
transcriptome-wide RNA structure landscape by overcoming data-specific biases [14].

v



vi Preface

Moreover, high-throughput structure probing methods can be applied to a variety of
conformational analyses. A careful selection of reagents and experimental settings can
further enhance the comprehensiveness of detectability of base reactivity within a specific
time range [15]. For the detection of the co-accessibility of multiple bases, a structure
probing method variant called mutational profiling has been developed (e.g., SHAPE-MaP
[16] and DMS-MaP [17]). In such methods, the mutations on the same read are used as a
clue to determine which structure or combination of structures is observed in vivo [18, 19].
The secondary structure is known to spontaneously fold in a manner deeply dependent on
the primary sequence but to be perturbed by triggers that can include other molecules’
binding, modification, and different cell states (e.g., temperature, pH, or metal ion; [11,
19, 20]). Analyzing the inconsistency between the predicted structures and experimentally
determined reactivities is, therefore, an efficient approach to discover the existence of
in vivo-specific regulation that causes structure disruption. Recently, a probing method
that captures the folding of growing nascent RNA during transcription has been developed
[21, 22]. Because RNA secondary structure is formed simultaneously during transcription
[23], the structure comparison between nascent and matured RNAs potentially reveals the
formation of a structure differing from the initial or stable form, suggesting that the
influence of thermodynamic fluctuations may affect RNA folding kinetics.

Compared with RNA secondary structure prediction, RNA 3D structure prediction is
recognized as a more challenging problem due to the more numerous degrees of freedom
for 3D structures, such as distances and angles of each base pair, resulting in high computa-
tional demand. Despite such difficulties, improvements in RNA structure prediction have
been attempted for 3D structures using information from experimentally validated struc-
tures via X-crystallography and cryo-EM. The accumulation of RNA 3D structure informa-
tion is also expected to help clarify the kinetic mechanisms of RNA and protein
binding [24].

For both RNA secondary structure and 3D structure analyses, machine learning has
focused on combining classical structure prediction methods with the vast amounts of
experimental structure data recently obtained. One successful example has utilized deter-
mined RNA structures in order to improve prediction accuracy of existing RNA secondary
structure prediction methods. While some studies have applied such data to improving the
parameters in thermodynamic models [25–27], another strategy cooperatively improves
prediction models by aligning the predicted base pairs and detected accessibilities to be
consistent [28]. The application of deep learning models has enabled the implementation of
a new strategy to tackle complex problems, such as high-resource demands or high-
dimensionality input features. For example, a deep neural network model achieved a
dramatic advancement of binding motif identification required for RNA interaction deter-
mination. By considering the higher-order influences of base combinations for RNA and
protein binding, this model enables accurate binding site prediction as well as a deeper
elucidation of RNA binding regulation mechanisms [29]. As such, machine learning meth-
ods, accumulated data, and their resulting accurate structure predictions have a strong
synergistic effect in moving the field of RNA biology forward by expanding the targets of
RNA structure analysis, from short non-coding RNAs (ncRNAs) to long or coding RNAs,
with a variety of goals.



Preface vii

Organization of This Book

In this series, we introduce recent progress in RNA structure prediction and its application
from a broad viewpoint, particularly over the last several years. Here, we introduce the topics
covered by 16 chapters and discuss some additional topics that are closely related to RNA
structure prediction, such as RNA inverse folding. Because of advancements in experimental
protocols and devices (e.g., nanopore sequencing [30]), the integration of new types of data
as well as new analysis techniques is necessary. Hence, the variety of topics contained in this
series is hoped to serve as a simple guide for both experimental and computational RNA
researchers.

RNA Secondary Structure Prediction

RNA secondary structure prediction is a problem that involves predicting the combinations
of base pairing between complementary bases, namely A with U and G with C, as well as for
G–U wobble pairs. The gold-standard method for RNA secondary structure prediction is a
thermodynamic model in which the free energy change of the structure is approximated by
the experimentally obtained parameters for each partial structure. The highly stable struc-
ture is then selected as the best prediction result that takes into account the landscape of all
possible structures through use of a different metric, such as minimum free energy (MFE),
maximum expected accuracy, and centroid structure computation [31]. Because of the
enormous number of possible base pairs, reliable secondary structure prediction is obtained
in exchange for the considerable computation time required to find stable structures whose
free energy changes are substantially small. For example, one can assume that each base of a
sequence of 100 nucleotides is randomly sampled from four types of bases. If a base can bind
to its complementary base at any position, each pair can form a base pair with a probability of
6/16 ¼ 0.375. Given this probability, the order of all possible structures for a sequence of
100 bases can reach roughly 1055. In a thermodynamic model, however, the probability of
the unstable structures or base pairs is low enough that they rarely affect the results of the
structure prediction. One strategy that ignores those low-probability structures can reduce
the computation area to be explored while maintaining the precision of structure prediction.

An efficient enumeration of all possible structures can be conducted by DP. The
computational time of a DP algorithm depends on the sequence length but can be varied
depending on the structure types to be included. For example, pseudoknot structures
consist of base pairs crossing over each other. The computational time of DP-based structure
prediction with pseudoknots is O(N6) while the computational time for structures without
pseudoknots is O(N3), where N is the sequence length [32]. This makes it difficult to
analyze RNAs longer than several tens of nucleotides, although pseudoknots can function as
a key motif for biological regulation [33]. Kimchi et al. (2019) tackled this problem by
developing LandscapeFold, which enumerates structures including pseudoknots based on a
polymer physics model [34]. It can predict the MFE structure as well as the distribution of
free energy changes for all possible structures rather than utilizing a DP algorithm based on
thermodynamic models. The structure analysis of LandscapeFold can be a powerful
approach to analyze the structures of functional short RNAs, such as ligands or aptamers.
In addition to the prediction of structures including pseudoknots, another problem is that
an appropriate metric is required to compare multiple RNA structures. The novel tool
planeGraph2tree clusters RNA structures with pseudoknots based on the PEELING



algorithm [35]. Its input is a plane graph obtained from each RNA secondary structure.
planeGraph2tree identifies a topological centroid of the graph and constructs a topological
centroid tree. The distance between two structures is then obtained by the minimum cost of
editing operations.

viii Preface

For the structure analysis of long RNAs, even the prediction of pseudoknot-free
structures is infeasible because of the computational time and precision problem. Computa-
tion of local structures instead of global structures is a solution to accelerate DP computa-
tion. Rfold is a model in which a maximum constraint is set for the base pair distance in order
to analyze the local structure stability of RNA [36]. The model can be applied for the
computation of a variety of structure metrics: stem probability, accessibility, and each loop-
type probability. However, the problems of over- and underflow as well as computational
time exist for long RNAs including mRNAs and pre-mRNAs. ParasoR is an algorithm based
on the Rfold model, and its DP algorithm is modified and distributed to multiple computa-
tional nodes for a local structure analysis [9]. Similar to global structure prediction, it can
compute a variety of structure scores for all possible structures under the constraint of a
maximum span for base pairs. This platform is also applied to an efficient simulation of RNA
secondary structures, for example, a dynamic conformational change caused by a single
point mutation. Radiam has been developed to detect mutations that can disrupt a large
part of a secondary structure, called riboSNitches [37], even within long RNAs. To further
improve the computation of global structure prediction based on a DP algorithm, Linear-
Fold accelerates MFE structure prediction using beam search, which ignores only the
low-probability results to avoid a substantial decrease in prediction accuracy [38]. The
acceleration depends on the beam size that defines the stack size of the partial structures
to be considered for the next DP computation. The computational complexity of Linear-
Fold MFE structure prediction is O(Nb log b), where N is the sequence length and b is the
user-defined beam size. This strategy can also be applied to RNA–RNA interaction predic-
tion as implemented in LinearCofold, which is introduced in this series.

As such, a wide variety of RNA secondary structure prediction tools have been devel-
oped in terms of their possible structures, metrics to evaluate the structures, or approaches
to extract representative structures. Several platforms have been developed for structure
analysis using multiple tools simultaneously, including ViennaRNA [39], Freiburg RNA
Tools [40], and Rtools [5]. Rtools is a web server that can analyze a query sequence with
eight different applications for RNA secondary structure analysis. CentroidFold and Cen-
troidHomfold predict the representative structure for the query according to the γ-centroid
estimators. RintD and RintW are tools to visualize the distribution of the secondary
structures over the Hamming distance from the reference structures, indicating the stability
of the reference structures despite thermodynamic fluctuation. Some other workbenches for
RNA-seq analysis also provide tools for RNA secondary structure analysis, and these can be
used for the quick analysis of target transcripts as well as ncRNAs [41].

While existing structure prediction models can achieve accurate prediction in general,
the accuracy of structure prediction may occasionally be decreased for certain RNAs, such as
long RNAs or RNAs in vivo. Previous studies have attempted to improve models and
parameters through machine-learning approaches. The classical thermodynamic models
contain several thousands of parameters, for example, with 7850 parameters used in the
full Turner model [42]. Optimizing those models with a large number of parameters poses a
risk of overfitting.MXfold is a method to train model parameters for the free energy change
approximation based on a structured support vector machine [43]. Combining with L1
regularization, MXfold has been shown to produce the best prediction accuracy while

https://paperpile.com/c/lwAmy0/iYXv


avoiding overfitting. Other than the structure of single RNAs, the prediction of RNA–RNA
interactions has been actively studied because those interactions are tightly related to the
function of ncRNAs, such as miRNAs, siRNAs, and long ncRNAs. While there is substantial
space to explore for potential binding regions genome-wide,RIblast andRIsearch2 apply a
seed-and-extend-based alignment strategy to speed up and improve the discovery of highly
complementary regions that can form a stable structure with the queried RNA [44]. By
changing the setting for the seed search step to use a fast computation library, it enables the
efficient discovery of the candidate regions that can form stable structures with base pairs. As
an introduction of various RNA-RNA interaction predictions, Fukunaga et al. have provided
a comprehensive survey on the prediction web services including their LncRRIsearch [45].

Preface ix

Application of RNA Secondary Structure Prediction

Thanks to highly accurate structure prediction, the comparison of predicted structures can
be further applied to the functional analysis of RNAs. In particular, the comparison of
predicted structure stability with experimentally determined accessibility has the potential
to reveal the existence of the external factors that cause structure alteration including RNA
binding proteins or base modification [46]. While RNA secondary structure can be experi-
mentally determined by several approaches (e.g., X-ray crystal structure analysis, cryo-
electron microscopy, and NMR), they require the appropriate concentrations of a single
RNA and suffer from problems of feasibility and throughput limitations. A high-throughput
structure probing method is an approach that can overcome the throughput and coverage
problems of existing conformational analysis methods. By using a high-throughput
sequencing technique, this method detects RNA modification at reactive sites. Takizawa
has introduced a means of inferring the reactivity of each base from high-throughput
structure probing data using the computational methods PROBer [47], BUMHMM
[48], and reactIDR [13]. In Chap. 13, the author applied these pipelines to discover the
structural constraints on the RNA genome of influenza virus [14].

Similarly, the combination of RNA binding protein (RBP) pulldown and high-
throughput RNA sequence analysis has been widely applied at transcriptome-wide to reveal
the mechanism of RBP and (m)RNA. However, this strategy is susceptible to biased back-
grounds and false positives derived from the pulldown assay step, even when UV cross
linking is included, as is used in CLIP-seq and its alternatives [49]. For the accurate
inference of sequential and structural RBP binding motifs, an artificial library of random
short RNAs is utilized in SELEX [50] and RNAcompete [51], enabling an efficient motif
analysis with high coverage. These methods solve the practical problem of capturing the
desired aptamers with a binding affinity that is high enough for the target RBP among a pool
of random RNAs. ResidualBind, introduced in this series, is a deep learning framework for
inferring RBP binding motifs from experimental RBP binding data [52]. The outstanding
characteristic of ResidualBind is that it can perform a global importance analysis for the
existence of motifs to improve the model interpretability of their deep learning model.

The functional domains of RNAs, particularly of ncRNAs, have been discovered by
examining the conservation of not only sequences but also secondary structures required to
interact with other molecules to perform biological roles. One example of the potential
conservation signature is a pattern found in RNA structure-aware alignment [53]. Specifi-
cally, it is defined as a co-occurrence of two mutations at paired bases that does not disrupt
their pairing [54]. Walter Costa et al. (2019) developed a novel approach, called SSS-test, to
evaluate the significance of positive and negative selection on RNA structures based on



mutational conservation signatures [55]. SSS-test is designed to perform a statistical test of
the consensus structure by comparing the predicted structures with and without mutational
variants. This strategy can be used to analyze the structural constraints on RNAs with
unknown functions. To infer the consensus structure, which is essential for a conservation
analysis to understand their common function, this book introduces TOPAS, which is a
novel algorithm for performing network-based alignment of RNA secondary structures
[56]. In TOPAS, the input of RNA sequences and base pairing probability matrix are
integrated to construct topological RNA structure networks. Using probabilistic network
alignment techniques, TOPAS can find a structurally sound alignment with a low computa-
tional complexity of O(n2).

x Preface

Other Applications of RNA Secondary Structure Prediction

Corresponding with the continuous improvement of structure prediction methods as well as
the ongoing accumulation of experimental structure data, RNA structure prediction has
become a progressively more practical tool for studying a wide variety of forms of down-
stream regulation by functional RNAs. Although it is beyond the scope of this series, one of
the remarkable contributions of machine learning technology and RNA structure analysis is
the expansion of the field of RNA design. In contrast to structure prediction, in which the
sequence is folded to form a stable structure, the problem of “inverse folding” is predicting
the sequences that can form a desired structure. This problem has been actively studied as
the application of RNA structure prediction because it is closely connected to the engineer-
ing of RNAs. For example, an RNA aptamer is a molecule that can bind to a target molecule
with a strong affinity and thus can be applied to protein detection for research and diagnostic
purposes as well as utilized as a therapeutic drug [57]. Because the binding affinity of RNA
aptamers highly depends on the secondary structure, the results of inverse folding can be
used as the first filtering process for identifying reliable candidates followed by experimental
enrichment-based selection.

On the other hand, the inverse folding problem requires substantial computational
resources owing to the enormous sequence and structure space to be explored [58]. To
solve this problem with heuristics, previous studies have applied a wide variety of approaches
such as constraint programming [59], genetic algorithms [60], and ant colony optimization
[61]. More recently, methods that demand either more reference data or sophisticated
exploration strategies have been applied to the problem, including fragment-based searches
of the sequences [62], Monte Carlo tree search [63], and the efficient sampling of stable
structures [64]. There is also the challenge of finding solutions that completely differ from
human intuition [65]. By incorporating datasets from such different sources, the feasibility
of inverse folding for versatile applications is expected to improve.

As such, the advancement of computational strategies and machine learning methods
will provide us with further applications of RNA secondary structure prediction for medical
research, such as the prediction of pathogenic mutations [66] or splicing efficiency predic-
tion [67]. Because RNA secondary structure prediction is closely related to 3D structure
prediction and frequently used as input, the continued improvement of RNA secondary
structure prediction would benefit 3D structure prediction and vice versa.
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RNA 3D Structure Databases

Similar to protein structure data, 3D structures of RNA can be deposited in the PDB, which
is freely accessed from all over the world. As the name suggests, the PDB is a database that
mainly maintains and distributes 3D structures of proteins. Additionally, several types of
ancillary information, such as primary sequence, secondary structure (e.g., helix, sheet),
family/domain annotations, and many external links to other useful databases, are also
provided for each protein entry, whereas such useful information is not provided for RNA
entries. To complement the data contents of RNA/DNA entries in the PDB, RNA and
DNA structural data has been mirrored and distributed by the Nucleic Acids Database
(NDB) since 1992 [68]. The NDB is a database that specializes in distributing RNA- and
DNA-specific structural data, including base pairs, base stacking, and classification of base-
pairing hydrogen bonds.

It is worth mentioning that various types of base-pairing interactions are observed in the
known 3D structures of RNAs, including A–U and G–U Watson–Crick-type pairing, G–U
wobble base pairing, and non-Watson–Crick-type base pairing. These base pairs are cate-
gorized into 12 types based on the combination of interacting edges in nucleobases (i.e.,
Watson–Crick, Hoogsteen, and sugar) and the relative orientation of glycosidic bonds (i.e.,
cis or trans). According to a statistical analysis of the determined RNA 3D structures [69],
76% of base pairs are cis Watson–Crick/Watson–Crick-type base pairs known as canonical
Watson–Crick base pairs, and the remaining 24% of base pairs are non-Watson–Crick type,
which demonstrates the important roles of non-canonical base-pairs in the appropriate
folding of 3D structures of RNA.

Computational Prediction and Design of RNA 3D Structure

Most functional RNAs exhibit biological functions that require their appropriate folding
into characteristic 3D structures. With the rapid growth of sequencing technology, a huge
number of RNAs expressed in living cells have been identified. For example, the number of
human transcripts registered in the GENCODE database (release 38) is more than 200,000
with currently available primary sequences [70]. However, experimental determination of
RNA tertiary structures is far less advanced than the growth of primary sequence informa-
tion. According to statistics released by the PDB, where most 3D structure data on
biomolecules (including protein, DNA, and RNA) is deposited, currently, the number of
protein-only 3D structures exceeds 150,000 entries, whereas the number of RNA-only
structures has only reached 1500 entries. In order to fill the large gap between the
abundance of available primary sequence data and the paucity of 3D structure data, accurate
computational methods of predicting 3D structures of RNA are urgently needed.

Computational prediction of 3D structures of RNA can be categorized into the follow-
ing three groups: template-based modeling, fragment/motif assembly, and folding simula-
tion. The first type of prediction methods, template-based modeling is based on prediction
using, as a template, an existing RNA tertiary structure with a primary sequence that is
highly similar to the query sequence. For this method, the template RNA 3D structure and
the pairwise sequence alignment between the template and query RNAs are required as
input data. Similar to the template-based modeling frequently used for protein 3D structure
prediction, this method is effective if highly homologous template RNAs can be found in a
database. However, the majority of available structural data for template RNAs is limited to



several types of ncRNAs, such as tRNA, rRNA, snRNA, and ribozymes, in the PDB
and NDB.

xii Preface

In fragment/motif assembly, the second type of prediction method, known three-
dimensional structures of RNA are decomposed into small or partial RNA fragments that
can be mixed and combined like building blocks to predict an RNA 3D structure
corresponding to the query RNA sequence. In terms of fragment size used in the prediction
methods, the prediction tools can be categorized into two groups corresponding to
fragment size: medium-sized fragment (often referred as motif) tools, such as RNACom-
poser [71], MC-fold [72], 3dRNA [73], and Vfold3D [74], and small-sized fragment tools
(utilizing only a few nucleotides or base pairs in a helix), such as FARFAR2 [75]. Similar to
template-based modeling, in general, prediction based on larger RNA fragments with
primary sequences that are highly homologous to the users’ input sequence yields more
reliable prediction. However, appropriately large RNA fragments are not frequently found
in the existing RNA structure databases. This reflects the trade-off between fragment size
(i.e., prediction accuracy) and data availability.

In folding simulations, the third type of prediction method, 3D structures of RNA are
predicted through the simulation of RNA folding dynamics for an unfolded initial RNA
structure to obtain a well-folded 3D structure. For this type of prediction, each nucleotide
in an RNA molecule is represented by 3–7 coarse-grained beads rather than all-atom RNA
models in order to reduce the computational cost of the simulation. Monte Carlo simulation
is used for sampling the conformation of the coarse-grained RNA structure. The following
two types of energy functions are used for the simulation process: physical chemistry-based
energy functions and knowledge-based statistical potential. Physical chemistry-based energy
functions describe various types of interactions, such as hydrogen bonds formed in base pairs
and electrostatic repulsion between the backbone phosphates [76]. Knowledge-based sta-
tistical potential is derived from the statistical analysis of the existing RNA 3D structures
[77]. The general computation time of the folding simulation depends on the length of the
query RNA, and, hence, tends to be relatively longer than those of other methods. In this
book, we invited Watkins and Das to present their method FARFAR2, which successfully
predicts native-like three-dimensional structures of RNA, as one of the current state-of-the-
art fragment assembly methods [74].

As another extension of the prediction of 3D structures of RNA, the rational design of
arbitrary RNA structures has potential to broaden the field of RNA applications in biotech-
nology and nanotechnology. However, designing RNA 3D-structure is a difficult task that
requires expert knowledge of RNA 3D structures. For example, there is the task of RNA
molecule design to obtain structures containing two helices and one junction, thus con-
necting two distinct functional RNAs into a single RNA molecule. Even this task is neces-
sarily a time-consuming trial and error process. In this book, we invited Jurich and
Yesselman to introduce their unique software toolkit RNAMake [78], which enables
non-expert users to build/design RNA 3D structures in several practical situations.

Representative RNA 3D Structure Dataset and RNA-Puzzles

To develop prediction methods for 3D structures of RNA, various types of structural and
statistical information, such as canonical and non-canonical base pairs, small-to-medium-
sized RNA fragments for assembly, and backbone torsions, must be extracted from a wide
variety of known RNA 3D structures. In PDB and NDB, however, current RNA entries are
highly biased towards several types of RNAs. At the same time, there are multiple redundant



entries for these specific types of RNAs, which can sometimes be problematic for developing
and training prediction methods. Currently, a dataset comprised of only non-redundant
RNA 3D structures is maintained and distributed by the BGSU RNA site (http://rna.bgsu.
edu/rna3dhub/) as a representative set, and it is updated weekly to include the most
recently determined RNA 3D structures. This essential resource has been widely applied
to many previous studies of RNA structural prediction methods [79].

Preface xiii

Because RNA 3D structure prediction is a challenging problem, continuous efforts to
develop and improve prediction methods are required. In the field of protein structure
prediction, a blind test of community-wide 3D structure prediction methods called Critical
Assessment Structure Prediction (CASP) has been held since 1994, and many researchers
from around the world participate in each CASP round [80, 81]. This continuous manage-
ment of CASP encourages researchers to develop and improve their methods for predicting
protein 3D structures. In fact, the prediction accuracy of protein structures has greatly
improved in recent decades. Similar to CASP, a framework for blind testing the prediction of
3D structures of RNA and the evaluation of predicted structures, called RNA-Puzzles, has
been organized as a community effort since 2011 [8, 82].

As well as developing methods for predicting the 3D structure of RNA, it is important
to evaluate the accuracy of prediction methods in an appropriate manner. Especially for 3D
structures of RNA, the evaluation of Watson–Crick and non-Watson–Crick type base-pair
prediction is a topic that is important for the development of more accurate structure
prediction methods. Several metrics that have been used to evaluate protein 3D structure
methods (e.g., RMSD, root-mean-square deviations) have been shown to be unsuitable for
this purpose for RNA [83]. In addition, the coordinates of several atoms and partial
fragments are occasionally missing in RNA structural data in the PDB, and these are referred
to as missing atoms/residues, though they are included in the actual RNA molecules. It
should also be noted that it is necessary to handle such incomplete data in practical
applications of RNA 3D structure prediction. In this book, Magnus and Miao introduce
their useful software named RNA-Puzzles toolkit [84], which provides a framework for
editing and handling such incomplete RNA 3D structural data, and for evaluating predic-
tion results such as those of RNA-Puzzles.

Cold Spring Harbor, NY, USA

Kashiwa, Japan

Risa Karakida Kawaguchi

Junichi Iwakiri
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Chapter 1

Rtools: A Web Server for Various Secondary Structural
Analyses on Single RNA Sequences

Yukiteru Ono and Kiyoshi Asai

Abstract

Predicting the secondary structures of RNA molecules is an essential step to characterize their functions,
but the thermodynamic probability of any prediction is generally small. On the other hand, there are a few
tools for calculating and visualizing various secondary structural information from RNA sequences. We
implemented a web server that calculates in parallel various features of secondary structures: different types
of secondary structure predictions, the marginal probabilities for local structural contexts, accessibilities of
the subsequences, the energy changes by arbitrary base mutations, and the measures for validations of the
predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates
software tools, CentroidFold, CentroidHomfold, IPknot, CapR, Raccess, Rchange, RintD, and RintW.

Key words RNA secondary structure analysis, Web server, Structure alignment, Pseudoknot

1 Introduction

The secondary structure of RNA molecules, as well as the primary
sequences, is one of the fundamental features to characterize their
functions. While experimental probing techniques have been
invented to reveal RNA secondary structure in vivo and in vitro,
computational in silico predictions are still useful because of their
reasonable speed and costs. There are many tools and web servers
to predict the secondary structure of given RNA sequences, but the
probabilities of the predicted structures based on the thermody-
namic Boltzmann distribution are generally very small. Therefore,
it is often inappropriate to proceed to downstream analyses based
on the predicted secondary structures.

There are a few computational tools to compensate imperfect
prediction of secondary structures by calculating and visualizing
additional structural information. Among such structural informa-
tion, the most widely recognized is the base-pairing probability
matrix, the matrix of marginal probabilities that each pair of the
nucleotides forms a base pair. We can expand the concept to

Risa Karakida Kawaguchi and Junichi Iwakiri (eds.), RNA Structure Prediction, Methods in Molecular Biology, vol. 2586,
https://doi.org/10.1007/978-1-0716-2768-6_1, © Springer Science+Business Media, LLC, part of Springer Nature 2023
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marginal probabilities of the other local structural contexts, stem
probabilities, loop probabilities, bulge probabilities, and so on as
implemented in CapR [1].

To capture the landscape of the probability distribution of the
secondary structures, the distributions on Hamming distance from
the reference structures are useful. RintD [2] and RintW [3] calcu-
late the probability distribution of secondary structures and base-
pairing probabilities on Hamming distance.

An RNA molecule identifies its target RNA/DNA by base-pair
interactions, which consist of mutually reverse complementary sub-
sequences. Raccess [4] is a tool to identify the “free” bases in
probability distribution of the secondary structures, to identify
the available regions for interacting with other molecules. It is
often of interest how the RNA secondary structures change accord-
ing to the mutation of the bases. Rchange [5] is a tool to calculate
the change of the entropy and internal energy by the mutation of
the bases.

We have implemented a web server, rtools [6], to operate
various analyses above in parallel to help the recognition of the
whole picture of the secondary structure of the given RNAs.

2 Design of the Web Server

The interface of rtools is quite simple (Fig. 1), where you enter
RNA sequence that you want to analyze in the main input box. The
input RNA sequence must be single FASTA format and less than or
equal to 400 nt. And then, you press “Submit” button, and rtools
quickly returns various analyses for the sequence on the result page
(Fig. 2). At the top of the result page, the progress of analysis of
each tool is displayed. When the analysis is completed, “completed”
is displayed, and you can jump to the analysis result of the tool by
clicking it. The result page shows the analysis results of all the tools
connected in a single long page. On the result page, for any tool,
you can change the parameters and rerun by pressing “Update”
button (Fig. 3), and the results of other tools remain the same. The
analysis results (e.g., base-pairing probability matrix and various
graphs) are offered as the following format – TEXT, PNG, PDF,
and EPS – which can be easily utilized in your further analysis and
your research paper. You obtain “Request ID” in the result page
and can always access the results by using the ID. However, rtools
only stores results for 30 days, so be sure to download any results
you want to keep. You can select only the tools you want to run by
checking and unchecking the checkboxes at each tool name.



Rtools: A Web Server for Various Secondary Structural Analyses 3

Fig. 1 The top page of rtools web server

3 Implemented Computational Tools

This section introduces eight tools that are used by rtools web
server. The analysis results of tRNA are used as examples of the
figures offered by rtools.

3.1 CentroidFold CentroidFold based on a generalized centroid estimator is one of
the most accurate tools for predicting RNA secondary structures
[7]. CentroidFold offers secondary structure and base-pairing
probability (BPP) matrix as analysis results (Figs. 4 and 5). The
predicted secondary structure is colored according to BPPs. In text
format, secondary structure is a dot-bracket format with a FASTA-
like header line, indicating a secondary structure. In a dot-bracket
format, each dot represents an unpaired base, and opening and
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Fig. 2 The result page of rtools web server

closing brackets represent a base pair. BPPmatrix (upper triangle) is
presented together with the predicted secondary structure (lower
triangle). Detailed values of BPP can be obtained in text format.

The algorithm of CentroidFold is based on γ-centroid estima-
tors [8], a type of maximizing expected accuracy (MEA) estimators.
The γ-centroid estimators generally have better expected accuracy
than the minimum free energy (MFE) predictions, in terms of the
number of true positives and true negatives of base pairs [7]. On
average, it is known that CentroidFold achieves better performance
with respect to accurate predictions of base pairs than other
tools [9].

CentroidFold can utilize one of the following models as infer-
ence engine of secondary structure: McCaskill model [10] with
Turner 2004 energy parameters [11] that were determined experi-
mentally; McCaskill model with Boltzmann likelihood
(BL) parameters [12] obtained by retraining energy parameters
using machine learning procedures; and CONTRAfold model
[13] based on a machine learning based model called conditional
random fields (CRFs). The interface allows us to select from these
energy models. In CentroidFold, ViennaRNA package [14] is uti-
lized to compute BPP matrix for McCaskill model. User can specify
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Fig. 3 The analysis result of CentroidFold on the result page
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Fig. 4 The secondary structure of tRNA predicted by CentroidFold

Fig. 5 The base-pairing probability matrix of Fig. 4 structure
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weight of base pair, which is the rate of true base pairs in each
decomposed substructure. In general, increasing the weight is
expected to increase the predictive sensitivity, and decreasing the
weight is expected to increase the positive predictive value.

3.2 CentroidHomfold CentroidHomfold [15] predicts RNA secondary structures by
employing automatically collected homologous sequences of the
target. Homologous sequences are collected from Rfam [16] using
LAST [17]. If homologous sequences are available, CentroidHom-
fold can predict secondary structures for the target sequence more
accurately than CentroidFold using homologous sequence infor-
mation with the probabilistic consistency transformation for BPPs.

As inference engine of secondary structure, CentroidHomfold
can utilize the same models as CentroidFold. As inference engine of
pairwise alignment, CentroidHomfold can utilize one of the fol-
lowing models: CONTRAlign model [18] based on a probabilistic
model known as a pair CRF and ProbCons model [19] that is a
pair-hidden Markov model-based progressive alignment algorithm
based on probabilistic consistency. Weight of base pair can be
specified in the same way as CentroidFold. In addition, user can
specify E-value and the number of homologous sequences as para-
meters of alignment to Rfam.

3.3 IPknot IPknot [20] predicts RNA secondary structures including a wide
class of pseudoknots, while CentroidFold predicts only
pseudoknot-free RNA secondary structures. IPknot offers second-
ary structure as analysis result, the figure of which is created by
VARNA [21] (Fig. 6).

IPknot runs fast and predicts the MEA structure using integer
programming (IP) with threshold cut. In general, secondary struc-
ture prediction including pseudoknots is more computationally
expensive than pseudoknot-free prediction. While the time com-
plexity of IPknot is, at worst, not polynomial order, it has been
empirically proven that IPknot is fast enough for long RNA
sequences. IPknot can also predict the consensus secondary struc-
ture when a multiple alignment of RNA sequences is given.
IPknot’s original server (http://rtips.dna.bio.keio.ac.jp/ipknot/)
provides the interface of this prediction, but rtools does not.

IPknot can utilize the same model as CentroidFold, and in
addition, NUPACK (Dirks-Pierce model) [22] can also be utilized.
In IPknot, ViennaRNA package is utilized to compute BPP matrix
for McCaskill model. Weight of base pair can be specified in the
same way as CentroidFold.

3.4 Rchange Rchange [5] computes entropy and internal energy changes of
secondary structures for single-point mutated sequences. Rchange
offers a figure which shows the upper and lower bound of the
relative changes of the ensemble free energy (Fig. 7). The upper
bound values indicate the largest energy increase caused by a single

http://rtips.dna.bio.keio.ac.jp/ipknot/
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Fig. 6 The secondary structure of tRNA predicted by IPknot using VARNA

Fig. 7 The upper and lower bound of the relative changes of the ensemble free energy by single mutations of
tRNA computed by Rchange
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mutation. The lower bound values indicate the largest energy
decrease caused by a single mutation. Rchange’s original output is
in text format and can be downloaded. In the output, entropy
changes, internal energy changes, and Helmholtz free energy
changes by three mutations (e.g., T, G, C for A) at each position
are summarized in one line.

User can specify maximal span of base pairs. The maximal span
constraint avoids predicting large number of spurious base pairs
between distant positions while still allowing to predict global
structures and reducing the computational complexities which are
O(NW2) (where N is sequence length and W is maximal span of
base pairs) for single mutations [5].

3.5 CapR CapR [1] computes probabilities that each RNA base position is
located within each secondary structural context for long RNA
sequences. CapR offers two figures which show a structural profile
of an RNA base as a set of six probabilities that the base belongs to
each context (Fig. 8). The six contexts of RNA structures are
(i) bulge loop, (ii) exterior loop, (iii) hairpin loop, (iv) internal
loop, (v) multibranch loop, and (vi) stem part. The first figure
shows each probability, and the second figure combines similar
contexts (Bulge+Internal, Exterior+Multibranch).

CapR efficiently computes marginal probabilities that each
RNA base position is located within each secondary structural
context. Those marginal probabilities are computed according to
a probability distribution of secondary structures of a given RNA
sequence, provided by McCaskill (energy) model. The computa-
tional complexities of CapR is also O(NW2) [1].

User can specify maximal span of base pairs in the same way as
specified in Rchange.

Fig. 8 The structural profile of each RNA base of tRNA as a set of six probabilities that the base belongs to each
context computed by CapR



�

10 Yukiteru Ono and Kiyoshi Asai

Fig. 9 The accessibility for each RNA base of tRNA computed by CapR

3.6 Raccess Raccess [4] computes the accessibility of segment [x, x + l � 1] in
the transcript for all the positions x with access length l¼ 5, 10, 20.
The thermodynamic energy that is required to keep range [a, b]
being accessible is given by:

access energy a, b½ �ð Þ ¼ �RTlog prob a, b½ �ð Þð Þ,
where

prob a, b½ �ð Þ ¼
X

s∈S a, b½ �
e�E sð Þ=RT=

X

s∈S0

e�E sð Þ=RT:

where S0 is all the possible secondary structures of the transcript
and S[a, b] is all the secondary structures having range [a, b] as a loop
region. Raccess offers a figure (Fig. 9), in which each
access _ energy([x, x + l 1]) is plotted at x + 1/2.

In Raccess, McCaskill model is utilized for a probability distri-
bution of secondary structures. The accessibility for every nucleo-
tide is computed by using probability of being unpaired, which is
easily calculated by BPP matrix. The computational complexities of
Raccess is also O(NW2) [4].

User can specify maximal span of base pairs in the same way as
specified in Rchange.

3.7 RintD RintD [2] computes the exact probability distributions of integer-
valued features on the energy model of RNA secondary structures.
The target secondary structures are predicted by CentroidFold
(structure 1) and RNAfold [14] (structure 2) from the RNA
sequence entered by the user, and RintD offers two figures as
analysis results. The first figure (Fig. 10) shows the probability
that RNA folds into a structure which has each Hamming distance
from the reference structure (structure 1). α% credibility limit
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Fig. 10 The probability distribution of the secondary structure over the Hamming distance from the canonical
structure is computed by RintD

(CL) is defined as the minimum Hamming distance radius that
contains α% of the possible RNA secondary structures. Note that
the smaller CL indicates that the reference structure is more stable
(reliable) in the secondary structures. The second figure (Fig. 11)
shows the distribution of Hamming distance from two reference
structures (structure 1 and 2) in a 2D landscape.

User can enter RNA secondary structures as the target. For the
prediction of RNA secondary structure by CentroidFold, user can
specify weight of base pairs. However, the energy model (McCaskill
model) cannot be changed, because RintD utilizes McCaskill
model to compute the distribution of RNA secondary
structures [2].

3.8 RintW This analysis detects essential alternative secondary structures from
an RNA sequence by decomposing BPP matrix. The decomposi-
tion is calculated by RintW [3], which efficiently computes the BPP
distributions on the Hamming distance from a canonical secondary
structure.

First, this analysis computes a canonical secondary structure by
CentroidFold from the RNA sequence. Second, the probability
distribution of the secondary structure over the Hamming distance
from the canonical structure is computed by RintD (Fig. 12). If
there are multiple peaks in the distribution, which does not guar-
antee but implies that there are multiple clusters of secondary
structures, the ranges of Hamming distance of these clusters are
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Fig. 11 The distribution of Hamming distance from two reference structures in a 2D landscape

detected. In Fig. 12, there are three clusters. Third, the BPP matrix
of each range of Hamming distance is computed by RintW. The
representative secondary structure for each cluster is estimated by
posterior decoding of the corresponding base-pairing matrix
(Fig. 13). Finally, for each pair of these secondary structures, 2D
distribution of Hamming distance from the two structures is com-
puted by RintD.

User can specify CentroidFold options to compute a canonical
secondary structure from the RNA sequence.
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Fig. 12 The probability distribution of the secondary structure over the Hamming distance from the canonical
structure is computed by RintD. This distribution has three peaks and is divided into three clusters

Fig. 13 The representative secondary structures computed for each cluster by RintW
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Chapter 2

Linear-Time Algorithms for RNA Structure Prediction

He Zhang, Liang Zhang, Kaibo Liu, Sizhen Li, David H. Mathews,
and Liang Huang

Abstract

RNA secondary structure prediction is widely used to understand RNA function. Existing dynamic
programming-based algorithms, both the classical minimum free energy (MFE) methods and partition
function methods, suffer from a major limitation: their runtimes scale cubically with the RNA length, and
this slowness limits their use in genome-wide applications. Inspired by incremental parsing for context-free
grammars in computational linguistics, we designed linear-time heuristic algorithms, LinearFold and
LinearPartition, to approximate the MFE structure, partition function and base pairing probabilities.
These programs are orders of magnitude faster than Vienna RNAfold and CONTRAfold on long
sequences. More interestingly, LinearFold and LinearPartition lead to more accurate predictions on the
longest sequence families for which the structures are well established (16S and 23S Ribosomal RNAs), as
well as improved accuracies for long-range base pairs (500 + nucleotides apart). This chapter provides
protocols for using LinearFold and LinearPartition for secondary structure prediction.

Key words RNA secondary structure prediction, Linear-time heuristic, Beam search approximation,
Minimum free energy structure, Maximum expected accuracy structure, Partition function

1 Introduction

RNAs are involved in multiple processes [2, 8, 9], and their func-
tionalities are highly related to structures. However, determining
the structure using experimental methods [23, 38, 40] is costly
and time-consuming. Therefore, fast and accurate computational
prediction of RNA structure is desired, among which predicting
secondary structure, defined as the set of all canonical base pairs
(A–U, G–C, G–U), is an important and challenging problem
[10, 32]. Free energy minimization-based methods [29, 43] were
first proposed to predict the structure with minimum free energy
(MFE) in 1980s. There was a subsequent shift to partition
function-based methods [28] that account for folding ensembles
and can, therefore, estimate structure and base pair probabilities.
All these methods are based on bottom-up dynamic programming

Risa Karakida Kawaguchi and Junichi Iwakiri (eds.), RNA Structure Prediction, Methods in Molecular Biology, vol. 2586,
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and run in cubic time, thus are slow on long sequences, i.e.,
sequences of thousands of nucleotides.

LinearFold and LinearPartition aim to overcome the slowness
bottleneck. LinearFold is an linear-time, linear-space, approximate
algorithm for predicting the MFE structure, using incremental
dynamic programming plus beam search, and providing options
of both machine-learned and thermodynamic models [12]. Linear-
Fold software is a Linux-oriented, command line interface software,
providing the services of computing the MFE structure of a given
RNA sequence, computing the constrained structure if constraints
are specified, and evaluating the free energy change of a given RNA
sequence and its structure. LinearPartition extends LinearFold to
linear-time partition function and base pair probability calculation,
and is also implemented as a command line interface software
[39]. LinearPartition is able to output the free energy of the ther-
modynamic ensemble, the base pair probability matrix and the
maximum expected accuracy (MEA) structure [7, 15].

1.1 Free Energy

Minimization

Commonly, the minimum free energy (MFE) structure is predicted
[29, 43]. Widely used systems such as RNAstructure [30], Vienna
RNAfold [21], and CONTRAfold [7] all use similar dynamic pro-
gramming algorithms [36, 43] to find the optimal secondary struc-
ture with minimum free energy. Though the implementations are
optimized to make them faster, this set of algorithms have a run-
ning time of O(n3) that scales cubically with the sequence length n,
which is too slow for long RNA sequences [17].

To help accelerate prediction speed, some systems provide an
option to do local folding, for example, RNAfold --maxBPspan
allows predicting base pairs shorter than a given threshold. Local
folding algorithms are still based on bottom-up dynamic program-
ming (DP), but impose a window size constraint and fill separate
DP matrices of each window. Obviously, such approximations
ignore all long-distance base pairs beyond the window size thresh-
old. However, studies have confirmed that such long base pairs are
in fact common in natural RNA structures, e.g., the length of the
longest base pair grows nearly linearly with sequence length [19],
and the physical distance between the 5′ and 3′ ends in folded
structures is short and nearly constant [5, 16, 18, 37].

Unlike bottom-up global and local folding based algorithms,
LinearFold accelerates the parsing process by scanning the RNA
sequence from 5′-to-3′, using a left-to-right dynamic program that
runs in O(n3) time, and applying the beam pruning heuristic [11],
which keeps only the top b highest-scoring (i.e., lowest energy)
states for each prefix of the input sequence, to achieve linear run-
time in practice. Figure 1a and b give the runtime comparisons of
LinearFold and two baseline systems, Vienna RNAfold and CON-
TRAfold, on the relatively short ArchiveII set [33] and the longer
RNAcentral set [1]. We confirm that LinearFold runs in linear time
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Fig. 1 Efficiency and scalability of LinearFold and LinearPartition. (a) and (b): Runtime comparisons on the
ArchiveII dataset (a) and the RNAcentral dataset (b, log-log) between the two baselines, CONTRAfold MFE &
Vienna RNAfold and LinearFold (c) and (d): Total runtime comparisons of computing both the partition function
and base pairing probabilities on the ArchiveII dataset (c) and (d, log-log) between the two baselines (both in
partition function mode) and LinearPartition

while the other two run in cubic time, and LinearFold is much
faster than the baselines on long sequences (all systems are run on
Linux with 3.40 GHz Intel Xeon E3-1231 CPU and 32G mem-
ory). It is important to note that, LinearFold achieves linear run-
time (as well as linear space) without imposing constraints on the
base pair distance, i.e., it is a global folding algorithm. Interestingly,
LinearFold even has higher accuracies for long-range base pairs
(500 + nt apart).

In addition to the MFE structure, it is important to report
suboptimal structures, i.e., structures with low folding free energy
change. These structures are important alternative hypotheses for
the structure. LinearFold implements Zuker’s suboptimal algo-
rithm [42], and thus can provide diverse suboptimal structures.

1.2 Partition

Function and Base

Pair Probabilities

At equilibrium, the MFE structure is the most populated structure,
but it is a simplification because multiple conformations can exist as
an equilibrium ensemble for RNA sequences [16, 24]. Instead of
predicting the MFE structure, we can compute the partition func-
tion, which is the sum of the equilibrium constants for all possible
secondary structures, and is the normalization term for calculating
the probability of a secondary structure in the Boltzmann ensem-
ble. The partition function Q(x) is defined as:

Q ðxÞ=
P

y∈Y ðxÞ
e -

ΔG∘ðx,yÞ
RT ð1Þ

where ΔG∘(x, y) is the conformational Gibbs free energy change of
RNA sequence x and one of its structures y, among all possible
structures Y ðxÞ [35]. R is the universal gas constant, and T is the
absolute temperature.
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The partition function calculation can also be used to calculate
base pairing probabilities of each nucleotide i paired with each of
possible nucleotides j by summing the probabilities of each struc-
ture that contains the base pair of i and j [24, 28]:

pi,j =
P

ði,jÞ∈pairsðyÞ
pðyÞ ð2Þ

Base pairing probabilities can be used for downstream predic-
tion methods, such as maximum expected accuracy (MEA) [7, 15],
an ensemble structure with improved accuracy compared with the
MFE structure [22]. Other downstream prediction methods, such
as ProbKnot [3], ThreshKnot [41], DotKnot [34] and IPknot
[31], use base pairing probabilities to predict pseudoknotted struc-
tures with heuristics. Additionally, the partition function is the basis
of stochastic sampling, in which structures are sampled with their
probability of occurring in the Boltzmann ensemble [6, 25].

Therefore, there has been a shift from the classical MFE-based
methods to partition function-based ones. Most of the prediction
engines, such as RNAstructure [27], Vienna RNAfold [21] and
CONTRAfold [7], provide partition function and base pair proba-
bility computation based on the cubic algorithms that McCaskill
(1990) pioneered [28]. This employs dynamic programing to cap-
ture all possible (exponentially many) nested structures, but the
O(n3) runtime scales poorly for longer sequences. This slowness is
even more severe than the O(n3)-time MFE-based algorithms due
to a much larger constant factor. For instance, for H. pylori 23S
rRNA (sequence length 2968 nt), Vienna RNAfold’s computation
of the partition function and base pairing probabilities is 9× slower
than MFE (71 vs. 8 s), and CONTRAfold is even 20× slower
(120 vs. 6 s).

Inspired by the efficient linearization by LinearFold, LinearPar-
tition alleviates this cubic-factor slowness by providing a linear-time
approximate calculation of partition function and base pair prob-
abilities [39]. Although it is approximate, the well-designed heuris-
tic ensures the surviving structures capture the bulk of the free
energy of the ensemble. Figure 1c and d show the runtime compar-
ison of LinearPartition with two baselines. Similar to the compari-
son between LinearFold and its competing systems, LinearPartition
runs in linear time and is much faster than Vienna RNAfold and
CONTRAfold (partition function mode). LinearPartition is 2771×
faster than CONTRAfold for the longest sequence (32,753 nt) that
CONTRAfold can run in the dataset (2.5 days vs. 1.3 min.).
Interestingly, LinearPartition is orders of magnitude faster without
sacrificing accuracy. In fact, the resulting base pairing probabilities
are even better correlated with ground truth structures, and when
applied to downstream structure prediction tasks, they lead to small
accuracy improvements on longer families (small and large subunit
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rRNAs), as well as a substantial accuracy improvement on long-
distance base pairs.

It is worth noticing that local partition function computations,
such as RNAplfold [4] and Rfold [14], also achieve linear runtime
but can only consider pairs up to a fixed window size, and cannot
output the partition function or Boltzmann probabilities. More
importantly, RNAplfold outputs averaged local base pairing prob-
abilities, leading to a problem that the base pairing probabilities do
not normalize, i.e., for some nucleotides the probability of being
base paired is greater than 1. LinearPartition is the first to achieve
linear runtime without limitations on pair distance, and the base
pairing probabilities are well-defined in range [0,1]. In addition,
LinearPartition can output an approximation of partition function
and Boltzmann probabilities, making it possible to do stochastic
sampling.

2 Web Server

We provide LinearFold and LinearPartition web server for users
who prefer a graphical interface. The web server is available at
http://linearfold.org/.

2.1 Web Server of

LinearFold

Figure 2 shows the screenshot of the interactive input window of
LinearFold web server. The RNA sequence length limit on the web
server is 100,000, which is 10× larger than the Vienna RNAfold
web server. To start prediction, users can paste or type the RNA
sequence in the input box, or upload a local file in FASTA format by
clicking the “Choose File” button. The green “Sample” menu
button is for choosing pre-loaded RNA sequences, including exam-
ple sequences of tRNA, SRP RNA, 16S and 23S rRNAs. Users can
set the beam size by entering a number in “Beam size” box. Here
we provide the beam size ranging from 1 to 200. LinearFold-V is
the default folding engine, which uses the thermodynamic model,
while LinearFold-C, based on the CONTRAfold machine-learned
model, is also available by clicking “LinearFold-C” in the
“available model(s)” box.

When the settings are complete, the user clicks the “Run Lin-
earFold” button, the computation starts and the page is refreshed
to render the prediction results.

The predicted structures are visualized with circular plots. For
example, in Fig. 3, the predicted structures of the O. sativa SRP
RNA (311 nt) are shown. The base pairs predicted by both
LinearFold-C and LinearFold-V are in blue, while base pairs pre-
dicted by LinearFold-C only are in red and by LinearFold-V only
are in green. We can see that LinearFold-C and LinearFold-V agree

http://linearfold.org/
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Fig. 2 The input page of LinearFold

Fig. 3 The screenshot of the LinearFold result page, showing the base pairing circular plots of O. sativa SRP
RNA. In these plots, the backbone is arranged on a circle and base pairs are lines connecting nucleotides
inside the circle
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on the majority of base pairs, and LinearFold-V tends to predict
more base pairs than LinearFold-C. Additional information, such as
beam size, runtime and free energy change of the structure (model
score for LinearFold-C), is also available on the page. For users who
prefer “forna [13]” display, the page also provides a button to
render them. Exact predicted results (in dot format) are also avail-
able on this page.

The web server also allows calculating diverse suboptimal struc-
tures. To enable this feature, check Zuker suboptimal struc-
tures in the input box, and specify the maximum energy gap from
the MFE structure (the value is 5 kcal/mol for LinearFold-V and
5 model scores for LinearFold-C by default). We also implement
the Window feature [26], to ensure the suboptimal structures are
more dissimilar. Users can download the suboptimal structures
from the results page in dot notation as plain text.

If there are specified constraints, users can check the “Con-
straints” box and add one more line for the customized con-
straints after the RNA sequence in the input box. It allows four
types of constraints, "?", ".", "(" and ")", each indicates a
position for which the proper matching is unknown, unpaired,
left or right parenthesis, respectively. The left parentheses is the 5′
nucleotide in a base pair and the right parentheses is the 3′ nucleo-
tide in a base pair. The left and right parentheses need to balanced
so that both nucleotides in base pairs are specified. Additionally,
no pseudoknotted pairs can be specified [20] On the results part,
the constrained base pairs are shown with dash arcs in the circular
plots.

2.2 Web Server of

LinearPartition

The input page of LinearPartition is similar as LinearFold. Figure 4
shows the screenshot of LinearPartition results page, using
O. sativa SRP RNA as an example. In the two upper circular
plots, the base pairs are represented by blue arcs, and the darkness
of the arcs stands for magnitude of their corresponding base pairing
probabilities. When the mouse floats on an arc, the information of
this arc, the end indices of the arc and its corresponding base
pairing probability, is showed. For example, if the information
“[67, 291], p=0.04” is shown when the mouse floats on an
arc, it means that the base pair between nucleotides 67 and
291 has a small pairing probability of 0.04.

In the two lower circular plots, the base pairs in the predicted
MEA structures are shown. As in the upper circular plots, the
probability of each base pair is represented by its darkness, The set
of arcs in the MEA plots is a subset of probability plots, and there
are no crossing arcs (i.e., pseudoknotted pairs) in the MEA plots.
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Fig. 4 The screenshot of the LinearPartition result page, showing the circular plots of base paring probabilities
and the MEA structures of O. sativa SRP RNA using LinearPartition-C and LinearPartition-V. The grayscale
weight of the base pair lines indicates the pairing probability. The pairing partners and the pairing probability
can be obtained by putting the mouse pointer over a base pair line

3 Command Line Protocols

3.1 Installation The source code of LinearFold and LinearPartition is available
online. A license is provided, allowing free use for academic pur-
pose. The software are oriented for Unix/Linux and Mac plat-
forms, but can also run on Microsoft Windows using the Linux
bash shell. To use LinearFold, make sure that the dependencies,
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GCC 4.8.5 or above (or clang onMac), and Python 3, are correctly
installed on the machine. If needed, GCC can be downloaded from
https://gcc.gnu.org/ and Python 3 can be downloaded from
https://www.python.org/downloads/.

When all dependencies are ready, download the latest version of
LinearFold from the GitHub repository https://github.com/
LinearFold/LinearFold, and unzip the downloaded file. If a zip file
was downloaded, in the command line interface use the command:

tatar -xzv-xzvf LinearFold-master.ziLinearFold-master.zip

The source file has a Makefile for easy compilation, so just go to
the LinearFold folder and type the command:

makemake

While compiling, it outputs information as below, indicating
the compilation is successful:

chmod+xlinearfoldchmod+xlinearfold
mkdir-pbinmkdir-pbin
g++src/LinearFold.cpp-std=c++11-O3-Dlvg++src/LinearFold.cpp-std=c++11-O3-Dlv
-Dis_cube_pruning-Dis_candidate_list-o bin/linearfold_v-Dis_cube_pruning-Dis_candidate_list-o bin/linearfold_v
g++src/LinearFold.cpp-std=c++11-O3-Dis_cube_pruningg++src/LinearFold.cpp-std=c++11-O3-Dis_cube_pruning
-Dis_candidate_list-o bin/linearfold_c-Dis_candidate_list-o bin/linearfold_c

LinearPartition is available on the GitHub repository https://
github.com/LinearFold/LinearPartition. The dependencies,
installation and compilation of LinearPartition are the same as
LinearFold, so the instructions above are identical for
LinearPartition.

3.2 Run LinearFold

for Minimum Free

Energy Structure

As Vienna RNAfold, LinearFold accepts both single sequence and
multiple sequences as input. To predict a single sequence, e.g.,
CCCCCAGGGGG, users can input the sequence directly in the termi-
nal and run LinearFold. The input command and the
corresponding outputs are as follows:

$echoCCCCCAGGGGG|./linearfold$echoCCCCCAGGGGG|./linearfold
CCCCCAGGGGGCCCCCAGGGGG
((((...))))(0.74)((((...))))(0.74)

https://gcc.gnu.org/
https://www.python.org/downloads/
https://github.com/LinearFold/LinearFold
https://github.com/LinearFold/LinearFold
https://github.com/LinearFold/LinearPartition
https://github.com/LinearFold/LinearPartition
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The outputs take two lines, where the first line is the given RNA
sequence and the second line is the predicted structure and its
corresponding score (LinearFold-C) or free energy change (Line-
arFold-V).

Users can also save the sequence into a file and feed the file to
LinearFold later on:

$catSEQUENCE|./linearfold$catSEQUENCE|./linearfold
CCCCCAGGGGGCCCCCAGGGGG
((((...))))(0.74)((((...))))(0.74)

For multiple sequence prediction, users can save all sequences
into a file, either in FASTA format or pure-sequence format (where
each sequence takes one line), and LinearFold predicts them
sequentially when the file is fed in:

cattestseq|./linearfoldcattestseq|./linearfold
UGAGUUCUCGAUCUCUAAAAUCGUGAGUUCUCGAUCUCUAAAAUCG
.......................(-0.22).......................(-0.22)
AAAACGGUCCUUAUCAGGACCAAACAAAAACGGUCCUUAUCAGGACCAAACA
.....((((((....)))))).....(4.91).....((((((....)))))).....(4.91)
AUUCUUGCUUCAACAGUGUUUGAACGGAAUAUUCUUGCUUCAACAGUGUUUGAACGGAAU
..............................(-0.29)..............................(-0.29)
UCGGCCACAAACACACAAUCUACUGUUGGUCGAUCGGCCACAAACACACAAUCUACUGUUGGUCGA
(((((((...................)))))))(0.99)(((((((...................)))))))(0.99)
GUUUUUAUCUUACACACGCUUGUGUAAGAUAGUUAGUUUUUAUCUUACACACGCUUGUGUAAGAUAGUUA
.....(((((((((((....)))))))))))....(6.66).....(((((((((((....)))))))))))....(6.66)

LinearFold integrates the machine-learned model borrowed
from CONTRAfold (called LinearFold-C), and thermodynamic
model from Vienna RNAfold (called LinearFold-V). By default it
runs in LinearFold-C mode. To switch to LinearFold-V, add "-V"
option:

$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGG$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGG
UUCAAAUCCCAGCGAGUCCACCA|./linearfold-VUUCAAAUCCCAGCGAGUCCACCA|./linearfold-V
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCAAGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCAA
AUCCCAGCGAGUCCACCAAUCCCAGCGAGUCCACCA
(((((((..((((.......))))((((((((...)))))))).(((((((..((((.......))))((((((((...)))))))).
(((((.......))))))))))))....(-31.50)(((((.......))))))))))))....(-31.50)

LinearFold provides an option, “-b BEAM_SIZE”, to set beam
size with an integer BEAM_SIZE for beam search approximation.
Normally, a larger beam size deviates less from the exact MFE
structure but takes more time. The default beam size is 100.
To run without beam search approximation (no search error), use
“-b 0”:
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$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGG$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGG
UUCAAAUCCCAGCGAGUCCACCA|./linearfold-V-b3UUCAAAUCCCAGCGAGUCCACCA|./linearfold-V-b3
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCAAGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCAA
AUCCCAGCGAGUCCACCAAUCCCAGCGAGUCCACCA
(((((((..((((.......))))((((((((...)))))))).(((((((..((((.......))))((((((((...)))))))).
((((((....)))).)))))))))....(-26.30)((((((....)))).)))))))))....(-26.30)

To enable hairpin sharpturn in prediction, i.e., a hairpin loop
with fewer than 3 unpaired nucleotides, use "--sharpturn".
Note that this only works for LinearFold-C mode, since the ther-
modynamic model does not support hairpin sharpturn.

$echoCCCCCAGGGGG|./linearfold--sharpturn$echoCCCCCAGGGGG|./linearfold--sharpturn
CCCCCAGGGGGCCCCCAGGGGG
(((((.)))))(0.81)(((((.)))))(0.81)

In addition, LinearFold is able to visualize the structure using a
circular plot. For example, given the sequence and structure of E.
coli tRNAGly in a fasta file named ecoli_tRNA, draw its circular plot
with the Python script draw_circular_plot:

$catecoli_tRNA|./draw_circular_plot$catecoli_tRNA|./draw_circular_plot

Then a file named circular_plot.pdf is generated,
showing the plot as in Fig. 5a. Another example in Fig. 5b is
longer sequence (2904 nt) of E.coli 23S rRNA. Note that to draw a
circular plot, the sequence length should be longer than 50 and
shorter than 5650.
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Fig. 5 The circular plots of E.coli tRNAGly (a) and E.coli 23S rRNA (b)
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3.3 Run LinearFold

for Suboptimal

Structures

Besides outputting one single predicted structure, LinearFold can
also computes suboptimal structure [42] with score/energy
(5 kcal/mol for LinearFold-V and 5 model scores for LinearFold-
C by default) in a certain range of the optimum for both the
LinearFold-C mode and the LinearFold-V mode (for example,
"--zuker --delta 4.0").

$echoGAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGU|$echoGAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGU|
./linearfold-V--zuker--delta4.0./linearfold-V--zuker--delta4.0
GAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGUGAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGU
.....((((....(((....)))....)))).....(-8.70).....((((....(((....)))....)))).....(-8.70)
Zukersuboptimalstructures...Zukersuboptimalstructures...
.....((((....(((....)))....)))).....(-8.70).....((((....(((....)))....)))).....(-8.70)
..((.((((....(((....)))....))))...))(-7.40)..((.((((....(((....)))....))))...))(-7.40)
.....((((..(.(((....)))..).)))).....(-6.70).....((((..(.(((....)))..).)))).....(-6.70)
..(((.(......(((....)))....).)))....(-5.30)..(((.(......(((....)))....).)))....(-5.30)
..((((.((....(((....))).)).).)))....(-4.70)..((((.((....(((....))).)).).)))....(-4.70)

3.4 Constrained

Folding

LinearFold provides an option, "--constraints", to enable
specific constraints in prediction. As on the web server, it allows
four types of constraints, "?", ".", "(" and ")", standing for
no constraint, unpaired, paired with a 3′ nucleotide and paired
with a 5′ nucleotide one, respectively. The input should contain
both the RNA sequence and corresponding constraint for each
position:

$echo-e"GAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGU\n??????....$echo-e"GAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGU\n??????....
????????(??????...???????)"|./linearfold--constraints-V????????(??????...???????)"|./linearfold--constraints-V
GAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGUGAACCCCGUCAGGUCCGGAAGGAAGCAGCGGUAAGU
??????....????????(??????...???????)??????....????????(??????...???????)
(.(((......))).)..(................)(5.20)(.(((......))).)..(................)(5.20)

Note that the constrained parentheses must be well-balanced
and non-crossing, i.e., non-pseudoknotted.

3.5 Free Energy

Evaluation

In some cases, users want to know the free energy for a specified
structure of a sequence. LinearFold-V provides an option, “--
eval”, to help evaluate structure’s free energy. Note that since
LinearFold-C is not free energy-based, it does not provide the
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evaluation option. As prediction mode, users can evaluate one
single sequence and its structure by directly feeding them in
terminal:

$echo-e"GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU$echo-e"GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU
GGGUUCAAAUCCCAGCGAGUCCACCA\n(((((((..((((.......))))GGGUUCAAAUCCCAGCGAGUCCACCA\n(((((((..((((.......))))
((((((((...)))))))).(((((.......))))))))))))...."|((((((((...)))))))).(((((.......))))))))))))...."|
./linearfold--eval./linearfold--eval
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCAAGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCAA
AUCCCAGCGAGUCCACCAAUCCCAGCGAGUCCACCA
(((((((..((((.......))))((((((((...)))))))).(((((((..((((.......))))((((((((...)))))))).
(((((.......))))))))))))....(-31.50)(((((.......))))))))))))....(-31.50)

LinearFold supports reading from a file containing multiple
pairs of sequence and structure, and evaluate each pair sequen-
tially. The file should be in sequence-structure format, in which
sequence and its corresponding structure each takes a line in
order.

$cattesteval|head-4$cattesteval|head-4
UGAGUUCUCGAUCUCUAAAAUCGUGAGUUCUCGAUCUCUAAAAUCG
.(((........))).........(((........)))........
AAAACGGUCCUUAUCAGGACCAAACAAAAACGGUCCUUAUCAGGACCAAACA
.....((((((....))))))..........((((((....)))))).....
$cattesteval|./linearfold--eval$cattesteval|./linearfold--eval
UGAGUUCUCGAUCUCUAAAAUCGUGAGUUCUCGAUCUCUAAAAUCG
.(((........)))........(-1.80).(((........)))........(-1.80)
AAAACGGUCCUUAUCAGGACCAAACAAAAACGGUCCUUAUCAGGACCAAACA
.....((((((....)))))).....(-9.30).....((((((....)))))).....(-9.30)
AUUCUUGCUUCAACAGUGUUUGAACGGAAUAUUCUUGCUUCAACAGUGUUUGAACGGAAU
(((((...(((((......))))).)))))(-6.80)(((((...(((((......))))).)))))(-6.80)
UCGGCCACAAACACACAAUCUACUGUUGGUCGAUCGGCCACAAACACACAAUCUACUGUUGGUCGA
(((((((((..............))).))))))(-7.80)(((((((((..............))).))))))(-7.80)
GUUUUUAUCUUACACACGCUUGUGUAAGAUAGUUAGUUUUUAUCUUACACACGCUUGUGUAAGAUAGUUA
....((((((((((((....))))))))))))...(-13.00)....((((((((((((....))))))))))))...(-13.00)

To get a detailed free energy change for each loop, run evalua-
tion mode with “--verbose”:
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$echo-e"GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAG$echo-e"GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAG
CCCUGGGUUCAAAUCCCAGCGAGUCCACCA\n(((((((..((((.......))))CCCUGGGUUCAAAUCCCAGCGAGUCCACCA\n(((((((..((((.......))))
((((((((...)))))))).(((((.......))))))))))))...."|((((((((...)))))))).(((((.......))))))))))))...."|

./linearfold--eval--verbose./linearfold--eval--verbose
Hairpinloop(13,21)CG:4.50Hairpinloop(13,21)CG:4.50
Interiorloop(12,22)UA;(13,21)CG:-2.40Interiorloop(12,22)UA;(13,21)CG:-2.40
Interiorloop(11,23)AU;(12,22)UA:-1.10Interiorloop(11,23)AU;(12,22)UA:-1.10
Interiorloop(10,24)GC;(11,23)AU:-2.40Interiorloop(10,24)GC;(11,23)AU:-2.40
Hairpinloop(32,36)UA:5.90Hairpinloop(32,36)UA:5.90
Interiorloop(31,37)UA;(32,36)UA:-0.90Interiorloop(31,37)UA;(32,36)UA:-0.90
Interiorloop(30,38)CG;(31,37)UA:-2.10Interiorloop(30,38)CG;(31,37)UA:-2.10
Interiorloop(29,39)CG;(30,38)CG:-3.30Interiorloop(29,39)CG;(30,38)CG:-3.30
Interiorloop(28,40)UA;(29,39)CG:-2.40Interiorloop(28,40)UA;(29,39)CG:-2.40
Interiorloop(27,41)UA;(28,40)UA:-0.90Interiorloop(27,41)UA;(28,40)UA:-0.90
Interiorloop(26,42)CG;(27,41)UA:-2.10Interiorloop(26,42)CG;(27,41)UA:-2.10
Interiorloop(25,43)GC;(26,42)CG:-3.40Interiorloop(25,43)GC;(26,42)CG:-3.40
Hairpinloop(49,57)GC:4.40Hairpinloop(49,57)GC:4.40
Interiorloop(48,58)GC;(49,57)GC:-3.30Interiorloop(48,58)GC;(49,57)GC:-3.30
Interiorloop(47,59)GC;(48,58)GC:-3.30Interiorloop(47,59)GC;(48,58)GC:-3.30
Interiorloop(46,60)UA;(47,59)GC:-2.10Interiorloop(46,60)UA;(47,59)GC:-2.10
Interiorloop(45,61)CG;(46,60)UA:-2.10Interiorloop(45,61)CG;(46,60)UA:-2.10
Multiloop(7,62)GC:1.40Multiloop(7,62)GC:1.40
Interiorloop(6,63)CG;(7,62)GC:-2.40Interiorloop(6,63)CG;(7,62)GC:-2.40
Interiorloop(5,64)UA;(6,63)CG:-2.40Interiorloop(5,64)UA;(6,63)CG:-2.40
Interiorloop(4,65)CG;(5,64)UA:-2.10Interiorloop(4,65)CG;(5,64)UA:-2.10
Interiorloop(3,66)GU;(4,65)CG:-2.50Interiorloop(3,66)GU;(4,65)CG:-2.50
Interiorloop(2,67)GC;(3,66)GU:-1.50Interiorloop(2,67)GC;(3,66)GU:-1.50
Interiorloop(1,68)GC;(2,67)GC:-3.30Interiorloop(1,68)GC;(2,67)GC:-3.30
Externalloop:-1.70Externalloop:-1.70
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUC
AAAUCCCAGCGAGUCCACCAAAAUCCCAGCGAGUCCACCA
(((((((..((((.......))))((((((((...)))))))).(((((((..((((.......))))((((((((...)))))))).
(((((.......))))))))))))....(-31.50)(((((.......))))))))))))....(-31.50)

3.6 Partition

Function and Free

Energy of Ensemble

The input requirement of running LinearPartition is the same as
LinearFold, and some of the options, “-V” for switching to
LinearPartition-V, “-b BEAM_SIZE” for beam size adjustment,
and “--sharpturn” for enabling hairpin sharpturn, are also inher-
ited from LinearFold and keep unchanged. To run LinearPartition
for partition function (free energy of ensemble) calculation only
(without base pair probabilities and MEA structure), use “-p”
option:

echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGechoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGG
GUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-pGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-p
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUC
AAAUCCCAGCGAGUCCACCAAAAUCCCAGCGAGUCCACCA
LogPartitionCoefficient:15.88268LogPartitionCoefficient:15.88268
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or

echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGechoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGG
GUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-pGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-p
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUCGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUC
AAAUCCCAGCGAGUCCACCAAAAUCCCAGCGAGUCCACCA
FreeEnergyofEnsemble:-32.14kcal/molFreeEnergyofEnsemble:-32.14kcal/mol

The output takes two lines, in which the first line is the RNA
sequence, and the second line is the natural logarithm partition
coefficient (in LinearPartition-C) or free energy of ensemble
(in LinearPartition-V).

“--verbose” provides the option to output beam size and
runtime information.

$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU
GGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-p--verboseGGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-p--verbose
beamsize:100beamsize:100
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUU
CAAAUCCCAGCGAGUCCACCACAAAUCCCAGCGAGUCCACCA
FreeEnergyofEnsemble:-32.14kcal/molFreeEnergyofEnsemble:-32.14kcal/mol
PartitionFunctionCalculationTime:0.01seconds.PartitionFunctionCalculationTime:0.01seconds.

3.7 Base Pairing

Probabilities and MEA

Structure Prediction

LinearPartition can output base pair probabilities to a single file
with "-o FILE_NAME", where "FILE_NAME" is user
specified name:

$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU
GGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-ooutput_fileGGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-ooutput_file
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUU
CAAAUCCCAGCGAGUCCACCACAAAUCCCAGCGAGUCCACCA
FreeEnergyofEnsemble:-32.14kcal/molFreeEnergyofEnsemble:-32.14kcal/mol
Outputingbasepairingprobabilitymatrixtooutput_file...Outputingbasepairingprobabilitymatrixtooutput_file...
Done!Done!

Note that if the output file already exists in the folder, Linear-
Partition will stop with a warning to avoid unexpected overwriting.
If users want to overwrite anyway, use the option "-rFILE_NAME"
instead of "-o FILE_NAME".

$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU
GGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-ooutput_fileGGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-ooutput_file
WARNING:thisfilenamehasalreadybetaken.WARNING:thisfilenamehasalreadybetaken.
Chooseanothernameoruse-rmode.Chooseanothernameoruse-rmode.
Exit!Exit!

The output file has three columns. The first column and the
second column are the index (starting from 1) of paired bases, and
the third column is the corresponding base pairing probabilities.
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$catoutput_file|head-5$catoutput_file|head-5
1689.9754e-011689.9754e-01
1701.3048e-041701.3048e-04
1712.4480e-041712.4480e-04
2679.9903e-012679.9903e-01
2685.5159e-042685.5159e-04

If base pairing probabilities of multiple sequences needed to be
stored in a single file, user can still use "-o FILE_NAME" option.
The base pairing probabilities of each sequence will be output into
the file in turns, with a blank line to separate each input sequence’s
probabilities.

LinearPartition also provides an option, "-c THRESHOLD", to
only output base pair probabilities larger than a user specified
threshold (between 0 and 1).

$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU
GGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-routputGGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-routput
_file-c0.5_file-c0.5
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUU
CAAAUCCCAGCGAGUCCACCACAAAUCCCAGCGAGUCCACCA
FreeEnergyofEnsemble:-32.14kcal/molFreeEnergyofEnsemble:-32.14kcal/mol
Outputingbasepairingprobabilitymatrixtooutput_file...Outputingbasepairingprobabilitymatrixtooutput_file...
Done!Done!
$catoutput_file|head-5$catoutput_file|head-5
1689.9754e-011689.9754e-01
2679.9903e-012679.9903e-01
3669.9867e-013669.9867e-01
4659.9991e-014659.9991e-01
5649.9961e-015649.9961e-01

As on the web server, the LinearPartition command line soft-
ware also provides circular plot visualization, in which the darkness
of each arc represents the probability each base pair. Figure 6 gives
two plot instances of E.coli tRNAGly and E.coli 23S rRNA. The
command to generate the circular plot of base pair probabilities is
as follows, where ecoli_tRNA is a fasta file of E.coli tRNAGly, and
ecoli_tRNA_bpp is the base pairing probability file generated by
LinearPartition.

$catecoli_tRNA|./draw_bpp_plotecoli_tRNA_bpp$catecoli_tRNA|./draw_bpp_plotecoli_tRNA_bpp

Heatmap is another commonly used plot to visualize the base
pairing probabilities. LinearPartition also provides the Python
script to draw a heatmap based on the probability file. For example,
after generating probability file ecoli_tRNA_bpp of E.coli
tRNAGly using LinearPartition, call Python script draw_heatmap
to draw its lower triangle heatmap where the darkness represents
pairing probability:
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Fig. 6 The visualization of base pair probabilities using circular plots for two example sequences, E.coli tRNAGly

(a) and E.coli 23S rRNA (b)

BA

Fig. 7 The heatmaps of E.coli tRNAGly (a) and M.acetivorans 5S rRNA (b)

$catecoli_tRNA_bpp|./draw_heatmap76$catecoli_tRNA_bpp|./draw_heatmap76

Since the probability file does not contain the information of
sequence length, which is needed for drawing the heatmap, the user
needs to specify it when calling the heatmap script. For instance, 76
is the length of E.coli tRNAGly. Then a file named heat.pdf is
generated, showing the lower triangle heatmap as in
Fig. 7a. Another example in Fig. 7b is a longer sequence (130 nt)
of M. acetivorans 5S rRNA.

Maximum expected accuracy (MEA) [7, 15] is a partition
function-based algorithm, which predicts the structure y that
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maximizes the sum of the base pairing probabilities (pi,j’s) and
single-stranded probabilities (qj’s):

2γ
P

ði,jÞ∈pairsðyÞ
pi,j þ

P

j∈unpairedðyÞ
qj

The γ is a hyperparameter. It controls the balance between positive
predictive value (PPV; a.k.a. precision) and sensitivity (a.k.a. recall)
of the output structure.

To output the MEA structure, use "--MEA" or "-m" option.
You can also set γ to a value (for example, 2.1) with "--gamma
2.1" or "-g 2.1" option. The γ is 1.0 by default.

$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU$echoGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCU
GGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-m-g2.1GGGUUCAAAUCCCAGCGAGUCCACCA|./linearpartition-V-m-g2.1
GGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUUGGGCUCGUAGAUCAGCGGUAGAUCGCUUCCUUCGCAAGGAAGCCCUGGGUU
CAAAUCCCAGCGAGUCCACCACAAAUCCCAGCGAGUCCACCA
FreeEnergyofEnsemble:-32.14kcal/molFreeEnergyofEnsemble:-32.14kcal/mol
(((((((..((((.......))))((((((((...)))))))).(((((((..((((.......))))((((((((...)))))))).
(((((.......))))))))))))....(((((.......))))))))))))....

Acknowledgements

This work is supported in part by National Institutes of Health
(R35GM145283 to D.H.M.)

References

1. Petrov AI, Kay SJ, Kalvari I, Howe KL, Gray
KA, Bruford EA, Kersey PJ, Cochrane G, Finn
RD, Bateman A, Kozomara A, Griffiths-Jones
S, Frankish A, Zwieb CW, Lau BY, Williams
KP, Chan PP, Lowe TM, Cannone JJ, Gutell
R, Machnicka MA, Bujnicki JM, Yoshihama M,
Kenmochi N, Chai B, Cole JR, Szymanski M,
Karlowski WM, Wood V, Huala E, Berardini
TZ, Zhao Y, Chen R, ZhuW, Paraskevopoulou
MD, Vlachos IS, Hatzigeorgiou AG, Ma L,
Zhang Z, Puetz J, Stadler PF, McDonald D,
Basu S, Fey P, Engel SR, Cherry JM, Volders
PJ, Mestdagh P,Wower J, ClarkMB, Quek XC,
Dinger ME (2017) RNAcentral: a comprehen-
sive database of non-coding RNA sequences.
Nucleic Acids Res 45(D1):D128–D134

2. Bachellerie JP, Cavaillé J, Hüttenhofer A
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Chapter 3

Genome-Wide RNA Secondary Structure Prediction

Risa Karakida Kawaguchi and Hisanori Kiryu

Abstract

The information of RNA secondary structure has been widely applied to the inference of RNA function.
However, a classical prediction method is not feasible to long RNAs such as mRNA due to the problems of
computational time and numerical errors. To overcome those problems, sliding window methods have
been applied while their results are not directly comparable to global RNA structure prediction. In this
chapter, we introduce ParasoR, a method designed for parallel computation of genome-wide RNA second-
ary structures. To enable genome-wide prediction, ParasoR distributes dynamic programming (DP) ma-
trices required for structure prediction to multiple computational nodes. Using the database of not the
original DP variable but the ratio of variables, ParasoR can locally compute the structure scores such as stem
probability or accessibility on demand. A comprehensive analysis of local secondary structures by ParasoR is
expected to be a promising way to detect the statistical constraints on long RNAs.

Key words RNA secondary structure, Local structure, Genome-wide, Parallel computation, Maximal
span constraint

1 Introduction

The prediction of RNA secondary structures has played an impor-
tant role in the discovery of functional RNAs, particularly short
noncoding RNAs (ncRNAs). Previous studies have revealed that
RNA secondary structure is associated with the stability and inter-
actions of short RNAs [1, 2]. In a recent application, researchers
designed efficient guide RNAs for CRISPR systems according to
the structural stability of individual and interacting nucleotide
molecules [1]. Structural prediction for long RNAs, such as
mRNAs or pre-mRNAs, also has great potential for inferring how
coding RNAs are properly regulated; thus, it has relevance to
understanding mechanisms such as protein expression and splicing
efficiency [3, 4].

Regardless of its great utility, genome-wide prediction of RNA
secondary structures is computationally demanding, requiring sub-
stantial computing time and memory. For example, the computa-
tional time for algorithms such as Mfold [5] or McCaskill [6],
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which utilize a thermodynamic energy mode based on dynamic
programming (DP), is O(N3) to predict RNA secondary structures
and base pairing probabilities for a sequence of length N. This is the
case where all pseudoknot-free base pairs are considered without
approximation. A general approach to genome-wide RNA struc-
ture analysis that can overcome these computational resource lim-
itations involves performing local RNA structure predictions for an
entire sequence. In support of this approach, Mahen et al. [7]
reported that mRNAs tend to form proximal base pairs more
frequently than distant base pairs in vivo [7], which suggests that
the efficiency and precision of RNA structure prediction may be less
affected by ignoring distant base pairs. Moreover, a base pair dis-
tance of around 150 nucleotides was found to be most suitable in a
previous analysis of structural regions [8]. Thus, it can be con-
cluded that setting a constraint on the maximal span is a reasonable
approach to reducing computational complexity from O(N3) t
O(NW2), where W is the maximal span. Moreover, the accuracy
of the energy parameters used for prediction is potentially reduced
as the distance of distant base pairs increases. For example, the most
widely used energy models for RNA structure prediction are con-
structed according to the melting temperature measured for short
oligonucleotide RNAs [9]. Other variants of energy models con-
structed via machine learning methods, such as the Boltzmann
Likelihood model [10] and ContraFold [11], have been trained
using data from existing structure databases, which also largely
consist of short RNAs. Although distant base pairs are equally or
more important than proximal base pairs when determining whole
structures, the strategy of predicting the local density of RNA
structures, i.e., local accessibility, has been widely studied for the
reasons outlined above.

In local RNA structure analysis, three major strategies are
available for practical prediction of structures: (1) computing struc-
tures for whole long RNAs while applying a constraint for possible
secondary structures, e.g., the maximal span of base pairs; (2) pre-
dicting structure features based on the results of each independent
window analysis; and (3) estimating regional structure characteris-
tics from sequential features. The first strategy advantageously
produces results for local RNA structures that can be directly
compared with global RNA structures; however, the second and
third strategies can be applied to a variety of targets without the
huge computational time constraints by reducing the demand of
computational resources more efficiently.

In this chapter, we introduce ParasoR, a parallel computation
platform for local RNA secondary structure that utilizes the first
strategy mentioned above to analyze a genome-wide structural
tendency. ParasoR can compute a variety of structural features,
such as base pairing probability or accessibility over the globally
consistent structures. With the maximal span constraint W to limit
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Global structure Local structure

< Maximal span W

i j

Distant base pair allowed 
without maximal span

Fig. 1 Example of local and global RNA secondary structures without pseudoknots

the base pair distance, ParasoR predicts a local structure rather than
global structure (see Fig. 1) at a genome-wide level with the compu-
tational complexity O(NW2). This computation is performed by
multiple computational nodes in parallel with utilizing the ratios of
DP variables to avoid over- and underflow problems so that the
results of ParasoR can be obtained in a consistent manner for
classical secondary structure prediction for short RNAs regardless
of the sequence length.

2 Methods

ParasoR is a method by which to conduct parallel computation for
genome-scale prediction of RNA secondary structure and other
structural features. The predictions of ParasoR are based on the
Boltzmann ensemble for globally consistent secondary structures.
It can be applied as an integrative platform for computation of
different local RNA secondary structure predictions, integrating
algorithms such as Rfold [12], Raccess [13], and CapR [14]. To
achieve genome-scale RNA secondary structure prediction, Para-
soR has two different modes: single- and multi-node computation.
In single-node mode, the functions of ParasoR include the predic-
tion of representative RNA secondary structures such as minimum
free-energy (MFE) structure [5], maximal expected accuracy
(MEA) structure [11], and centroid structure [15]. On the other
hand, multi-node mode is optimized to handle RNA secondary
structure predictions of longer RNA sequences, such as mRNA
and pre-mRNA; thus, only part of the MEA structure can be
predicted for each region.

The key features underlying ParasoR in the multi-node mode
included (1) distributing the computation of DP matrices and
(2) computing the ratio of DP matrices rather than original DP
variables. This parallel option enables computation of the same
structure scores as those computed in single-node mode but also
incorporates multiple computer clusters. Switching between the
two modes is achieved using the option “previous method”
(Table 1). The settings for RNA secondary structure prediction,
such as maximal span, energy model, or output file prefix, can also
be edited via the parameters shown in Table 1. The descriptions of
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Table 1
Primary parameters used in ParasoR to control the basic settings

Option name Command Argument Description

Previous method --pre NA Enable a single-core computation

Maximal constraint --constraint int Set the limit for a base pair distance

Output file name --name string Prefix for output files

Start and end -s and -e long int Region to be analyzed

Energy model --energy string Choice of energy models

other available parameters can be found by running ParasoR with a
help option.

In the following subsections, we present a variety of examples
of local RNA structure analyses. First, we detail how to use ParasoR
in single-node mode and then provide a simple case for its use in
multi-node computation mode.

2.1 RNA Secondary

Structure Analysis in

Single-Node Mode

ParasoR can handle several types of structure prediction, whereas
onlyMEA structures are available in parallel computationmode. An
MFE structure is that for which the free-energy change is estimated
as the minimum; therefore, the probability of an MFE structure is
highest among all possible structures. However, in reality, the
probability of an MFE structure is known to be extremely low
because RNA can form many possible structures via many combi-
nations of base pairs [16]. To reflect the stability distribution of the
whole structure space instead of the best structure with a low
possibility, MEA and γ-centroid structures were developed to eval-
uate not only the MFE structure but also other structures at the
level of each base pair. An MEA structure is that which maximizes
the MEA estimator to increase the structure prediction accuracy.
The γ-centroid estimator used for centroid structure prediction is
another estimator that further improves prediction accuracy based
on the principles of the MEA estimator. Both of these estimators
achieve higher prediction accuracies than MFE structures in avail-
able benchmark datasets [17]. These various structure predictions
are implemented in ParasoR because comparisons of MFE and
other structure predictions are informative when estimating the
robustness of RNA structure prediction for a given sequence.
Examples that demonstrate MFE and centroid structure prediction
via ParasoR are provided with explanations below.

Example 1: ParasoR --pre -f [sequence] --mfe --struct

Example 2: ParasoR --pre -f [sequence] --struct=[gamma]
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Substructure: color (RGB) 

Exterior: light green (0.2, 1, 0.2) 

Stem: red (1, 0, 0) 

Bulge: orange (1, 0.7, 0.2) 

Multibranch: green (0, 0.5, 0) 

Hairpin: violet (1, 0.2, 1) 

Internal: blue (0.4, 0.4, 1)

Exterior

Bulge

Internal

Hairpin

Multibranch

Stem

Fig. 2 Example of RNA secondary structure visualization and six substructure
classes

Example 1: MFE structure prediction. An MFE structure is the
most stable structure for which the estimated free energy
change is the minimum among all possible structures. This
prediction is only available in single-node mode because of its
computational time (O(NW2)).

Example 2: A γ-centroid structure. A γ-centroid structure pre-
diction is also only available in single-node mode because its
DP computation procedure has the same computational com-
plexity as in the MFE structure prediction. The option for
centroid structure prediction allows a floating point number
to modulate the threshold of probability for permissible base
pairs.

Example 20: MEA structure. In multi-node mode for genome-
wide structure prediction, only a partial MEA structure can be
predicted using base pairing probabilities of the target region
using a “struct” option. The predicted structures do not con-
tain any base pairs from outside of the region. Additionally, a
full MEA structure is obtained by running ParasoR in multi-
node mode using a single node although this computation
would be impractical for long RNAs.

Rather than predicting single secondary structures, local struc-
ture features can also be widely applied to analyze long RNAs. RNA
secondary structures consist of six possible substructures: bulge,
exterior hairpin, multibranch, stem, and internal loops (Fig. 2). The
basic idea of local structure evaluation is computing the probability
of forming a specific substructure being at each base or contiguous
region level. In ParasoR, five structure scores are computed in
single- and multicore mode. Examples that demonstrate local
structure analyses are provided below.



Example 1: ParasoR --pre -f [sequence]

Example 10: ParasoR --pre --input [fasta file]

Example 2: ParasoR --pre -f [sequence] --stem

Example 20: ParasoR --pre –f[sequence] --struct --image

Example 3: ParasoR --pre -f [sequence] --acc --window [int]

Example 4: ParasoR --pre -f [sequence] --prof

Example 40: ParasoR --pre -f [sequence] –prof --struct --image

Example 5: ParasoR --pre -f [sequence] --motif
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Example 1: Base pairing probability. p(i, j) is the summation of
the probabilities of the structures in which the ith and jth bases
are paired each other, where 1 � i < j � N. In ParasoR, the
maximal constraint, which is represented by W, is set to satisfy
the condition j – i �W. The default output of ParasoR is set to
base pairing probability.

Example 2: Stem probability. p(i) is the summation of the prob-
abilities of the structures for which the ith base is paired with
any other base. Using “image” and “struct” options, ParasoR
can output an image of the predicted structure whose color of
each base corresponds to the stem probability.

Example 3: Accessibility. pacc(i, j) is the summation of the prob-
abilities for the structure in which the entire region from the ith
to jth base is unpaired and belongs to any of substructures
except for stem. The parameter w controls the distance
between i and j. Further detail on accessibility is provided by
Kiryu et al. [13].

Example 4: Structure profiles. ps(i) is the summation of the
probabilities for the structure in which the ith base involves
substructure s from six possible substructures. Further detail on
structure profiles is provided by Fukunaga et al. [14]. ParasoR
can additionally produce an image of the pie charts of structure
profiles for each base on the predicted structure.

Example 5: Structure motifs. This option changes the output of
structure profiles into a motif sequence of length N. For each
base position, one of the substructures for which the probabil-
ity, or structure profile ps(i), is highest is selected. The first
letters of the selected substructure for each base are concate-
nated as a structure motif sequence, which is applicable to a
simple enrichment analysis of structure motifs using a general
motif search application, e.g., HOMER [18]. This option
could feasibly be used for the analysis of datasets from high-
throughput motif enrichment experiments, such as the meth-
ods to detect the binding sites of RBPs and ncRNAs.



Example:

ParasoR --pre -f GCGGGUUUAGCUCAGAAGGGAGAGCGUCAGACUGAAYAUCUGAAG

GACGUGUGTUCGAUCCACACAAACCGCACCA --image --struct

Example outputs:

#-Check working directory: /Users/cawa/Software/ParasoR/

#-Temperature 37 616.321

#-Read Energy -> /Users/cawa/Software/ParasoR/energy_param/

rna_turner2004.par

# Not parallel, Rfold computing

# GCGGGUUUAGCUCAGAAGGGAGAGCGUCAGACUGAANAUCUGAAGGACGU...

#--log(Z): 33.02887936

#--hard-const-disabled

#-Centroid structure (gamma = 1)

#structure ((((.....((((........)))).(((((.......))))).....

(((((.......)))))...))))....
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Fig. 3 Predicted γ-centroid structure of phe-tRNA. Each circle in the predicted
structure shows the stem probability of each base

2.2 Transfer RNA

Secondary Structure

Prediction by ParasoR:

An Example

Here, an example output of a single-node ParasoR computation for
the phe-tRNA sequence from Neurospora crassa [19] is provided.
Figures 3 and 4 represent a predicted centroid structure with
different structural profile annotations. In Fig. 3, the color of
each base represents a stem probability; it can be applied to check
the consistency between the predicted structure and stem probabil-
ity. On the other hand, in Fig. 4, each base includes a pie chart in
which the probability of each substructure (structure profiles) is
shown by slices of different colors; it may be useful for checking the
consistency of a predicted structure and its reliability in a single-
base resolution.



#-Drawing to /Users/cawa/Software/ParasoR/prob/_stem_0_-

se=0_75_gamma=1.ps

# local seq: GCGGGUUUAGCUCAGAAGGGAGAGCGUCAGACUGAANAUCUGAAGGAC

GUGUGUUCGAUCCACACAAACCGCACCA

# local str: ((((.....((((........)))).(((((.......))))).....

(((((.......)))))...))))....
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Fig. 4 Predicted centroid structure of phe-tRNA. Each circle in the predicted
structure corresponds to a pie chart in which each slice represents the
probability of each substructure, i.e., the structure profile. Specifically, the
probabilities of exterior, stem, bulge, multibranch, hairpin, and internal loop
are shown in light green, red, orange, green, violet, and blue, respectively

2.3 Rfold Algorithm The Rfold model and its derivative models, such as Raccess and
ParasoR, are algorithms for analyses of local RNA secondary struc-
tures. These models are the variants of stochastic context-free
grammars and applicable to existing thermodynamic folding mod-
els. An important feature of Rfold involves setting a maximal span
of base pairs to implement feasible structural analysis of long RNAs.

In its grammar, Rfold includes seven nonterminal symbols:
Outer, Stem, StemEnd, Multi, MultiBif, Multi1, and Multi2.
Each state emits a corresponding structure, which has been detailed
by Kiryu, Kin, and Asai [12] and by Kawaguchi and Kiryu [20]. To
calculate a structure probability such as the base pairing probability,
Rfold calculates the sum of free energy changes for target structures
based on a thermodynamic folding model. This process is recur-
sively computed based on an inside outside algorithm for each state
and subsequence. For state s, inside variables αs(k, i) correspond to
all structures being s at the edge of a partial sequence from the kth
to ith bases. Outside variables βs(k, i) represent all structures of the
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Fig. 5 Rfold algorithm. Inside and outside variables and corresponding regions
used to calculate base pairing probability. The inside Stem variable stores the
sum of free-energy changes of structures with a particular base pair for a given
region (indicated in red). The outside variables store the same for a region
outside of the specified indices (represented by a blue rectangle). By multiplying
the inside, outside, and transition energy variables for the combination of
substructure states that can produce a base pair between them, Rfold
computes a base pairing probability following a specific thermodynamic
folding model for an estimation of free energy change

sequence from the first to kth bases and from the ith to last bases
that involve s at the internal edge of the two sequences (as shown in
Fig. 5).

As an example, the calculation of inside Outer variables (repre-
sented by αOuter), or the sum of the free-energy changes of all
structures for a partial sequence, is provided. αOuter(i) is obtained
from inside variables with an index �i and transition energy as
follows (also see Fig. 6):

αOuter ið Þ ¼ αOuter i � 1ð Þ þPi�1
k¼i�W�1αOuter kð ÞñαStem k, ið Þñt-

Outer ! OuterñStemð Þ, where W represents the maximal span
and t(Outer ! Outer · Stem) represents the transition energy
between Outer and Outer · Stem. αStem(k, i) corresponds to the
sum of the free energy changes for the structures of the partial
sequence that have a base pair between the kth and ith base,
which can be computed independently from αOuter. This
inside Outer variable is equal to the partition function, which
is required for probability computing, when the ith base is set
to the end of the sequence. As such, Rfold can efficiently
compute a probability considering all possible substructures
following such recursive equations.
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Outer (i) = Outer (i 1)

Outer (i 1)

+ Outer (k) Stem (k,i) t(Outer Outer Stem)

i th base not paired paired with k th base

+ → All structures

Base

Outer (i)

k

Fig. 6 A schematic diagram showing the recursive computation of αOuter

2.4 ParasoR

Algorithm

While the Rfold model enables the efficient computation of struc-
ture characteristics with the constraint of maximal span, it cannot
be applied to genome-wide RNA secondary structure prediction
because of increased computational time and over- and underflow
problems. To overcome these problems, ParasoR was developed as
an extension of Rfold with optimization for multi-node computa-
tion of long RNA sequences (Fig. 7). In the ParasoR algorithm, an
RNA sequence is first fragmented into chunks, and then each chunk
is distributed to multiple nodes for parallel computation. Next,
ParasoR connects the temporary databases constructed by each
node and predicts local structures and probabilities over globally
consistent secondary structures. Examples of parallel computation
by ParasoR where two computational nodes are available are
provided below.

Examples:

ParasoR -i 0 -k 2 # run using the first node.

ParasoR -i 1 -k 2 # run using the second node.

ParasoR -i 2 -k 2 # connects the ratios of inside and outside

variables.

After the connection step, two files are stored in an “outer”
directory, which includes the variables associated with inside- and
outside-outer variables. Using this database, ParasoR computes an
MEA structure and structural features efficiently. Examples of local
structure analyses are provided below.
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Sequence1 Divide

2 Connect

3 Predict

Inside

Outside

Fig. 7 ParasoR algorithm. In the multi-node mode of ParasoR, a genome-wide local structure prediction is
achieved by following three procedures: divide, connect, and predict. After computation of the temporary
databases for each region, all databases are concatenated using a single node to construct the final database
of globally consistent inside and outside variables. Using the resultant database, ParasoR computes a local
RNA secondary structure from any point in the sequence

Examples:

ParasoR -s [start] -e [end] --stem.

ParasoR -s [start] -e [end] --struct # MEA structure predic-

tion.

ParasoR -i 0 -k 2 --stemdb --stdout # computes the stem

probability for the first half of a sequence.

3 Notes

For the analysis of local secondary structures, the most critical
difference between ParasoR and other models, such as RNAplfold
[21] and Localfold [8], is that ParasoR considers a globally consis-
tent structure for structure evaluation. While other methods inte-
grate predictions of secondary structures for partial sequences
toward a local structure analysis, ParasoR predictions can be used
like classical structure predictions without the constraint of a maxi-
mal span, such as in Mfold or RNAfold [22]. While local structure
prediction over globally consistent structures is currently available
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in RNAfold with the “maxBPspan” option, the further advantage
of ParasoR is its applicability to genome-scale long sequences via
the application of DP ratio computation by multiple computational
nodes.

While ParasoR can predict a secondary structure even for
genome-scale long RNAs, it was originally designed for mRNAs
and pre-mRNAs, assuming that one sequence is transcribed into a
single molecule and forms a single RNA secondary structure.
Therefore, other strategies may be better options when the aim is
discovery of functional regions containing small ncRNAs tran-
scribed individually from genome sequence through a local struc-
ture analysis. A combination of RNA folding and sequence
alignments is an approach applied in previous studies to identify
functional ncRNAs, e.g., with Evofold [23], LocARNA-P [24],
and RNAscClust [25]. Other alignment-free approaches, such as
RNAz [26] or ScanFold [27], utilize a control distribution of
free energy changes obtained by machine learning and shuffled
sequences, respectively. As an alternative option, resources and
databases of conserved structural elements and predicted RNA
secondary structures, which have been created via genome-wide
scanning methods employing abundant computational resources,
are also available [28–30]. A database containing the results of
high-throughput structure probing experiments may also help elu-
cidate the structural elements of the genome under in vitro and
in vivo conditions [31–34]. Recent studies have revealed that
in vivo RNA modification can change structures substantially
from those predicted in silico [35, 36]. Therefore, integrative use
of ab initio local structure analysis and other such resources could
potentially reveal new functional aspects of long RNAs.
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Chapter 4

Nucleic Acid Structure Prediction Including Pseudoknots
Through Direct Enumeration of States: A User’s Guide
to the LandscapeFold Algorithm

Ofer Kimchi, Michael P. Brenner, and Lucy J. Colwell

Abstract

Here we detail the LandscapeFold secondary structure prediction algorithm and how it is used. The
algorithm was previously described and tested in (Kimchi O et al., Biophys J 117(3):520–532, 2019),
though it was not named there. The algorithm directly enumerates all possible secondary structures into
which up to two RNA or single-stranded DNA sequences can fold. It uses a polymer physics model to
estimate the configurational entropy of structures including complex pseudoknots. We detail each of these
steps and ways in which the user can adjust the algorithm as desired. The code is available on the GitHub
repository https://github.com/ofer-kimchi/LandscapeFold.

Key words Pseudoknot, Structure enumeration, Minimum free energy structure, Free energy land-
scape, Polymer physics theory

1 Introduction

Short RNA molecules are ubiquitous in modern biology. In vivo,
small non-coding RNAmolecules are present at high copy numbers
in a wide variety of both eukaryotic and prokaryotic cells [1, 2],
have been implicated in nearly all aspects of biological regulation
[3], and have been found to interact with DNA, mRNA, other
non-coding RNA, and proteins [4, 5]. In vitro, the laboratory
evolution of RNA, especially through SELEX [6–8], has led to an
explosion of applications for short RNA and single-stranded DNA
molecules, due to their ability to tightly and specifically bind to a
remarkable range of target ligands [9].

Where they are known, the functions and interaction partners
of many RNA molecules are determined by their minimum free
energy structures and by their structure landscapes [10–15]. RNA
structures, while fully three-dimensional in nature, can in many
cases be productively defined by a list of the base pairs in the
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Fig. 1 RNA structures and pseudoknots. Three RNA secondary structures are depicted, each in two forms: as a
planar graph (left) where paired nucleotides are nearby, and as a circular diagram (right) where paired
nucleotides are connected by arcs. The planar graphs are colorcoded by whether or not the nucleotide is
paired; the circular diagrams by nucleotide sequence. (a) Non-pseudoknotted structure. An example of a
non-pseudoknotted structure. O’s represent unknown nucleotides and are unpaired. The specific structure
shown is motivated by Ref. [17]. The circular diagrams of structures without pseudoknots do not contain any
intersections in the arcs connecting paired nucleotides. (b) A simple pseudoknot. A simple intramolecular
pseudoknot is depicted. Pseudoknots are defined as non-nested loops, and are easy to visualize in circular
diagrams as intersections in the arcs connecting paired nucleotides. (c) An intermolecular pseudoknot. A
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structure, termed the secondary structure (Fig. 1a). The minimum
free energy structures of short RNA molecules (without
non-nested loops) can be predicted with accuracies of �80%
(depending on the accuracy measure) [16].

1.1 Pseudoknots Are

Not Well-Modeled by

Most Current Tools

Structures including non-nested loops, termed pseudoknots
(Fig. 1b), have remained a longstanding challenge for secondary
structure prediction tools. Pseudoknots make up roughly 1.4% of
base pairs [18] and are overrepresented in functionally important
regions of RNA [19]. For example, pseudoknots make up the
catalytic cores of many ribozymes, and they play a significant role
in programmed ribosomal frameshifting in viruses [20–22]. In
addition to intramolecular pseudoknots, binding between two
complementary strands can often result in pseudoknot-like struc-
tures (Fig. 1c) which also play an essential role in a diverse array of
biological processes [23–28].

Two major challenges arise when predicting RNA structures
including pseudoknots, and many leading secondary structure pre-
diction algorithms (e.g., Refs. [29, 30]) exclude pseudoknots from
their analysis. The first is the challenge of enumerating pseudo-
knotted structures: the enumeration of all pseudoknotted struc-
tures into which an arbitrary sequence can fold is NP-complete
[31]. The second is the challenge of computing the free energy of
pseudoknotted structures, particularly their configurational
entropy. Significant work over the past two decades have led to
major developments on both these fronts. To address the enumer-
ation challenge, dynamic programming approaches have been con-
structed that enable the polynomial-time enumeration of certain
classes of pseudoknotted structures [32–39], and heuristic meth-
ods have been developed to find low (but not necessarily optimal)
free energy structures [40–47]. For the second challenge, physical
models have been developed for the entropies of the simplest
pseudoknots [38–40, 48–50].

1.2 LandscapeFold

Can Predict the

Complete Secondary

Structure Landscape

Including Pseudoknots

LandscapeFold was developed to further address these two chal-
lenges and to enable future research into how properties of nucleic
acids are influenced by their full free energy landscape.

LandscapeFold directly enumerates all possible structures into
which a given sequence can fold (Subheading 3). This approach was
proposed in the early days of RNA structure prediction but quickly

Fig. 1 (continued) simple intermolecular pseudoknot is depicted. Secondary structure prediction algorithms
such as LandscapeFold predict hybridization by concatenating sequences separated by a linker of inert “O”s.
Intramolecular base pairing can easily result in a pseudoknot, as exemplified here. The configurational
entropies of such structures are difficult to predict by traditional means but are readily computable by the
graphical model described in Subheading 4.3
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abandoned in favor of dynamic programming methodologies
[17]. While this complete enumeration is far slower than dynamic
programming approaches for finding the lowest free energy
non-pseudoknotted structures into which a sequence can fold, it
has two particular benefits. First, it is the only way to enumerate all
pseudoknotted structures. Second, it will enable further study of
those RNA properties hypothesized to depend on the complete
landscape rather than only the lowest free energy structures
[12, 13, 15]. In particular, folding and hybridization kinetics are
expected to be highly dependent on properties of the complete
landscape [51].

The other major difference between LandscapeFold and other
structure prediction algorithms is its pseudoknot entropy model.
LandscapeFold uses a graphical formalism based on polymer phys-
ics theory which can calculate the entropy of arbitrarily complex
pseudoknots (Subheading 4.3). Importantly for hybridization pre-
diction, LandscapeFold is able to address pseudoknot-like struc-
tures that emerge in many instances of intermolecular binding, a
simple example of which is shown in Fig. 1c.

In this chapter, we will give a “user’s guide” to the Landscape-
Fold algorithm. Throughout, we will explain the algorithm while
making reference to functions found in its Python implementation.
A MatLab implementation is also available.

All code is available on the GitHub repository https://github.
com/ofer-kimchi/LandscapeFold.

2 Overall Use of the Code

2.1 Simple Example

Usage

For most applications, the LandscapeFold algorithm can be run
using only one line of code. For example, to calculate the free
energy landscape of the short hairpin GCGCAAAUGCGC and
save it to the variable sol, a user can run

sol = LandscapeFold([‘GCGCAAAUGCGC’]).mainLandscapeCalcula-

tion()

The code will automatically plot a diagram of the minimum free
energy (MFE) structure, as well as print the top five lowest free
energy structures, their free energies, and their probabilities.

The variable sol returned by the code above is an object of
class LandscapeFold that defines the free energy landscape of the
inputted RNA sequence. The object is initialized by calling Land-
scapeFold() with desired inputs. The function sol.main-
LandscapeCalculation() then calculates the free energy
landscape given those inputs.

The rest of this chapter will describe many of the sub-functions
that go into the code above, as well as how user inputs can allow for

https://github.com/ofer-kimchi/LandscapeFold
https://github.com/ofer-kimchi/LandscapeFold
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greater control over the results. Inputs are put into the argument of
LandscapeFold following the list of sequences.

2.2 Python Jargon In this chapter, we will describe several methods of the Landsca-
peFold class by referencing the class instance sol defined above
(e.g., sol.foo()), and to reduce jargon, we will refer to these as
“functions.” Similarly, we will refer to data attributes (e.g., sol.
bar) by their type (e.g., list). We will refer to numpy arrays simply
as arrays. Finally, we will refer to functions outside of the Land-
scapeFold class as, e.g., baz().

2.3 The Sequences

Input

The main input to LandscapeFold, sequences, is a list of up to
two sequences. Each sequence is a string comprised of G’s, C’s, A’s,
and either T’s or U’s depending on if the string is RNA or single-
stranded DNA. Other characters are treated as unknown nucleo-
tides, “O”s, and are not allowed to base pair.

Whether each sequence should be treated as RNA or DNA is
specified by the input DNA. DNA is a list of at least the same length as
sequences, and for each sequence is True if the sequence is DNA,
and False if RNA. LandscapeFold attempts to correct errors in
this specification: if the string contains U’s but no T’s, Landscape-
Fold assumes the sequence is RNA; if it contains T’s but no U’s, it
assumes DNA. Within the LandscapeFold algorithm, DNA and
RNA sequences differ in two major ways. First, while RNA/RNA
G-U pairs are allowed, DNA/RNA G-U pairs, RNA/DNA G-T
pairs, and DNA/DNAG-T pairs are all disallowed. Second, the free
energies of RNA and DNA are parameterized differently (see Sub-
heading 4.2). Aside from these differences, sequences are treated
equivalently by the algorithm regardless of whether they represent
RNA or DNA. In this chapter, we will refer to an arbitrary sequence
as “RNA” since single-stranded RNA structure prediction is more
common than DNA; however, everything we discuss here will be
equally applicable for RNA and DNA.

3 Enumerating the Complete Free Energy Landscape

For short enough RNAmolecules, the complete enumeration of all
possible secondary structures is possible. The LandscapeFold algo-
rithm uses a secondary structure enumeration technique developed
by Pipas and McMahon in the 1970s to completely enumerate all
secondary structures into which a primary sequence can fold
[17]. The enumeration technique is broken up into two
sub-functions, which Pipas and McMahon called START and
PERMU. The START function enumerates all possible stems the
sequence can form, where a stem is defined as a sequence of
consecutive base pairs. PERMU seeks all realizable combinations
of these stems that can coexist in the same structure.
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Table 1
The main input parameters to the LandscapeFold algorithm affecting the enumeration procedure

Parameter Type Description Default

sequences List of strings A list of sequences (up to two) N/A

DNA List of Booleans For each sequence, whether it is a
sequence of DNA (True) or RNA
(False)

[False,
False]

minBPInStem Positive integer Minimum length of a stem 3

allowIntramolecular
Pseudoknots

Boolean Whether to enumerate structures with
intramolecular pseudoknots

True

allowIntermolecular
Pseudoknots

Boolean Whether to enumerate structures with
intermolecular pseudoknots

True

substems Non-negative
integer or “all”

Determines the length of substems to
consider

“all”

frozenBPs n ×2 nested list
of integers

List of base pairs that should be present
in all structures returned

empty list

minNtsInHairpin Positive integer Minimum number of nucleotides in a
hairpin

3

onlyAllowSubsets
OfLongestStems

Boolean Whether to only consider the longest
possible stem and its subsets

False

onlyConsiderSubstems
FromEdges

Boolean Whether to disallow subsets of stems
which do not include either end of
the full stem

False

onlyConsider
BondedStrands

Boolean Whether to only include structures
with at least one intermolecular base
pair

False

The main input parameters to the algorithm affecting the
enumeration procedure are given in Table 1.

3.1 The START

Function

In order to enumerate all secondary structures, we first enumerate
all possible stems that can be formed by the sequence. A stem is a set
of consecutive base pairs {(i, j), (i+ 1, j-1), ..., (i +n, j-n)}.

3.1.1 Determining

Nucleotide

Complementarity

Within LandscapeFold, the nucleotide sequence is numbered from
0 to N-1 from the 5′ end, where N is the sequence length. We
define anN ×N symmetric matrix Bwhich describes which nucleo-
tides can bind to each other: Bi,j=1 if nucleotides i and j can bind
to make base pair i � j and 0 otherwise. Defining rA as an RNA
adenine, and dA as a DNA adenine, etc. binding is allowed for pairs
in the set

fðrA,rU Þ, ðrA,dT Þ, ðrC,rGÞ, ðrC,dGÞ, ðrG,rU Þ, ðrG,dCÞ,
ðrU ,dAÞ, ðdA,dT Þ, ðdC ,dGÞg:

The user can also directly input B using the allowedBPs input.
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3.1.2 Enumerating All

Possible Stems

For each nucleotide i, we search for a complementary nucleotide by
traversing the sequence backwards. We check each nucleotide for
complementarity until we reach i+h where h is the minimum hair-
pin length. h can be set by the user with the minNtsInHairpin
input. If a complementary nucleotide j is found, the stem is
extended one nucleotide at a time as long as complementarity is
maintained. Once complementarity is broken or the resulting hair-
pin length of the stem becomes too short, the stem is added to the
list of stems, and we continue searching for the next nucleotide
complementary to i. Following Pipas andMcMahon, we call the list
of stems the S-Table.

Stems are only added if they are longer than the minimum stem
length, which is set by the user with the minBPInStem input (this
parameter was termedm in Ref. [52]). Furthermore, stems are only
considered valid if they do not create a hairpin that is too short; i.e.
they are valid only if j-n > i + n + h where (i, j) is the first base pair
in the stem and n is the length of the stem.

The user can choose to, at this point, remove all stems shorter
than the longest stem found, by setting the input onlyAllowSub-
setsOfLongestStems to True. This is useful in some engineered
systems where only one very long stem is expected to be relevant.

Next, we add all possible truncations of these enumerated
stems (we call these “sub-stems”). A stem of length s has s-n+1
possible sub-stems of length n. By setting the input substems to a
non-negative integer, the user can specify that only sub-stems of
length at least s-substems should be considered. For example, if
substems is zero, no substems will be considered. Setting the
input substems to all is equivalent to setting it to an arbitrarily
large number.

If the user sets the input onlyConsiderSubstemsFro-
mEdges to True, only sub-stems that include one of the two
edges of the stem will be considered, leading to two sub-stems of
each length.

3.1.3 S-Table Storage

and Computation Time

Stems are stored in LandscapeFold in two ways. One, following
Pipas andMcMahon, is as a list of length 2s (where s is the length of
the stem) giving the nucleotide indices of the 5′ strand, followed by
their complement (e.g., [1, 2, 3, 31, 30, 29]). Stems are also
stored in LandscapeFold directly as an s ×2 nested list of base pairs
(e.g., [[1, 31], [2, 30], [3, 29]]). Both of these indicate the
same stem, comprised of three base pairs (where the first base pair is
comprised of nucleotide 1 bound to nucleotide 31, etc.). There are
two versions of the S-Table for the two storage methods: sol.
STableStructure and sol.STableBPs, respectively.

The creation of the S-Table is implemented in the Landscape-
Fold algorithm by the sol.createSTable() function. As a prac-
tical matter, while this function is extremely fast relative to the rest
of the code, the computation time the rest of the code will take can



56 Ofer Kimchi et al.

be very roughly estimated from the number of stems enumerated,
Nstems. If fewer than 100 stems are enumerated, the code should
take less than a minute to run; if between 100–150, less than an
hour; up to 200, several hours. These times were computed using a
2017 Macbook Pro with 3.1 GHz processor and 16 GB RAM.

3.1.4 Determining the

Compatibility of Stems

Having created the S-Table, we will next enumerate all possible
structures by finding all viable combinations of stems. In order to
determine if two stems can coexist in the same structure, we define
the Nstems ×Nstems symmetric compatibility matrix C, where
Cp,q=1 if a structure could be made with both stems p and q, and
0 otherwise.

There are three reasons Cp,q may be zero. (1) We impose the
constraint that each nucleotide may be paired with, at most, one
other nucleotide by setting Cp,q=0 if stems p and q share at least
one nucleotide. (2) We also set Cp,q=0 if the user inputted False
for the allowIntramolecularPseudoknots or allowInter-
molecularPseudoknots arguments, and stems p and q form an
intramolecular (e.g., Fig. 1b) or intermolecular (e.g., Fig. 1c) pseu-
doknot, respectively. (3) If stems p and q directly follow one
another and are together equivalent to a single longer stem under
consideration, we set Cp,q=0. We set Cq,q=1 for all q.

The user can input a list of base pairs that must be present in
each structure considered by the algorithm using the frozenBPs
argument. For each “frozen” base pair inputted by the user, we
make a list of all stems containing that base pair (these lists are
stored as a nested list in the sol.frozenStems property). Thus,
each possible structure must include one stem from each of these
lists. For each stem, we ensure it is compatible with one element
from each list (i.e., it can coexist along with each of the “frozen”
base pairs); if it is not, we remove the stem from the S-Table.

After making the compatibility matrix C, we have found it
useful to further define three- and four-way compatibility tensors
C3 and C4. These allow us to ignore structures that include higher-
order pseudoknots whose “mininal graphs” (see Subheading 4.3.2)
consist of three or four stems. While our theory for pseudoknot
entropy is valid for these higher-order pseudoknots, the algorithm
does not currently support their entropy calculation. The user can
choose to allow higher-order pseudoknots (though their free
energy calculation will be inaccurate) by setting the consider-
C3andC4 argument to False.

3.2 The PERMU

Function

We are now in a position to enumerate all possible secondary
structures into which the sequence can fold, by identifying all
mutually compatible combinations of stems. Starting from a single
stem s1, we consider subsequent stems s2 and add the first stem for
which Cs1,s2 =1. Then, we repeat the process, adding the first stem
s3> s2 compatible with both s1 and s2 (and, using the C3 tensor,
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compatible with s1 and s2 simultaneously). We continue this process
until we can add no more stems.

At this point, we check if the resulting structure, composed of
M stems, contains all “frozen” base pairs (if any were inputted). If
so, we add it to the list of possible structures. The user can also
specify that structures comprised of fewer than a given number of
stems will not be added with the minNumStemsInStructure
input, which is by default set to zero (to include also the completely
unfolded structure).

If two sequences were input, the user can also choose to only
add structures that include at least one intermolecular stem by
setting the input onlyConsiderBondedStrands to True.

After adding (or not) the resulting structure, we then remove
the last stem added, to obtain the structure composed of stems
s1, s2, ... , sM-1, and continue the process. This algorithm returns all
possible secondary structures resulting from the primary sequence.

The possible structures are stored in the list sol.structures,
which has lengthNstructures. Each element of sol.structures is a
list of stem indices (between 0 and Nstems-1, inclusive) specifying
the stems that comprise that particular structure. Thus, sol.
structures is used in conjunction with the S-Table to determine
the particular base pairs comprising each structure.

4 Performing the Free Energy Calculation

In the terminology of Pipas and McMahon, the process of calculat-
ing the free energy of each structure is termed the CHECK func-
tion. This process is completely parallelizable, though this
parallelizability has not been implemented yet in the Python version
of LandscapeFold (it has in the MATLAB version). Unparallelized,
it is generally significantly slower than the enumeration procedure,
and the loop entropy calculation in particular (Subheading 4.3) is
typically the rate-limiting process.

Each structure into which an RNA sequence can fold has a
corresponding enthalpy ΔH and entropy ΔS. These combine to
give the free energy ΔG:

ΔG =ΔH -TΔS ð1Þ
where T is the temperature in Kelvin. T can be input to Land-
scapeFold using the T argument. By default, LandscapeFold pre-
dicts the structure landscape at 37∘C. In Eq. 1 the Δ’s signify that
these terms are measured with respect to the free chain. In other
words, the empty structure with no base pairs will have all three of
these terms equal to zero.

In equilibrium, the probability of an RNA sequence folding
into a given structure σ with free energy ΔGσ is given by the
Boltzmann factor
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pðσÞ= exp ð- βΔGσÞP
σ ′ exp ð- βGσ ′ Þ ð2Þ

where β=1/kBT (kB is Boltzmann’s constant). The deno-
minator ensures that the probability distribution is normalized
(∑σp(σ)=1).

There are three steps to performing the calculation in Eq. 1.
First, the free energies of bonds, ΔHstems and ΔSstems, are calculated
using the nearest-neighbor model. Second, the configurational
entropy of the structure,ΔSloops, is calculated. Finally, for structures
that include intermolecular base pairs, penalties ΔHduplex and
ΔSduplex are added. In other words, we assume that:

ΔH =ΔH stems þ ΔH duplex

ΔS =ΔSstems þ ΔS loops þ ΔSduplex
ð3Þ

In Table 2 we enumerate the input parameters that affect the
free energy calculation.

4.1 The Cost of

Intermolecular Pairing

The penalties ΔHduplex and ΔSduplex are the simplest to implement
in LandscapeFold. They are motivated physically by the enthalpic
and entropic costs of two molecules binding (e.g., ion effects, and
the translational and orientational entropies lost upon bimolecular
association). The effective entropy cost is higher for more dilute
solutions (i.e., larger volumes per particle). The free energy cost is
expected to scale logarithmically with the particle masses as well,
though experiments measuring or parameterizing this scaling are
lacking [53]. The dependence of ΔHduplex on the concentration of
sodium in solution has been measured, finding that for lower
sodium concentrations, electrostatic repulsion between the two
strands leads to a higher cost of duplex formation [54]; the effects
of other cations have been similarly studied [55]. The penalties also
have some sequence dependence and likely differ for DNA-DNA,
RNA-RNA, and DNA-RNA duplexes [54, 56–59]. While each of
these effects has been studied in isolation, a comprehensive formal-
ism combining all, or even most, of these effects remains lacking.

4.1.1 Origins of This

Penalty

4.1.2 Estimates for the

Penalty

The free energy cost of association has been estimated in the
literature for DNA-DNA interactions to be 1.90 kcal/mol
þkBT ln u0=uð Þ , where u0=1M is a reference concentration and
u is the actual concentration [60]. However, for some models (i.e.,
those that account for concentration elsewhere), including Land-
scapeFold, this penalty should be considered as independent of
concentration. For such models, a value of 4.09 kcal/mol is used
for the free energy cost of RNA-RNA association [61–63]; 1.96
for the free energy cost of DNA-DNA association [64]; and 3.1 for
the free energy cost of RNA-DNA association [56, 65]. Landscape-
Fold allows the penalties to be user-defined: the input
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Table 2
The main input parameters to the LandscapeFold algorithm affecting the free energy calculation.
*In the current version, only one value for vs can be inputted, even if one sequence is RNA and
the other DNA

Parameters Type Description Default

T float Temperature of the system (in Kelvin) 310.15

duplexPenalties list of two
floats

Enthalpy and entropy penalties to forming
at least one intermolecular base pair
(in units of kcal/mol and kcal/mol K,
respectively)

[3.61,
-0.0015]

concentrations list of two
floats

Concentrations of each strand (in units of
M)

[1,1]

includeTerminal
Mismatches

Boolean Whether to include terminal mismatches True

includeTerminal
AUATPenalties

Boolean Whether to include penalty for A-U, G-U,
or A-T base pair ending a stem

True

includeDanglingEnds Boolean Whether to include dangling ends True

includeFlush
CoaxialStacks

Boolean Whether to include flush coaxial stacks True

considerAllAs
TerminalMismatches

Boolean Whether to treat all nucleotide pairs
following a stem as a terminal mismatch

False

unmatchedBPPenalty Boolean Whether to substitute A for purine and C
for pyrimidine for unpaired
complementary bases

True

unboundButCould
BindPenalties

list of two
floats

Enthalpy and entropy penalties for
unpaired complementary bases

[0,0]

corruptFESeed float Set to zero to use tabulated nearest-
neighbor model parameters; non-zero to
randomly modify those parameters

0

b float The persistence length of single-stranded
RNA (or DNA) in units of nts

0.8/0.33

vs float⋆ Volume within which two nucleotides can
bind in units of nts3

0.02

duplexPenalties tells the algorithm what values to use, in units
of kcal/mol and kcal/mol K (respectively), for ΔHduplex and
ΔSduplex. The defaults correspond to RNA-RNA association penal-
ties [61]. These terms together define a free energy cost to bimo-
lecular association, given by ΔGduplex= ΔHduplex-TΔSduplex.

4.1.3 Details of

LandscapeFold

Implementation

Following Ref. [66], LandscapeFold implements a correction to the
user-input values by subtracting kBT log ðρH 2O=(1 mol/L))≈2.5
kcal/mol from ΔGduplex. This correction leads to ratios of free
energies being treated as ratios of mole fractions as opposed to
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molarities (see footnote 13 of Ref. [66]). The correction can be
ignored by setting the input variable includeRhoH2OCorrec-
tion to False. This correction affects the free energies of the
structures, but not the predicted equilibrium concentrations of
monomers and dimers, since this factor of ρH 2O exactly cancels out
with a similar factor included in the concentration calculation if
includeRhoH2OCorrection is True. See Subheading 5.2.4 for
further discussion.

Practically, these penalties are implemented by keeping track of
intermolecular stems in the list sol.linkedStems. sol.lin-
kedStems is a Boolean array of length Nstems which is True for
stems that define base pairs across strands, and False for the rest.
We also keep track of which structures include at least one stem
from this list in sol.linkedStructures, a similar Boolean array
of length Nstructures. (For simplicity, sol.linkedStructures is
an empty list if only one sequence is inputted, rather than an array
in which every element is False). A penalty of ΔGduplex is intro-
duced for those structures that have at least one intermolecular base
pair, and no penalty is introduced for structures that contain only
intramolecular base pairs.

4.1.4 Symmetry

Penalties

If the two sequences input are identical, then structures with a
2-fold symmetry have an extra free energy penalty of kBT ln 2
[66]. This penalty is effectively taken into account through our
complete enumeration approach: asymmetric structures will be
considered twice, while symmetric structures are considered only
once. Thus, no further penalty need to be applied at this stage.

To illustrate, consider two of the structures that the self-
complementary sequence “GCAGC” can form: one in which the
5′ end of the first strand is bound to the 5′ end of the second; the
other in which the 5′ end of the first strand is bound to the second’s
3′ end. The former structure is enumerated only once. The latter,
however, is enumerated twice: the same structure is considered
again as the structure where the 3′ end of the first strand is bound
to the 5′ end of the second. This differential in the structure
enumeration is a direct result of the symmetry of the former struc-
ture and the asymmetry of the latter, and effectively adds a kBT ln 2
penalty to the former structure compared to the latter.

4.2 The Stem Free

Energy Model

The nearest-neighbor free energy model has shown decades of
success in accurately estimating the free energies of both intra-
and intermolecular bonds of RNA and DNAmolecules. The details
of the model are best described elsewhere [63, 67]. Here we will
give only a brief overview of the model and a guide to how to
modify it within the LandscapeFold algorithm as desired.

4.2.1 The Basic Nearest-

Neighbor Free Energy

Model

The backbone of the nearest-neighbor model is that the
enthalpy and entropy of a stem can be well approximated by
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considering each neighboring base pair independently. For exam-
ple, consider the bottom stem in Fig. 1a:

5′ C U C C G G U 3′

3′ C A G G C C U 5′

where we have included the terminal mismatches as well. Ter-
minal mismatches are the two (unpaired) nucleotides following the
last base pair in the stem or preceding the first base pair. Within the
nearest-neighbor approximation, the enthalpy and entropy of this
stem can be calculated by summing up the enthalpies and entropies
of each of the following neighboring base pairs:

5′ C U 3′ 5′ UC 3′ 5′ CC 3′ 5′ CG 3′ 5′ GG 3′ 5′ G U 3′

3′ C A 5 3′ AG 5 3′ GG 5 3′ GC 5 3′ CC 5 3′ C U 5′

The enthalpies and entropies of every possible set of neighbor-
ing base pairs (including terminal mismatches) have been tabulated
for both RNA andDNA [63, 64]. In the LandscapeFold algorithm,
the tables for RNA/RNA, DNA/DNA, and RNA/DNA bonds are
given by bondFreeEnergies() based on data from Refs. [53, 56,
61, 63, 64, 67–74]. For RNA/DNA hybrids, however, parameters
for some terminal mismatches have not been tabulated. For these,
LandscapeFold assumes that their enthalpies and entropies are
given by the means of the RNA/RNA and DNA/DNA parameters.
Terminal mismatches can be ignored in the free energy calculation
by setting the input includeTerminalMismatches to False.

4.2.2 Terminal A-U, G-U,

and A-T Penalties

When a stem starts or ends with an A-U, G-U, or A-T base pair, an
enthalpy and entropy penalty are introduced by the nearest-
neighbor model. These penalties are given by the terminalAUAT-
Penalties() function in LandscapeFold. The parameters for the
A-T penalties are given in Ref. [64]; for A-U and G-U pairs (which
are treated equivalently), the penalties comes from Ref. [53]. For
RNA/DNA hybrids, A-T pairs are given the DNA penalties and
A-U pairs the RNA penalties. These penalties can be ignored in the
free energy calculation by setting includeTerminalAUATPe-
nalties to False.

The A-T penalties are: ΔHpenalty=2.2 kcal/mol;
ΔSpenalty=6.9×10-3 kcal/mol K. The A-U penalties are:
ΔHpenalty=3.72 kcal/mol; ΔSpenalty=1.05×10-2 kcal/mol K.

4.2.3 Dangling Ends LandscapeFold also accounts for dangling ends, base pairs adjacent
to a single nucleotide (for example, the rightmost stem in Fig. 1a).
These parameters are tabulated in the danglingEndMatrices()
function for RNA/RNA bonds [61] and for DNA/DNA bonds
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[75]. For RNA/DNA bonds, LandscapeFold uses the RNA/RNA
parameters if the dangling nucleotide belongs to an RNAmolecule,
and the DNA/DNA parameters if it belongs to a DNA molecule.
Dangling ends can be ignored in the free energy calculation by
setting the input includeDanglingEnds to False.

4.2.4 Flush Coaxial

Stacks

If two stems are separated by a bulge loop (i.e., two adjacent
nucleotides are bound to two non-adjacent nucleotides) we have
a “flush coaxial stack.” The nearest-neighbor model calculates the
free energy as if the bulge was not present and the two stems were
continuations of one another. LandscapeFold differs from the stan-
dard nearest-neighbor model [76] in that it considers flush coaxial
stacks for any bulge loop and not just those of length one, since
these stacks compensate for LandscapeFold’s higher configu-
rational entropy cost of forming bulge loops. LandscapeFold also
differs from the standard models in that in the presence of a three-
way junction where each stem is flush with the next, LandscapeFold
considers two flush coaxial stacks, while previous methodologies
argue for considering only the most energetically favorable stack,
and treating the other as a dangling end [63]. Flush coaxial stacks
can be ignored by setting the input includeFlushCoaxial-
Stacks to False.

The user can also use the considerAllAsTerminalMis-
matches input to ignore both dangling ends and flush coaxial
stacks. If this is set to True, all ends of stems are treated as terminal
mismatches (even if the next nucleotides over are both bound as
part of different stems).

4.2.5 Terminal

Mismatches Which Could

Bind

Another element of the nearest-neighbor model is a free energy
penalty for terminal mismatches which could have been paired in a
different structure. If two nucleotides are complementary but
unpaired in a given structure, the purine is replaced by an A and
the pyrimidine by a C for the purposes of the free energy calculation
[76]. This modification is made in LandscapeFold if the unmatch-
edBPPenalty input is set to True, keeping RNA nucleotides as
RNA and DNA as DNA.

Whether or not this modification is made, the user can choose
to introduce an alternative penalty with the unboundButCould-
BindPenalties input. This input is a list of two floats, where the
first gives an enthalpic cost to each set of complementary unpaired
nucleotides, and the second is an entropic cost.

Other minor differences between LandscapeFold’s implemen-
tation of the nearest-neighbor model and others’ are described in
Ref. [52].
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4.2.6 Modifying the

Nearest-Neighbor Model

Parameters

The nearest-neighbor model parameters are imperfect due to errors
in their measurement, approximations made by the model, and
different experimental conditions [18, 76, 77]. In order to deter-
mine if a prediction is stable to variations in the model parameters,
we introduce a function corruptBondFreeEnergies(). This
function returns parameters in the same form as the bondFreeE-
nergies() function, but modifies the parameters by multiplying
them by a random multivariate Gaussian to introduce errors of
6.5%, 7.3%, and 2.4% in ΔHstems, ΔSstems, and ΔGstems (at 37

∘C),
respectively [61]. These percentages can be changed by the user
and are given as inputs to the corruptBondFreeEnergies()
function. The error in ΔGstems is lower than the other two because
of extremely high correlations (�1) betweenmeasurement errors in
ΔHstems and ΔSstems [61]. These corrupted parameters are used in
place of those from the bondFreeEnergies() function if the
input corruptFESeed is set to a non-zero value. If it is, it serves
as the seed for the random number generator in order to ensure
reproducibility.

4.3 The

Configurational Loop

Entropy Model

The full derivation of the configurational loop entropy model can
be found in Ref. [52]. Here, we will provide a guide to implement-
ing the model. The process has seven steps:

1. Convert the RNA structure to a graph, where each node is the
base pair at the edge of a stem (each stem thus yields two
nodes). Nodes are connected by two types of edges, represent-
ing single- and double-stranded RNA.

2. Count the number of double-stranded edges present. This will
determine the number of factors of vs in the final equation. If
any intermolecular stems are present in the structure, subtract
one from that number.

3. Remove “bridges,” which are edges whose removal discon-
nects the graph.

4. Remove nodes disconnected from other nodes. Any nodes that
are connected only to two single-stranded edges can similarly
be removed, and the two edges concatenated.

5. For each resulting disconnected graph, convert the graph to an
integral. The positions of each node but one are integrated over
three-dimensional space, and the integrands are given by the
bonds: double-stranded bonds are converted to delta functions
(Eq. 4), while single-stranded bonds are converted to Gaus-
sians (Eq. 5).

6. Perform the integrals. These can either be done by hand or
numerically, as described in detail in Ref. [52]. All integrals that
involve up to two double-stranded edges can be performed by
hand, and the LandscapeFold algorithm has those results hard-
coded in.
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Fig. 2 Graph construction. The process of converting from a structure to a graph (steps 1–2). Graphs are
sequence independent (middle). Nodes correspond to base pairs at the ends of each stem. Blue edges
represent double-stranded RNA connecting the nodes; red edges represent single-stranded RNA. For clarity,
we added a node corresponding to the final RNA nucleotide, as LandscapeFold does. Such nodes can be
added or not; they are removed as part of the graph decomposition process (Fig. 3). For clarity we number the
nodes 0–8

7. Multiply the integrals by one another and by vs raised to the
appropriate power (determined by Step 2). Finally, take the
natural logarithm and multiply by Boltzmann’s constant kB to
get the configurational loop entropy of the structure.

4.3.1 Converting from a

Structure to a Graph

The process of converting a structure to a graph (steps 1–2) is
depicted in Fig. 2. The structure under consideration is shown on
the left. The graph is sequence independent (middle) and is con-
structed by placing nodes at the two edges of each stem. For clarity,
it is useful to make the first and last nucleotides into their own
nodes, though these will be removed as part of the graph decom-
position process.

Nodes constructed from the same stem are connected by one
type of edge corresponding to double-stranded RNA (blue).
Another type of edge represents single-stranded RNA connecting
the nodes (red).

Nodes that do not correspond to the first or last nucleotide of
an RNAmolecule are always connected to one double-stranded and
two single-stranded edges. A node connected to itself by a single-
stranded edge has no other single-stranded edge connections.

The graph construction process is implemented in Landscape-
Fold by the createGraphFromStructure() function.

4.3.2 Decomposing the

Graph into Minimal Graphs

The most time-consuming step of the LandscapeFold algorithm as
a whole is the graph decomposition process (steps 3–4). This
process is depicted in Fig. 3, and is implemented in LandscapeFold
by the graphDecomposition() function.

We start with the graph previously constructed. It now
becomes important to note that at the time of graph construction,
each edge is given a length associated with it. The length of double-
stranded edges li is one fewer than the number of base pairs in the
corresponding stem (e.g., in the figure, l1=3; l2= l3= l4=4). The
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Fig. 3 Graph decomposition. The graph decomposition process (steps 3–4) is depicted. We keep track of the
length of RNA corresponding to each edge (si and li in the figure). After being created (left) the graph is
decomposed into its minimal graphs, where each minimal graph cannot be disconnected by the removal of
any edge (middle). Nodes disconnected from any edge are then removed. Nodes connected only to two single-
stranded edges are removed one by one, and the two edges merged (right). For this structure, l1= 3;
l2= l3= l4= 4; s1= 11; s2= 8; s3= 8; s4= 2; s5= 5; s6= 3; s7= 5; s8= 5

length of single-stranded edges si is one more than the number of
nucleotides in between the stems (in the figure, s1=11; s2=8;
s3=8; s4=2; s5=5; s6=3; s7=5; s8=5).

The graph decomposition process consists of two steps. The
first is edge removal: if the removal of an edge (single- or double-
stranded) disconnects the graph, that edge is removed and the
graph is disconnected. This process is depicted by the middle
panel of Fig. 3.

The second step of graph decomposition is node removal:
disconnected nodes (e.g., nodes 0 and 1 in the figure) are removed.
Then, any node that is connected only to two single-stranded edges
can similarly be removed, and the two edges concatenated. Thus in
the figure, the cycle consisting of nodes 2, 3, 5, and 7 is substituted
for a single node connected to itself by a single-stranded edge of
length s4 + s5 + s6 + s7. Each of the minimal graphs resulting from the
graph decomposition process can now be treated independently.

LandscapeFold currently has hard-coded the entropies of all
structures whose minimal graphs consist of no more than two
stems.

4.3.3 Converting Each

Graph to an Integral

The graph represents the entropy of the RNA in integral form. The
conversion of each graph to the configurational entropy of the
RNA (steps 5–7) is implemented by the calculateEntropy-
FromGraph() function. In order to explain how LandscapeFold
calculates the entropy of an RNA structure from the graphs found
in the previous section, we show here how to perform the same
calculation by hand.

For each graph, the positions of each node but one are
integrated over three-dimensional space. These positions are
measured with respect to the fixed node. In other words, the
fixed node is placed at the origin. The integrands are determined
by the edges of the graph.
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Double-stranded edges correspond to rigid stems, and, there-
fore, to a delta function in the integrand keeping the distance
between the nodes fixed. For example, a double-stranded edge of
length l12 connecting nodes 1 and 2 corresponds to a term

δðj r→ 1 - r
→

2j- l12Þ
4πl212

in the integrand, where r
→

i is the position of node i in three-
dimensional space, and the absolute value signs represent the mag-
nitude of the vector r

→
1 - r

→
2. The delta function is defined such

that for any function f(r) (where r = j r→ j),Z
δðr - lÞf ðrÞdr = f ðlÞ ð4Þ

as long as l is within the limits of integration (the integral yields zero
otherwise).

Single-stranded edges correspond to flexible unpaired RNA.
The persistence length of single-stranded RNA is denoted b and is
approximately equal to 0.8 nm [78]. The persistence length of
single-stranded DNA is similar [79]. The persistence length in
units of nucleotides (nts, approximately 1/3 nm) can be input to
LandscapeFold through the input b. For concision, much of Land-
scapeFold is written using a parameter γ=3/2b instead of
b directly.

A single-stranded edge of length s12 connecting nodes 1 and
2 corresponds to a Gaussian term Ps12ð r→1 - r

→
2Þ in the integrand:

Ps12ð r→ 1 - r
→

2Þ = 3
2πs12b

� �3=2
exp -

3ð r→1 - r
→

2Þ2
2s12b

 

= γ
πs12

� �3=2
exp -

γð r→ 1 - r
→

2Þ2
s12

 ð5Þ

4.3.4 Graph

Decomposition Revisited

It is worth mentioning that the graph decomposition process is
merely a visual way of performing the simplest of these resulting
integrals. Edges that disconnect the graph can be removed because
the resulting disconnected graphs correspond to separable inte-
grals, and because

R
d r

→
Psð r→Þ= R

d r
→
δðj r→ j- lÞ=4πl2 =1. Simi-

larly, nodes connected only to two single-stranded edges can be
removed and the edges concatenated because

R
Pxðr1!ÞPyðr2!- r1

!Þ
dr1
!=Pxþyðr2!Þ.

4.3.5 Using the Integrals

to Calculate the

Configurational Entropy

After writing down the relevant integrals, we multiply together the
results for each minimal graph into which the structure was decom-
posed. Since we ultimately take the logarithm of these results to get



Nucleic Acid Structure Prediction Including Pseudoknots Through Direct. . . 67

Fig. 4 Entropy calculation. The minimal graphs (left) are directly converted to integral form (middle). For
non-pseudoknotted structures, each minimal graph corresponds to a factor of P sð 0

→ Þ (Eq. 5). The results from
each minimal graph are multiplied together and by four factors of vs from the four stems in the original graph
(Fig. 2)

the loop entropy, multiplication here is equivalent to summing the
entropies of each minimal graph to get the total entropy.

We also multiply by a factor vrs , where vs is the volume within
which two nucleotides can bind, and r is given by the number of
stems present in the original structure (e.g., four for the structure
in Fig. 2 whose minimal graphs are shown in Fig. 4). However, if
the structure under consideration includes any intermolecular
stems, r is subtracted by one, since the first intermolecular stem is
considered separately by the ΔSduplex term.

The user can specify a value for vs to use in LandscapeFold, in
units of nts3, using the vs input. Currently, only a single value of vs
can be specified, even if one sequence is RNA and the other is DNA.
We found previously that vs=0.020±0.004 nts3 for RNA by com-
paring Eq. 5 to previously determined entropy costs of forming
hairpins of different lengths (i.e., different values of s12, with

j r→ 1 - r
→

2j=0 ) [52]. A similar analysis on DNA using data on
hairpins of lengths 3–8 from Ref. [64] finds a significantly different
best-fit value of vs=0.38±0.06 nts3 for single-stranded DNA. Due
to lack of similar data for RNA-DNA bonds, it is unclear what an
appropriate value for vs for RNA-DNA bonds should be.

The result of these integrations, after multiplying by the appro-
priate factors of vs, is the exponential of the entropy, normalized by
Boltzmann’s constant: eΔS loops=kB . Thus, we take the natural loga-
rithm of the result (which is unitless) and multiply by kB to get the
configurational loop entropy of the structure.

4.3.6 The Entropy of

Non-pseudoknotted

Structures

In Fig. 4 we show the resulting (disconnected) minimal graphs
from Figs. 2 and 3. The graphs are all identical in form: each is a
node connected to itself by a single-stranded edge of a certain
length. As previously mentioned, in order to convert from a
graph to an integral we integrate over the positions of all nodes
but one; therefore, since only one node is present in each graph, we
do not need to compute any integrals. We instead multiply the
appropriate factors of Psð 0

→Þ by one another (one for each minimal
graph), and multiply the result by v4s . The result is shown in the
rightmost panel.
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In fact, any structure that contains no pseudoknots will ulti-
mately contain no integrals after the graph decomposition process,
and will only contain factors of Psð 0

→Þ . A non-pseudoknotted
structure will always be converted to a set of single nodes connected
to themselves by a single-stranded edge. These represent internal
loops, bulge loops, hairpin loops, or multiloops; all take the same
form for their configurational entropy within our polymer physics
model.

4.3.7 The Entropy of

Pseudoknotted Structures

In Figs. 5 and 6 we show two further examples of converting from a
structure to the integral representing its configurational entropy.

In Fig. 5 we consider a simple pseudoknot, termed the H-type
pseudoknot. We convert from the structure to its respective graph,
which contains two double-bonded edges and three single-bonded
edges. The resulting graph is not disconnected by the removal of
any edge and is, therefore, minimal. It corresponds to the integrals
shown in the rightmost panel of the figure. In that equation, the
positions of three of the four nodes are integrated over all of three-
dimensional space. Two delta functions (corresponding to the two
stems) and three Gaussians (corresponding to the three single-
stranded edges) are present in the integrand, as are the two factors
of vs. The result of this integration is not shown, but a step-by-step
demonstration of how to perform this and similar Gaussian inte-
grals with delta functions is given in Ref. [52].

Fig. 5 Intramolecular pseudoknot entropy example. A simple pseudoknot is converted to a graph, and from
there to integral form. The positions of all nodes but one are integrated over three-dimensional space. Each
double-stranded edge corresponds to a delta function in the integrand; each single-stranded edge corre-
sponds to a Gaussian Ps. Two factors of vs are included for the two stems. For this structure, l1= l2= 3;
s1= 7; s2= 6; s3= 3. Figure is adapted from Ref. [52]

Fig. 6 Intermolecular pseudoknot entropy example. A simple intermolecular pseudoknot is converted to a
graph, decomposed into its minimal graphs, and converted to integral form. Since there are intermolecular
stems, one fewer factor of vs is included than the number of total stems. For this structure, l1= l2= 3;
s1= s2= 5
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In Fig. 6 we consider a simple intermolecular pseudoknot. In
this example, once the structure is converted to a graph, the graph
can be decomposed further into a simple minimal graph. The
configurational entropy of the full structure can be found by con-
verting the graph to its integral form. There are two stems in the
original structure, which in a single-molecule structure would cor-
respond to two factors of vs in the final equation. However,
since the structure includes at least one intermolecular stem, we
have 2-1=1 factor of vs present in the equation for ΔSloops.

5 The Results of the LandscapeFold Calculation

5.1 Accessing the

Structures and Their

Free Energies

The results of the landscape calculation are stored in the Land-
scapeFold object (sol in the example from Subheading 2). For
example, sol.STableBPs and sol.STableStructure are the
two versions of the S-Table discussed in Subheading 3.1.2. Simi-
larly, sol.structures stores the list of stems present in each
structure, where each stem is refered to by its index in the S-Table.

The ordering of sol.structures is determined by the enu-
meration procedure. However, sol.indexSort is an array that
provides a more practical ordering for the structures: its first ele-
ment is the index of the minimum free energy (MFE) structure, its
second element is the index of the second-lowest free energy struc-
ture, etc. In order to examine the specific base pairs comprising low
free energy structures, the function sol.MFEStructures(n)
returns a list of the n lowest free energy structures where here the
base pairs making up each structure are given.

Similarly, sol.sortedFEs and sol.sortedProbs are sorted
arrays providing, respectively, the free energies and equilibrium
probabilities (Eq. 2) of each structure. To examine each component
of the free energy in more detail, the arrays sol.allBondEner-
gies, sol.allBondEntropies, sol.allLoopEntropies, and
sol.allDuplexEntropies yield ΔHstems, ΔSstems, ΔSloops, and
ΔSduplex, respectively, in the same ordering as the sol.
structures list.

5.2 Multiple

Sequences

If two sequences are inputted, LandscapeFold will return all possi-
ble structure pairs into which they can fold, some of which include
only intramolecular base pairs, and some of which include inter-
molecular base pairs. For example, consider two sequences s1
and s2. Sequence s1 can fold into structures s11,s

2
1,s

3
1, and sequence

s2 can fold into structures s12 and s22 . They can also bind to
one another to form a structure s112 . In this case, the elements
of sol.structures will be the elements of the set:

fðs11,s12Þ,ðs11,s22Þ,ðs21,s12Þ,ðs21,s22Þ,ðs31,s12Þ,ðs31,s22Þ,s112g , and the elements
of, e.g., sol.sortedFEs will be the (sorted) total free energies of

5.2.1 Implementation of

Multiple Sequences in

LandscapeFold
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each structure pair. Each of these structure pairs is thus treated the
same way an individual structure is treated for a unimolecular input.

Bimolecular structure landscapes are considered by concatenat-
ing the two sequences and separating them by a linker of “O”s
which is disregarded in free energy calculations [29]. We use a
linker of 6 nucleotides (or more precisely, twice the user-specified
minimum number of nucleotides in a hairpin). The indices of
nucleotides corresponding to the linker are stored in the sol.
linkerPos array.

When using inputs such as frozenBPs on a bimolecular land-
scape, the nucleotides are numbered assuming that the linker is
present. For example, in order to specify that G must bind to C for
the sequences pair [GUU, AAC], the user should input fro-
zenBPs=[[0, 11]].

5.2.2 Potential Speed-

ups for Multiple Sequences

In practice, treating multiple sequences by concatenation can also
lead to wasted computation time (e.g., by recalculating the free
energy of structure s11 multiple times, for each structure s i2 with
which it is paired). The function sol.twoStrandLandscape-
Calculation() cuts down on that wasted computation time by
first treating each sequence separately, and next considering only
those structures that include intermolecular base pairs, thus enu-
merating each structure only once. LandscapeFold does not cur-
rently consider homo-dimers in this calculation.

5.2.3 Prediction of

Monomer and Dimer

Concentrations: User Inputs

and Outputs

If multiple sequences are input, LandscapeFold also calculates the
equilibrium concentrations of the monomer and dimer species. The
total concentration of each strand (in units of M) is input using the
concentrations variable. LandscapeFold stores the predicted
equilibrium concentrations of monomers and dimers in the variable
sol.equilibriumConcentrations. It is generally a list of three
values: the concentration of the first monomer, of the second
monomer, and of the dimer.

In the case where the two sequences are identical, only the first
element of the concentrations input is used. In this case, sol.
equilibriumConcentrations is a list of only two values: the
concentration of the monomers, and of the dimers.

5.2.4 Prediction of

Monomer and Dimer

Concentrations: Details of

LandscapeFold’s Process

Equilibrium concentrations are calculated by finding a simulta-
neous solution to a set of equations. Letting the total concentration
of the first strand be c1 and of the second strand be c2
(as determined by the concentrations input), the equilibrium
monomer concentration of the two strands be cm1

and cm2
, respec-

tively, and the equilibrium dimer concentration be cd, there are two
conservation laws given by



Þ
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cm1
þ cd = c1

cm2
þ cd = c2

ð6Þ

If the two sequences are identical, there is only one conservation
law (cm1

þ 2cd = c1).
The relative ratios of the monomer and dimer concentrations

are determined by the ratio of Boltzmann factors. We let Zm1
be

defined as Zm1
=
P

σ1
exp - βGσ1ð Þ , where the sum is over all

monomeric structures of the first strand σ1 each of which has free
energy Gσ1 , and we let Zm2

be similarly defined. Letting Z 2
m be

equal to the product Zm1
Zm2

, it can be seen that Z 2
m is defined as a

similar sum over all monomeric structure pairs. Finally, Zd is defined
as a similar sum over all dimeric structures: Zd =

P
σd
exp - βGσdð .

With these definitions in hand, we can write the final equation
constraining our system [66]

cd ρH 2O

cm1
cm2

=
Zd

Z 2
m

ð7Þ

where the factor of ρH 2O ≈55 M exactly cancels out with the
correction factor introduced in Subheading 4.1.3. The factor of
ρH 2O is omitted from this formula if includeRhoH2OCorrection

is set to False.
LandscapeFold automatically solves this simultaneous set of

equations to find the equilibrium monomer and dimer concentra-
tions. If the two sequences are identical, the product cm1

cm2
is

replaced by c2m in Eq. 7.

5.3 Re-running the

Code with Different

Parameters

LandscapeFold stores results in a way that makes it easy to examine
how changes to the nearest-neighbor parameters or the entropy
model parameters affect the landscape. In essence, LandscapeFold
stores for each secondary structure how each parameter will affect
the free energy of that structure. Then, by running the function
sol.postCalculationFxn(), LandscapeFold can quickly recal-
culate the free energy of each structure with given modified para-
meters. As a general estimate, sol.postCalculationFxn()
takes about 10% of the total calculation time. In this section, we
describe how it is implemented.

The property sol.allComponentGraphs is a list of length
Nstructures. For each structure, it keeps track of how many instances
of each type of minimal graph are present in that structure, and the
lengths of each edge in those graphs. In addition, sol.allNumVs
is an array keeping track of how many factors of vs are included in
each structure integral. With these arrays, if the parameters b or vs
are modified, the configurational loop entropy of each structure can
be quickly recalculated without needing to again convert each
structure to a graph and perform graph decomposition.

The property sol.bondFECounts is also a list of length
Nstructures. It holds for each structure a set of sparse arrays
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describing how many instances of each set of possible neighboring
base pairs are present in that structure. For example, for each
structure, it holds a sparse array with 4× 4×4=64 elements yield-
ing the number of instances of each of the 64 possible neighboring
DNA/DNA base pairs present in that structure. That array can
then be multiplied by arrays storing the energies and entropies of
each of these neighboring pairs (according to the nearest-neighbor
model) to yield the DNA/DNA contributions to ΔHstems and
ΔSstems. sol.bondFECounts also stores similar lists of sparse
arrays for RNA/RNA and RNA/DNA nearest neighbors, as well
as for the number of terminal A-U, G-U, and A-T base pairs present
in each structure (Subheading 4.2.2).

The matrices sol.dangling5Count and sol.dangling3-
Count store similar lists of sparse matrices giving for each structure
how many of each possible 3′ and 5′ dangling ends are present in
that structure (Subheading 4.2.3). sol.unboundButCould-
BindCounts stores how many complementary terminal mis-
matches are present in each structure (Subheading 4.2.5)
allowing the user to easily and quickly examine how changing the
penalty for these affects the overall structure landscape.

Thus, only a few simple matrix multiplications need to be
performed in order to examine how modifications to the nearest-
neighbor parameters affect the complete free energy landscape of a
set of sequences.

5.4 Returning Graph

Topologies

Considering the graph associated with each structure (Subheading
4.3.1) is a useful way to coarse-grain over similar structures by their
topologies. In order to instruct the algorithm to store information
regarding graphs, the user can set the input storeGraphs to
True. In that case, the unique list of graphs corresponding to
structures enumerated by the algorithm is given by sol.struc-
tureGraphList (a list of lengthNgraphs≤Nstructures). The index of
that list to which each structure corresponds is given by the length-
Nstructures array sol.allWhichStructureGraph.

By summing over the equilibrium probabilities of each struc-
ture corresponding to a given graph, we can get the equilibrium
probability of that topology forming. That information is stored in
the sorted array sol.sortedGraphProbs, while the array sol.
indexSortedGraphProbs provides the mapping between the
sorted and unsorted graph orderings.

5.5 Visualizing

Results

If the user sets the input makeFigures to True, LandscapeFold
will automatically make three plots at the end of the calculation.
The first two visualize the minimum free energy structure found
in planar graph and circle diagram formats. These are
implemented using the drawRNAStructure() and drawRNAS-
tructureSeqCircle() functions, respectively, which take as
inputs a structure to visualize and its corresponding sequence.
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Fig. 7 Histogram of structure free energies. A histogram of the free energies of
all structures with a minimum stem length of 4 nts into which the sequence
shown in Fig. 1a can fold

The third plot made is a histogram of the free energies of all
structures returned by the algorithm (Fig. 7) implemented with
the sol.histFEs() function.
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Chapter 5

Metrics for RNA Secondary Structure Comparison

Feiqi Wang, Tatsuya Akutsu, and Tomoya Mori

Abstract

RNA secondary structure comparison is one of the important analyses for elucidating individual functions
of RNAs since it is widely accepted that their functions and structures are strongly correlated. However,
although the RNA secondary structures with pseudoknot play important roles in vivo, it is difficult to deal
with such structures in silico due to their structural complexity, which is a major obstacle to the analysis of
RNA functions.

Here, we introduce an algorithm and a metric for comparing pseudoknotted RNA secondary structures
based on topological centroid identification and tree edit distance and describe the usage protocol of a
software enabling us to run the comparison. This software is publicly available and works on bothMicrosoft
Windows and Apple macOS.

Key words RNA secondary structure, Pseudoknot, Topological centroid, Tree edit distance

1 Introduction

RNAs are essential biomolecules that transmit genetic information
fromDNAs to proteins. It is well known that some transcripts, such
as ribosomal RNAs and transfer RNAs, work without being trans-
lated into proteins, but in recent years it has been revealed that
there are many functional noncoding RNAs that play important
roles represented by regulation of gene expression, and many stud-
ies have been conducted to clarify their functions. Among them, in
the field of bioinformatics, the approaches of predicting the func-
tions by comparing RNA structures have been widely adopted
based on an observation that there is a strong correlation between
their structures and functions, i.e., the functions are similar if their
structures are similar. However, it is already known that analysis of
RNA three-dimensional structures is a very difficult problem in
terms of both biological experiments and computational experi-
ments. Therefore, RNA secondary structure is widely used as a
mathematical representation that is suitable for computational pro-
cessing and structural analysis. For example, Vienna RNA is one of
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the most widely used packages for RNA secondary structure pre-
diction and comparison [1].

However, most of the existing methods for RNA secondary
structure analysis do not support RNAs having pseudoknot struc-
tures, which is a specific folding motif in RNA secondary structure.
It has been suggested that the pseudoknotted RNAs play important
roles in the living body, but unlike the usual base pairing pattern,
pseudoknots are not nested, which makes it extremely difficult to
handle the pseudoknotted RNAs in silico. In fact, it has already
been shown that both prediction and alignment of pseudoknotted
RNA secondary structures are nondeterministic polynomial-time
hard (NP-hard) problems [2–4]. Therefore, the pseudoknot struc-
tures have often been ignored or converted to pseudoknot-free
structures for efficient computation [5–7]. On the other hand,
algorithms for predicting pseudoknotted RNA secondary struc-
tures based on integer linear programming have also been pro-
posed, and it is reported that the algorithm works in a practical
amount of time [8, 9].

Similarly, it is also difficult to deal with pseudoknotted RNAs
even in secondary structure comparison. This is because a general
approach is to transform them into tree structures when compar-
ing, but the structural complexity of pseudoknot makes it hard.
Actually, many RNA comparison algorithms are limited to struc-
tures without pseudoknots [10, 11] and there are few methods that
can handle secondary structures with arbitrary pseudoknot struc-
tures [12]. In contrast, Möhl et al. developed a fixed parameter
tractable algorithm using a general edit distance of arbitrary pseu-
doknotted RNA structures for reasonable scoring schemes, but its
time complexity of the worst case is exponential [13]. PSMAlign
was also developed for comparing pseudoknotted structures
[12]. The algorithm was based on a local alignment approach and
achieved efficient alignment of pseudoknotted structures by iden-
tifying similar stem structures, but its worst-case time complexity is
also exponential. Thus, the structural complexity of pseudoknots
has been a major obstacle to RNA secondary structure research.

In this article, we describe a newly developed practical algo-
rithm for comparing RNA secondary structures with pseudoknots.
The algorithm is based on topological centroid identification of
input plane graphs representing RNA secondary structures by
PEELING algorithm [14] and tree edit distance, where the latter
is one of the most widely used metrics for comparing tree-
structured data [15]. Since the details of the algorithm have already
been published in [16], the explanation of the algorithm will be
limited to the outline in this article, but instead here we describe a
small extension of the proposed method and the usage of the tool
implementing our algorithm published in GitHub (https://github.
com/feiqiwang/planeGraph2tree).

https://github.com/feiqiwang/planeGraph2tree
https://github.com/feiqiwang/planeGraph2tree
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2 Materials

We provide a tool named planeGraph2tree, which transforms an
input plane graph into a topological centroid tree and compares
them based on the tree edit distance. The tool can be downloaded
from GitHub (https://github.com/feiqiwang/planeGraph2tree).
The project files which are executable in Visual Studio (https://
visualstudio.microsoft.com) and Apple Xcode (https://apps.apple.
com/us/app/xcode/id497799835?mt¼12) are contained in the
repository, so it is necessary to download and install Microsoft
Visual Studio or Xcode beforehand which are suitable for user’s
computing environment (see Notes 1 and 2).

In planeGraph2tree, an input RNA is transformed to multiple
rooted ordered labeled trees formatted as the bracket notation, and
they are saved as text files. The tree edit distance between the
resulting trees is computed by RTED, which is a publicly available
practical software for computing the ordered tree edit distance
(http://tree-edit-distance.dbresearch.uni-salzburg.at)
[17]. Although RTED is automatically downloaded from its official
web page by a UNIX/Linux command wget (http://www.gnu.
org/software/wget/manual/wget.html) in a script of plane-
Graph2tree, Java SE Development Kit (https://www.oracle.com/
technetwork/java/javase/overview/index.html) is also required to
run RTED.

When the tree edit distances between all input RNAs are
obtained, a distance matrix is generated from it, and then hierarchi-
cal clustering of the RNAs is performed, where the hierarchical
clustering requires installation of R (https://www.r-project.org).
If users want to run this clustering in Windows OS, Git bush
(https://www.git-scm.com/download/win) should be down-
loaded and installed for enabling users to enter the execution
commands via character user interface (CUI).

Finally, in this article, we use pseudoknotted RNAs down-
loaded from PseudoBase++ (http://pseudobaseplusplus.utep.
edu/home) [18] as BPSEQ formatted input data. The BPSEQ
format is a simple format for representing structural information
in three columns: (1) the index ordered from 50 to 30 for an RNA;
(2) the label as one-letter notation, which is either A, U, C, G, X,
or Y, where X and Y denote the nucleotide would by any base and C
or U, respectively; and (3) the index of pairing partner for the
nucleotide, where it is set 0 if the nucleotide is unpaired (Fig. 1).

https://github.com/feiqiwang/planeGraph2tree
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://apps.apple.com/us/app/xcode/id497799835?mt=12
https://apps.apple.com/us/app/xcode/id497799835?mt=12
https://apps.apple.com/us/app/xcode/id497799835?mt=12
http://tree-edit-distance.dbresearch.uni-salzburg.at/
http://www.gnu.org/software/wget/manual/wget.html
http://www.gnu.org/software/wget/manual/wget.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.r-project.org/
https://www.git-scm.com/download/win
http://pseudobaseplusplus.utep.edu/home
http://pseudobaseplusplus.utep.edu/home
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Fig. 1 Example of RNA secondary structure and its BPSEQ format (PKB90).
The numbers of the endpoints of sequences indicates the positions of both ends
of the bases. The BPSEQ format is a simple format for representing structure
information described by the following three columns: the index ordered from 50

to 30 for an RNA sequence, the label with acronym of nucleotide, and the index of
paired partner for each nucleotide

3 Methods

3.1 Topological

Centroid Identification

of Plane Graph

An RNA secondary structure can be mostly represented by a plane
graph even when it has pseudoknot structure. As mentioned above,
planeGraph2tree first identifies the topological centroid of an input
plane graph and transforms it into a tree by PEELING
algorithm [14].

The PEELING algorithm repeats the operations of searching
for and deleting certain groups of edges, faces, and subgraphs called
singly exposed edges, singly exposed faces, and adjunct subgraphs that
have special properties explained later. Here, when planar embed-
ding (i.e., edges do not have any common points other than the
endpoints) is given for an undirected graph G(V,E), where V is a
finite set of vertices and E is a finite set of edges, G is called a plane
graph. The regions inside and outside ofG are called the inner faces
and outer faces, respectively. Let C be the directed cycle composed
of the edges of the outer face, where the edges are visited in
clockwise order. If an edge is not belonging to an inner face and
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PEELING

topological centroid

pseudo vertex

topological centroid tree

singly exposed edge
adjunct subgraph

singly exposed face

Fig. 2 Illustration of PEELING process. First, the PEELING algorithm identifies singly exposed edges and
singly exposed faces of an input plane graph and then deletes outer edges and adjunct subgraphs in these
exposed edges and faces. After repeating these processes, the PEELING algorithm finds the topological
centroid of the input plane graph, and then a topological centroid tree is generated, where a pseudo vertex is
added if the topological centroid is either an edge or a face

the outdegree of either endpoint is 1, the edge is called singly
exposed. Similarly, an inner face of G is called singly exposed when
its outer edges in C are connected ignoring direction of edges.
Furthermore, each maximally connected subgraph that shares
only one outer vertex and is surrounded by a singly exposed face
is called an adjunct subgraph.

In order to identify the topological centroid, PEELING
repeats the following procedures: (1) finds all singly exposed
edges and singly exposed faces and then (2) deletes the outer
edges and adjunct subgraphs in these edges and faces until singly
exposed edges and singly exposed faces no longer exist. As a result,
the topological centroid is either a vertex, an edge, or a face. After
identifying the topological centroid, a tree is constructed by adding
the deleted edges, faces, and adjunct subgraphs with decomposing
cycles [14]. Hereafter, the tree containing the topological centroid
obtained by PEELING is called a topological centroid tree
(Fig. 2).

3.2 Comparison of

Topological Centroid

Trees by Tree Edit

Distance

The topological centroid trees transformed from RNA secondary
structures are compared by tree edit distance, which is one of the
most widely used metrics for comparing tree-structured data
[15]. The tree edit distance is defined by the cost of the minimum
cost sequence of edit operations for transforming a tree into
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Fig. 3 Computation of topological centroid tree edit distance. When computing the topological centroid
tree edit distance, first input RNA secondary structures are converted to rooted topological centroid trees by
specifying one of the nodes of their topological centroid trees as the roots for each node. After that, compute
the tree edit distance between all pairs of the rooted topological centroid trees. Finally, the minimum value of
the tree edit distances among the all pairs is output as the topological centroid tree edit distance between the
two input trees

another tree, where an edit operation is either a deletion of a non-
root node, an insertion of nonroot node, and a substitution of the
label of a node. The cost of each edit operation is 1 under the unit
cost model. Here, the root is not specified in a topological centroid
tree obtained by PEELING. Therefore, we calculate the tree edit
distance for all cases when each node of the input trees is designated
as the root and newly define the minimum distance of the tree edit
distances as the topological centroid tree edit distance (Fig. 3).

3.3 Protocol: Run

Topological Centroid

Identification and

Topological Centroid

Tree Generation

The planeGraph2tree can be freely downloaded from the webpage
at GitHub (https://github.com/feiqiwang/planeGraph2tree) b
clicking the download button “Code” or cloning the repository.
The software can work on both Microsoft Windows and Apple
macOS (see Note 3). For Windows users, first open a solution file
CanonicalFormComputing/CanonicalFormComputing.sln on

https://github.com/feiqiwang/planeGraph2tree
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Microsoft Visual Studio and set an input file name to the variable
“fileName” in the main file CanonicalFormComputing.cpp (i.e.,
string fileName ¼ “example”). If multiple RNA secondary struc-
tures need to be transformed to trees, it is necessary to change the
file name and execute this program one by one. In order to run the
program, select “Build Solution” from “Build Solution” tab, and
then click “Start Without Debugging” in “Debug” tab. After
finishing the computation, the input BPSEQ formatted data is
transformed to doubly connected edge list (DCEL) formatted
data and output to DCEL directory as intermediate files, where
the DCEL format is an edge-based data structure for easily manip-
ulating and traversing a plane graph [14]. Finally, three output
directories containing topological centroid trees are generated:
tree_result_inPsudoVer, tree_result_MultiRoot, and tree_result_all-
VerAsRoot. The first two directories contain previous versions of
rooted topological centroid trees described in [16], i.e., only topo-
logical centroid is set as the root or the nodes connected to the
topological centroid are set as the root, respectively. Thus, the main
output is rooted topological centroid trees saved in the directory
tree_result_allVerAsRoot. In planeGraph2tree, only so-called
bracket notation is supported as the representation of trees.

3.4 Protocol: Run

Topological Centroid

Tree Comparison

The planeGraph2tree provides an R script clusteringComputation.r
and a shell script comparisonProgram.sh to compare topological
centroid trees. For Windows users, downloading and installing
Git bash are needed to run the program via CUI. First, copy the
output directory tree_result_allVerAsRoot to the directoryCompar-
isonProgram, and then open comparisonProgram.sh and specify
tree_result_allVerAsRoot as an input directory by modifying a file
path and the parameters such as the cost of each edit operation
(each cost is set to 1 by default) in the script. Then, change the
access permission of comparisonProgram.sh by the command
“chmod 755 comparisonProgram.sh,” and finally run the script
by entering “./comparisonProgram.sh” via CUI (see Notes 4 and
5).

3.5 Application

Example

Here, we apply planeGraph2tree to real pseudoknotted RNA sec-
ondary structures downloaded from PseudoBase++. The BPSEQ
format for each RNA secondary structures can be obtained by
entering PKB number (e.g., PKB100) in the “Quick Search” field
of the top page, checking “Download” box the next to the objec-
tive PKB number, and clicking “Generate output files” at the
bottom of the search results screen to display the page containing
the BPSEQ formatted data download link. As an example, we
obtained ten pseudoknotted RNA secondary structures – PKB6,
PKB7, PKB8, PKB10, PKB11, PKB22, PKB24, PKB90, PKB91,
and PKB100 – and compared them by planeGraph2tree. The result
of the comparison is shown in Fig. 4, where the topological cen-
troid tree edit distance was computed under the unit cost model.
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Fig. 4 Hierarchical clustering results of ten pseudoknotted RNA secondary structures based on the
topological centroid tree edit distance. The pseudoknotted structures PKB22, PKB24, PKB90, PKB91, and
PKB100 are related to regulation of viral transcription (GO:0046782), whereas PKB6, PKB7, PKB8, PKB10, and
PKB11 are related to regulation of translation (GO:0006417). As shown in the result, the RNAs were classified
well according to their related functions

The hierarchical clustering result was generated by hclust function
with ward’smethod on R. According to the cross-references among
PseudoBase++, European Nucleotide Archive (ENA) (https://
www.ebi.ac.uk/ena), Rfam (https://rfam.xfam.org) [19], and
Gene Ontology (GO) (http://geneontology.org) [20, 21],
PKB22, PKB24, PKB90, PKB91, and PKB100 are related to regu-
lation of viral transcription (GO:0046782), whereas PKB6, PKB7,
PKB8, PKB10, and PKB11 are related to regulation of translation
(GO:0006417). As shown in the clustering result, the RNAs were
classified well according to their related functions.

Although it has already been described in [16] that plane-
Graph2tree shows a better clustering result than the simple com-
parison of their sequences based on the string edit distance, it is
recommended to use it after fully understanding the following
points. First, a complete comparison between pseudoknotted
RNA secondary structures is not achieved by the method since
the secondary structural information is degenerated when trans-
forming a plane graph to a tree. For example, when focusing on a
certain branch of a topological centroid tree generated by PEEL-
ING, it cannot be determined whether it was originally a singly
exposed edge or an edge generated by PEELING from the original

https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
https://rfam.xfam.org/
http://geneontology.org/
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singly exposed face. Furthermore, when there are singly exposed
edges and singly exposed faces with the same label sequence, it is
difficult to distinguish between them since they become identical
after PEELING in some cases. Second, when computing the topo-
logical centroid tree edit distance, the trees are considered as
ordered trees. Indeed, the RNA secondary structures often trans-
formed as ordered trees, but it is more appropriate to consider the
topological centroid trees as unordered trees since there is no order
relationship between vertices and branches disconnected by PEEL-
ING. However, the tree edit distance problem between unordered
trees is NP-hard [22], that is, there is no effective algorithm which
can compute it in polynomial time (unless P ¼ NP). Therefore,
planeGraph2tree treats the input trees as ordered trees to compute
the topological centroid tree edit distance efficiently sacrificing
some accuracy.

4 Notes

1. If a compiler of C++ has not been installed, it is necessary to
download and install it from the GNU Compiler Collection
(https://gcc.gnu.org). As for Mac users, a C++ compiler can be
used after installing Xcode and Command Line Tools for
Xcode from App Store application preinstalled to Mac
machines. Alternatively, it can be installed via Homebrew
(https://brew.sh/index).

2. If users have an older version of macOS, Xcode may not be able
to download and install from App Store. In such a case,
upgrade the macOS or download and install suitable versions
of Xcode for users’ environments directory from Apple Devel-
oper site (https://developer.apple.com/develop/).

3. As for Mac users, most of the procedures are the same as
Windows users’ procedures. First open the project file Cano-
nicalFormComputing_mac.xcodeproj in CanocalFormComput-
ing directory on Xcode instead of the solution file. Then,
choose “Edit scheme” from the “Product” menu and select
“CanonicalFormComputing_mac/ CanonicalFormCompu-
ting_mac” as the user’s working directory. After that, run the
program according to the user’s Xcode environment (often by
clicking the triangle icon in the top of the window).

4. To run comparisonProgram.sh, wget command, JDK, and
Rscript should be installed and their PATHs (i.e., environmen-
tal variables) should be added to the user’s system. For Win-
dows users, PATH can be added from “System” in “Control
Panel,” whereas Mac users do not have to do anything for
PATH setting in general, but if it does not work properly, set
PATH by editing .bash_profile file at HOME directory.

https://gcc.gnu.org/
https://brew.sh/index
https://developer.apple.com/develop/
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5. Input BPSEQ files may not be recognized depending on the
user’s computer environment. In that case, make sure that the
BPSEQ format is written correctly, and then check the newline
character is compatible with user’s system environment.
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Chapter 6

RNA Secondary Structure Prediction Based on Energy
Models

Manato Akiyama and Kengo Sato

Abstract

This chapter introduces the RNA secondary structure prediction based on the nearest neighbor energy
model, which is one of the most popular architectures of modeling RNA secondary structure without
pseudoknots. We discuss the parameterization and the parameter determination by experimental and
machine learning-based approaches as well as an integrated approach that compensates each other’s short-
comings. Then, folding algorithms for the minimum free energy and the maximum expected accuracy using
the dynamic programming technique are introduced. Finally, we compare the prediction accuracy of the
method described so far with benchmark datasets.

Key words RNA secondary structure prediction, Nearest neighbor model, Thermodynamic para-
meters, Machine learning, Minimum free energy, Maximum expected accuracy

1 Introduction

RNA secondary structure prediction based on thermodynamics has
been studied since the 1980s and is still the most popular approach
because it is the most natural way for RNA molecules to form a
thermodynamically stable structure from the viewpoint of biophys-
ics. For example, the free energy minimization-based algorithms
are widely utilized such as Mfold/UNAfold [1, 2], Vienna RNA
package [3, 4], and RNAstructure [5, 6]. Furthermore, since the
conformation of RNA secondary structures follows the Boltzmann
distribution, the maximum expected accuracy-based algorithms
that consider all possible secondary structures have been proposed
and implemented in Vienna RNA package [3, 4], CentroidFold
[7, 8] and RNAstructure [5, 6].

However, RNA secondary structure prediction based on ther-
modynamics has several limitations, and thus the accuracy of the
prediction is still not sufficient. RNA secondary structure predic-
tion based on thermodynamics utilizes thermodynamic parameters
that should be experimentally determined in advance. However,
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due to technical difficulties in the experiments, the thermodynamic
parameters determined by the experiments are not sufficiently
accurate. To achieve more accurate RNA secondary structure pre-
diction, we need more fine-grained parameterization that requires
more complicated and labor-intensive experiments.

Therefore, instead of such experiments, machine learning-
based approaches have recently been studied, determining weight
parameters from training datasets including RNA sequences and
their known secondary structures. For example, CONTRAfold
[9, 10] and ContextFold [11] trained weight parameters, instead
of the thermodynamic parameters, based on the architecture of
RNA secondary structures similar to that in the thermodynamic
models. In particular, ContextFold employed a much richer param-
eter set that cannot be measured by experimental methods and
achieved state-of-the-art accuracy compared with existing RNA
structure prediction methods. However, a rich parameterization
could easily cause overfitting to the training data, resulting in
disabling robust prediction for a wide range of RNA sequences.
Indeed, Rivas [12] has pointed out that ContextFold failed to
predict secondary structures for several RNA families not included
in training data due to overfitting the training data.

Hybrid methods that combine the thermodynamic and
machine learning-based approaches to compensate for each other’s
shortcomings have been developed. SimFold [13, 14] estimated
more accurate thermodynamic parameters from training data
including RNA sequences and their known secondary structures
as well as their free energy of known secondary structures. MXfold
[15] combined the thermodynamic energy parameters and rich-
parameterized weight parameters. It learns more precise parameters
for substructures observed in training data and avoids overfitting
the rich-parameterized weight parameters to the training data by
falling back to the thermodynamic parameters for unobserved
substructures.

2 Nearest Neighbor Model

This section describes the nearest neighbor model [16–19] that has
been widely employed for modeling RNA secondary structures by a
number of algorithms for predicting RNA secondary structures
without pseudoknots based on energy models. The nearest neigh-
bor model decomposes a secondary structure into loop substruc-
tures enclosed by the nearest neighboring base pairs. The
decomposed loops can be classified according to the number of
enclosing base pairs (Fig. 1). A loop with a single base pair is a
hairpin loop. A loop with two base pairs is a stacking, a bulge loop,
or an internal loop. A loop with three or more base pairs is called a
multibranch loop. A single strand region that is enclosed by no base
pair is an external loop.
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Fig. 1 Loop substructures defined in the nearest neighbor model

The nearest neighbor model is based on two assumptions. The
first is that each loop’s energy depends only on bases and base pairs
that are part of the loop, meaning that the outside of the loop does
not affect the loop energy. The second assumption is that the
energy of the entire secondary structure is the sum of the energies
of its decomposed loops. We will describe several approaches for
calculating the energies of the loops in Subheading 3. These
assumptions enable us to efficiently calculate the thermodynami-
cally most stable secondary structure from an RNA sequence as
described in Subheading 4.

3 Parameterization

As introduced in the previous section, the energy-based RNA
secondary structure prediction calculates the energy of RNA sec-
ondary structures by summing over the energies of every loop into
which the secondary structure is decomposed according to the
nearest neighbor model. This section describes three approaches
for determining the energies of the individual loops: the thermody-
namic approach, the machine learning-based approach, and the
integrated approach.

3.1 Thermodynamic

Approach

The thermodynamic approach is the most popular approach to find
the thermodynamically most stable secondary structure with the
minimum free energy (MFE) such as Mfold/UNAfold [1, 2],
Vienna RNA package [3, 4], and RNAstructure [5, 6]. The ther-
modynamic approach first adopted the nearest neighbor model. In
the thermodynamic approach, the nearest neighbor loops are para-
meterized by several types of characteristic components, and then
each component is assigned an energy parameter determined by
experimental methods such as the optical melting experiment.
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Fig. 2 Free energy change of three base pair stackings (GC–GC, GC–UA, and
UA–GC), a terminal mismatch (GC–GA), and a hairpin loop (4 nt). Nearest
neighbor parameters are taken from NNDB [18]

The most conventional parameterization of the nearest neigh-
bor model is the Turner free energy parameter set [18, 20, 21],
which introduces the following types of characteristic components:
Watson-Crick helices, GU pairs, dangling ends, terminal mis-
matches, hairpin loops, bulge loops, internal loops, coaxial stack-
ing, multibranch loops, and external loops.

Thermodynamic energy change of folding RNA oligomers can
be measured by analyzing optical melting curves. Since these data
assume that the oligomer strand can only exist in two structures, an
unfolding structure and an MFE structure, this model is called the
two-state model [22]. We assume that the energy change of the
folding RNA oligomer is the sum of the free energy changes of
RNA components that parameterize the decomposed loops of the
nearest neighbor model. Then the free energy change of each
component is derived by the regression analysis fitting to a collec-
tion of experimentally determined energy change of oligomers
measured by the optical melting experiments [17, 18, 20]. For
example, the free energy parameters of stackings, a terminal mis-
match, and a hairpin loop are measured from the optical melting
curves of the synthesized oligonucleotides, as shown in Fig. 2.

There are several limitations to the thermodynamic approach.
The first is the experimental and systematic errors of the optical
melting analysis. The energy parameters of the Watson-Crick heli-
ces are highly accurate with an error of less than 0.1 kcal/mol
[17]. However, the free energy error for other components is
about 0.5 kcal/mol, resulting from the errors of the optical melting
experiments and the systematic errors from the nearest neighbor
assumption [20]. The second limitation arises from the parameter-
ization of the thermodynamic approach. There are not a few
sequences that the current parameterization does not work well
because they have not been experimentally studied. Therefore, we
need more fine-grained parameterization that requires more com-
plicated and labor-intensive experiments.
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3.2 Machine

Learning-Based

Approach

Alternative to the thermodynamic approach whose parameters have
been derived from the experimental methods, a machine learning-
based approach that trains parameters from known reference struc-
tures has been available for the nearest neighbor model. The ther-
modynamic approach performs scoring by the free energy, while a
probabilistic approach and a weight-based approach obtain the
parameter values by statistical estimation or machine learning.

3.2.1 Probabilistic

Approach

Generative models, including stochastic context-free grammars
(SCFGs), have been adopted to model RNA secondary structure
by a probabilistic approach. Hidden Markov models (HMMs) can
be applied to the generative model of the primary sequence. How-
ever, HMMs cannot effectively deal with RNA secondary structure
constraints. SCFGs can be applied for modeling an RNA secondary
structure as a derivation tree of production rules. Each production
has a probability learned from known secondary structure data. The
joint probability of an RNA sequence x with a secondary structure
y is the probability of the derivation tree that generates x and
y calculated by the product of the production probabilities in the
derivation tree.

SCFG was first applied for modeling RNA secondary structures
by [23, 24]. Recently, TORNADO [25] has implemented the
application of SCFG to the nearest neighbor model, which has
achieved comparable performance as the weight-based approach
described in Subheading 3.2.2.

3.2.2 Weight-Based

Approach

One of the primitive weight-based approach for RNA folding is the
Nussinov algorithm [26]. The Nussinov algorithm is an algorithm
to search for a secondary structure with the maximum number of
base pairs using dynamic programming.

While the Nussinov algorithm employs fixed parameters, recent
algorithms employ weight parameters trained from known RNA
secondary structures. In the weight-based approach, the para-
meters are real numbers and do not require thermodynamic inter-
pretation. In other words, the thermodynamic approach can be
considered to be part of the weight-based approach.

As the weight-based approach, conditional random fields
(CRFs), one of the probabilistic graphical models, and conditional
log-linear models (CLLMs), a generalization of CRFs, are com-
monly used to model RNA secondary structure prediction.

A scoring model f(x, y) is a function that assigns real-valued
scores to a secondary structure y of a sequence x. CLLMs assume a
linear scoring model of RNA secondary structures as follows:

f x, yð Þ ¼ λ⊤Φ x, yð Þ,
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where Φ is the feature representation vector of (x, y), each of whose
elements is the number of occurrences of the individual component
that parameterizes nearest neighbor loops, and λ is the weights for
Φ. The conditional probability of a secondary structure y given a
sequence x is:

P y jxð Þ ¼ exp f x, yð ÞP
y 0∈S xð Þ exp f x, y 0ð Þ ,

where S xð Þ is a set of all possible secondary structure of the
sequence x.

In determining parameter values based on machine learning,
experimentally verified secondary structures are used as training
data. CLLMs search for a set of the weight parameters that max-
imizes the conditional probability of N pairs of the known second-
ary structures y(i) given the sequences x(i):

λMLE ¼ argmax
λ

∏N
i¼1Pλ y ið Þx ið Þ

� �
:

CONTRAfold [9, 10] has implemented the nearest neighbor
model based on CLLMs, enabling robust prediction by reducing
the number of parameters from the Turner free energy model.
Furthermore, since the machine learning-based approach is not
limited by the experimental methods, it can employ highly flexible
and rich parameterization, which is not employed by the Turner
free energy model. For example, ContextFold [11] has implemen-
ted fine-grained secondary structure modeling with more than
200,000 parameters, resulting in state-of-the-art prediction accu-
racy. However, at the same time, it raises potential concerns about
overfitting as reported in [12], suggesting that avoidance of over-
fitting is necessary for fine-grained models to achieve robustness.

3.3 Integrated

Approach

In the thermodynamic approach, parameter values are experimen-
tally determined as free energy. The experimental limitations cause
unmeasurable parameters and measurement errors. On the other
hand, there are several difficulties in determining parameter values
by machine learning such as overfitting caused by a large number of
parameters for detailed modeling. Furthermore, parameter values
that do not appear in the training data cannot be obtained.

To overcome the shortcomings of these approaches, Akiyama
et al. have proposed a novel scoring model that integrates the
thermodynamic approach and the machine learning-based
approach [15], which can be expected to complement each other’s
shortcomings. While the experimental measurement error is com-
plemented by machine learning, the parameters not observed in the
training dataset are complemented by free energy.
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The integrated scoring model of a structure y given a sequence
x is defined as:

f x, yð Þ ¼ f T x, yð Þ þ f W x, yð Þ
f T x, yð Þ ¼ λ⊤TΦT x, yð Þ

f W x, yð Þ ¼ λ⊤WΦW x, yð Þ,
where fT(x, y) and fW(x, y) are, respectively, contributions of the
thermodynamic model and the machine learning model to the
scoring model. Both feature representations ΦT and ΦW are based
on the nearest neighbor model [27]. The negative values of the
Turner free energy parameter set [21] are employed as λT. The
structured support vector machine (SSVM) [28] can be utilized
to find a parameter λW that minimizes the following objective
function L for N pairs of RNA sequences x(i) and secondary
structures y(i):

N

i¼1
maxby∈S x ið Þð Þ

f x ið Þ, by� �
þ Δ y ið Þ, by� �h i

� f x ið Þ, y ið Þ
� �

þ C λWk k1
 

,

where k.k1 is the l1 norm and C is a weight for the l1 regularization
term to avoid overfitting to training data. Here, Δ y ið Þ, by� �

is a loss
term of by for y(i) defined as:

Δ y ið Þ, by� �
¼ δFN � # of false negative base pairsð δFP

� # of false positive base pairsð ,

where δFN and δFP are tunable hyperparameters to control the
trade-off between sensitivity and specificity for learning the para-
meters (δFN ¼ 8.0 and δFP ¼ 1.0 by default). It is also known as the
margin term for structured models, enabling robust predictions by
maximizing the margin between f(x(i), y(i)) and f x ið Þ, by� �

for by 6¼
y ið Þ.

The integrated scoring model described here was implemented
as MXfold, which is short for the MaX-margin-based RNA FOLD-
ing algorithm [15]. The benefit of the integrated model is the
robustness against the overfitting to training data. MXfold can
employ rich-parameterized weight parameters expected to lead to
highly accurate prediction without heavy overfitting to the training
data by falling back to the thermodynamic parameters for unob-
served substructures in the training data.
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4 Folding Algorithms

Given an RNA sequence, the number of secondary structures that
can be folded into is proportional to the exponential order of the
sequence length. Thus, it is not practical to find an optimal second-
ary structure by enumerating all the possible secondary structures.
Fortunately, when considering the pseudoknot-free secondary
structure architecture described in Subheading 2, we can employ
a dynamic programming technique to find the optimal secondary
structure.

In this section, we will show two criteria of the optimality in
RNA secondary structure prediction. One is the MFE, which finds
the most thermodynamically stable secondary structure. The other
is the maximum expected accuracy (MEA), which finds a secondary
structure that maximizes the expected accuracy based on the
ensemble of RNA secondary structures distributed under the
Boltzmann distribution.

4.1 Minimum Free

Energy

As shown in Subheading 2, we assume that a given RNA secondary
structure can be decomposed into loop substructures according to
the nearest neighbor model and that the free energy of the given
RNA secondary structure can be calculated by summing the free
energy of every loop. This section will describe a method of finding
the secondary structure with the MFE among all the possible
secondary structures given an RNA sequence.

Since it is not practical to enumerate all the secondary struc-
tures that can be folded into, we use a dynamic programming
technique to calculate the secondary structure with the minimum
free energy. The dynamic programming technique divides a given
problem into smaller subproblems, each of which is solved sepa-
rately, and then the original problem is solved based on the solu-
tions of the subproblems. In RNA secondary structure prediction
with the free energy minimization, a given sequence is divided into
shorter subsequences based on the loop decomposition described
in Subheading 2.

Figure 3 shows that xi : j ¼ xi, . . ., xj, which is a subsequence of
x ¼ x1, . . ., xn, is decomposed into shorter subsequences based on
the loop types. If xi : j is an external loop F that is not closed by any
base pairs, then it is recursively decomposed until finding a closed
loop. A closed loop C closed by a base pair (i, j) is decomposed in
one of the following three ways, depending on the number of
closing base pairs. If the closed loop C is closed only by the base
pair (i, j), it is a hairpin loop. If C is closed by two base pairs (i, j)
and (k, l), it is decomposed into either a stacking (for k ¼ i + 1 and
l ¼ j � 1), a bulge loop (for k ¼ i + 1 or l ¼ j � 1), or an internal
loop (for k > i + 1 and l < j � 1). A loop closed by a base pair (i,
j) and two or more base pairs inside (i, j) is called a multibranch
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Fig. 3 Recursive decomposition of an RNA sequence for minimizing the free energy of the secondary structure
according to the nearest neighbor model

loop. The multibranch loop is decomposed into the rightmost loop
M1 and the other loops M, where M1 contains exactly one closed
loop C and M contains one or more loops C, disambiguating the
decomposition of RNA secondary structure.

Based on the decomposition shown in Fig. 3, the recursive
equation for the dynamic programming algorithm to calculate the
minimum free energy is as follows:

F iþ1,j , min
i<k�j

Cik þ Fkþ1,j

�

ℋ i, jð Þ, min
i<k<l<j

Ckl þ ℐ i, j ; k, lð Þ, min
i<u<j

M iþ1,u þM 1
uþ1,j�1 þ a

min
i<u<j

u � i þ 1ð Þc þ Cuþ1,j þ b, min
i<u<j

M iu þCuþ1,j þ b, Mi,j�1 þ c

M 1
i,j�1 þ c, Cij þ b

o
¼ Mii ¼ M 1

ii ¼ 1,

ð1Þ
where Fij is the minimum free energy of the secondary structure of
the subsequence xi : j and Cij represents the MFE over closed
structures. Mij is the MFE of part of a multibranch loop that
contains one or more loops, and M 1

ij is the MFE of part of a
multibranch loop with the rightmost loop.

Here, H i, jð Þ is the free energy of a hairpin loop xi : j closed by
the base pair (i, j). I i, j ; k, lð Þ is the free energy of a stacking (for
k ¼ i + 1 and l ¼ j � 1), a bulge loop (for k ¼ i + 1 or l ¼ j � 1), or
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an internal loop (otherwise) closed by the base pairs (i, j) and (k, l).
The free energy of multibranch loop is approximated using para-
meters a, b, and c as follows:

a þ b � ð#of base pairsÞ þ c � ð#of unpaired basesÞ
These parameters are determined by the methods shown in
Subheading 3.

The algorithm starts with the smallest subsequences, i.e.,
empty strings, then fills Fij, Cij, Mij, and M 1

ij by using Eq. 1, and
ends up with F1, n that will be filled by MFE. The algorithm
requires O(n4) time for calculating Cij of the free energy of the
internal loops closed by the base pairs (i, j) and (k, l). However, it
can be reduced to O(n3) time by limiting the number of unpaired
bases that form internal loops as L (generally L ¼ 30). The MFE
structure can be recovered by tracing back the recursive equations
applied to construct MFE from F1, n.

Since the MFE structure is thermodynamically most stable
under the Boltzmann distribution, it has the highest probability
over all the possible secondary structures, which corresponds to the
maximum likelihood estimation (MLE).

4.2 Partition

Function

An RNA sequence folds into not only the maximum free energy
structure but also suboptimal structures distributed under the
Boltzmann distribution. The probability of a secondary structure
y for an RNA sequence x is as follows:

p y xj Þ ¼ 1
Z

exp �βE x, yð Þð ÞZ ¼
X

y∈S xð Þ
exp �βE x, yð Þð ,

0
@

where β ¼ 1/RT (R is the gas constant and T is the absolute
temperature). Here, Z is called the partition function that calculates
the sum of the Boltzmann factor for all possible secondary struc-
tures S xð Þ. However, as with the MFE calculation, since it is not
practical to enumerate all the possible secondary structures, we
calculate Z using the dynamic programming technique similar to
Eq. 1 used in the MFE calculation. The recursive equations to
calculate the partition function Z are obtained by multiplying the
free energy parameters (H , I , a, b, and c) in Eq. 1 by �β and
replacing the “min” operator with the “logsumexp” operator, also
known as the softmax function:

logsumexp x1, . . . , xnð Þ ¼ log
Xn

i¼1
exp xið Þ:

Here are the recursive equations for calculating Zij, where logZ
corresponds to F, and logZB, logZM, and logZM1 correspond to
C, M, and M1, respectively:



X

ð Þ

P

RNA Secondary Structure Energy Models 99

Z ij ¼ Z iþ1,j þ
i<k�j

Z B
ikZ kþ1,j

Z B
ij ¼ e�βℋ i,jð Þ þ

X
i<k<l<j

Z B
kl e

�βℐ i,j ; k,Ið Þ þ
X
i<u<j

ZM
iþ1,uZ

M1
uþ1,j�1e

�βa

ZM
ij ¼

X
i<u<j

e�β u�iþ1ð ÞcZM
uþ1,j þ

X
i<u<j

ZM
iu Z

B
uþ1,j e

�βb þ ZM
i,j�1e

�βc

ZM1
ij ¼ ZM1

i,j�1e
�βc þ ZB

ij e
�βb

Z ii ¼ 1, ZB
ii ¼ ZM

ii ¼ ZM1
ii ¼ 0:

ð2Þ
Focusing on a particular base pair (i, j), we consider the

proportion of secondary structures where xi and xj form a base
pair in the ensemble of secondary structure S x :

pij ¼
P

y∈Sij xð Þ exp �βE x, yð Þð Þ
Z

, ð3Þ
where Sij xð Þ is a subset of S xð Þ , each of whose elements is a
secondary structure with the base pair (i, j). We refer to pij as the
base pairing probability of the base pair (i, j).

Equation 3 can be rewritten using the inside variable ZB
ij, which

corresponds to all the possible secondary structures of a subse-
quence inside the base pair (i, j), and the outside variable bZB

ij ,
which corresponds to all the possible secondary structures of sub-
sequences outside the base pair (i, j):

pij ¼
ZB

ij ñ
bZB

ij

Z
:

We can calculate bZB

ij by applying Eq. 2 by the reverse order, that
is, from longer sequences to shorter sequences:

bZB

ij ¼ Z 1,i�1Z jþ1,n

X
k i, jh il

bZB

kl e�βℐ k,l; i,jð Þ þ ZM
kþ1,j�1Z

M
jþ1,j�1 þ ZM2

jþ1,l�1

n

� e�β aþ i�k�1ð Þcð Þ þ ZM2
kþ1,i�1e

�β aþ l�j�1ð Þcð Þ
o
,

where ZM2
kl ¼ uZ

M
kuZ

M1
uþ1,l . This algorithm is known as the

McCaskill algorithm [29].

4.3 Maximum

Expected Accuracy

The accuracy of RNA secondary structure prediction is assessed by
the number of base pairs correctly predicted. In other words, we
prefer a prediction by∈S xð Þ that maximizes the following gain
function for a reference y∈S xð Þ defined as the weighted sum of
the number of true positives (TP), that is, correctly predicted base
pairs, and the number of true negatives (TN), that is, correctly
predicted as non-base pairs:

G y, byð Þ ¼ γTP þ TN ,



f
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where γ > 0 is a weight for base pairs. From the expectation of
G with respect to the probability distribution of RNA secondary
structures, we derive the following:

Eyjx G y, byð Þ½ � ¼
X

y∈S xð Þ
G y, byð Þp yjxð Þ

¼
X

1�i�j� xj j
γþ 1ð Þ pij � 1

h i byij þ C,
ð4Þ

where C is a constant that does not depend on by. The derivation of
this equation can be found in [7]. Here, y (resp., by ) ∈S xð Þ is a
binary-valued triangle matrix where yij (resp., byij) ¼ 1 if and only if
bases xi and xj form a base pair in the reference structure (resp., the
predicted structure). We can calculate by that maximizes Eq. 4 with
the following recursive equation similar to the Nussinov algorithm
[26]:

Mij ¼ max

Miþ1,j

M i,j�1

Miþ1,j�1 þ ðγ þ 1Þpij � 1

max
i<k<j

M ik þMkþ1,j :

In the Nussinov algorithm, the score for base pairs (i, j) is 1 for the
canonical base pairs and �1 otherwise, whereas the above algo-
rithm corresponds to a variant of the Nussinov algorithm with an
alternative scoring function (γ + 1)pij � 1 with the base pairing
probability pij.

The method based on Eq. 4 is called the generalized centroid
estimator (GCE), which predicts RNA secondary structures by
maximizing the expected accuracy for base pairs [7, 8].

In some cases, the accuracy is evaluated on per-base accuracy
instead of per-base pair accuracy. In such cases, the gain function G

0

is defined as the weighted sum of the number of true positives bases
(TP

0
), that is, correctly predicted as a one-half of a base pair, and the

number of true negative bases (TN
0
), that is, correctly predicted as

an unpaired base. As above, we derive the expectation of G
0
with

respect to the distribution of RNA secondary structure:

Eyjx G 0 y, byð Þ½ � ¼
X

i

X
j :j<i

γpji � qi

� �byji þXj :j>i
γpij � qi

� byijh
ð5Þ

where qi ¼ 1 � Σj : j < i pji � Σj : j > ipij and C is a constant that does
not depend on by . We can find by that maximizes Eq. 5 using the
following dynamic programming:
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Mij ¼ max

Miþ1,j

M i,j�1

Miþ1,j�1 þ 2γpij � qi � qj
max
i<k<j

½Mik þMkþ1,j �:

It can be stated that the method based on Eq. 5 is the predic-
tion of secondary structures by maximizing the expected accuracy
not for base pairs but individual bases [9]. The above algorithm is
traditionally referred to as the MEA of RNA secondary structure
prediction.

5 Comparison of Methods

In this section, we present the results of comparing the perfor-
mance of the RNA secondary structure prediction algorithms intro-
duced so far. Performance comparison was conducted using the
dataset established by Rivas [25], which is composed of TrainSetA,
TestSetA, and TestSetB. TrainSetA and TestSetA were collected
from the literature. Note that Train/TestSetA includes the datasets
used in CONTRAfold, SimFold, and ContextFold. TestSetB was
extracted from the Rfam database [30], where extracted sequences
have 3D structure annotation and have less than 70% sequence
identity with the sequences in TrainSetA. It is important to note
that literature-based TrainSetA and Rfam-based TestSetB are struc-
turally diverse, whereas it can be observed structural similarity
between TrainSetA and TestSetA.

The accuracy of secondary structure prediction is evaluated by
the Sensitivity (SEN) and Positive Predictive Value (PPV) of the
base pairs, defined as follows:

SEN ¼ TP
TPþ FN

, PPV ¼ TP
TPþ FP

,

where TP is the number of correctly predicted base pairs, FP is the
number of incorrectly predicted base pairs, and FN is the number of
unpredicted base pairs in the reference structure. Since there is a
trade-off between SEN and PPV, the F-value, which is the har-
monic mean of SEN and PPV, is used for evaluation:

F ¼ 2� SEN� PPV
SENþ PPV

:

We benchmarked MXfold version 0.0.2 [15], CONTRAfold
version 2.02 [9, 10], ContextFold version 1.00 [11], CentroidFold
version 0.0.16 [7, 8], RNAfold in ViennaRNA package version
2.4.14 [3, 4], SimFold version 2.1 [13, 14], and RNAstructure
version 6.2 [5, 6]. Among the machine learning-based methods,
MXfold, CONTRAfold, and ContextFold trained their weight
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Fig. 4 PPV-SEN plots on (a) TestSetA, (b) TestSetB, and (c) the combined dataset with TestSetA and TestSetB
for MXfold with MLE and generalized centroid estimator (GCE), CONTRAfold with MLE and maximum expected
accuracy (MEA), ContextFold, CentroidFold, RNAfold with MFE and MEA, SimFold, and RNAstructure. (d) F-
value on the combined test dataset for all the methods

parameters using TrainSetA. Since SimFold does not provide the
training algorithm, we used the default parameter set trained on S-
Full-Train dataset, which is a subset of TrainSetA. CentroidFold
used the Boltzmann likelihood parameters [14] trained on S-Full-
Train dataset.

Figures 4a, b show PPV-SEN plots of prediction accuracy on
TestSetA and TestSetB, respectively. The MEA-based secondary
structure prediction, MXfold (GCE), CentroidFold (GCE), CON-
TRAfold (MEA), and RNAfold (MEA), can control PPV and SEN



j � � �

¼

RNA Secondary Structure Energy Models 103

by the parameter γ, and therefore, their accuracies are shown by the
curves for multiple γ ∈ {2n 5 n 10}.

For the predictions on TestSetA, ContextFold achieved the
best accuracy (F ¼ 0.759), followed by MXfold (F ¼ 0.754 for
GCE at γ ¼ 4.0), MXfold (F¼ 0.739 for MLE), and CONTRAfold
(F ¼ 0.719 for MEA at γ ¼ 4.0). On the other hand, for the
predictions on TestSetB, which is structurally diverse from Train-
SetA, we can observe that ContextFold achieved the worst preci-
sion (F ¼ 0.502), as Rivas [12] has pointed out that ContextFold
might fall in the overfitting. In contrast, we cannot observe heavy
overfitting as in ContextFold for MXfold (F ¼ 0.591 for GCE at
γ ¼ 4.0), MXfold (F ¼ 0.581 for MLE), and CONTRAfold (F ¼ 0
.573 for MEA at γ 4.0).

Figure 4c, d show the PPV-SEN plot and the distribution of F-
value on the combined dataset with TestSetA and TestSetB. These
results indicate that MXfold (F ¼ 0.685 for GCE at γ ¼ 4.0) and
MXfold (F ¼ 0.673 for MLE) achieved the best accuracy, followed
by two machine learning-based methods, CONTRAfold
(F ¼ 0.658 for MEA at γ ¼ 4.0) and ContextFold (F ¼ 0.651),
outperforming the thermodynamic based methods.

The two different prediction criteria mentioned in Subheading
4, namely, the MFE (or the MLE in the case of weight parameters)
and the MEA, were compared using the same parameters. In all the
methods, MEA is more accurate than its MFE orMLE counterpart.
Especially for CONTRAfold, we observed a significant improve-
ment of MEA (F ¼ 0.658 at γ ¼ 4.0 on the combined dataset)
against MLE (F ¼ 0.628), whereas for MXfold the difference
between MLE (F ¼ 0.673) and GCE (F ¼ 0.685 at γ ¼ 4.0) is
small. In our opinion, this is a matter of the compatibility of
prediction and training methods. It can be argued that MEA,
which considers all the possible secondary structures in the predic-
tion, is a successful approach that brings out the best in parameters
from CLLM, which also considers all the possible secondary struc-
tures in training.

6 Prospects and Summary

In this chapter, we described RNA secondary structure prediction
based on the energy models. In the performance comparison of the
methods, MXfold, CONTRAfold, and ContextFold, which use
machine learning based on energy models to estimate the weight
parameters, achieve higher accuracy than the methods using ther-
modynamic parameters, suggesting that each RNA molecule does
not form secondary structures based solely on the laws of biophys-
ics we have ever known. Actual RNAmolecules in vivo interact with
other molecules including RNAs, proteins, and chemical com-
pounds to form higher-order structures through more complex
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processes. Therefore, predicting secondary structure, especially
in vivo, is much more challenging. For more accurate secondary
structure prediction, secondary structure profiles using secondary
structure-specific chemical probes [31, 32] or RNase [33, 34],
which have been actively studied in recent years, are expected to
be a promising approach. Several methods based on thermody-
namic parameters achieved much better accuracy by incorporating
secondary structure profiles as pseudo-energy terms [35–37]. On
the other hand, no methods based on machine learning support the
secondary structure profiles to the best of our knowledge because
only small amounts of public data on the secondary structure
profiles were available for the training of machine learning. How-
ever, due to the increase in the secondary structure profile data
available in recent years, machine learning-based methods will
benefit from secondary structure profiles.
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Chapter 7

RNA Secondary Structure Alteration Caused by Single
Nucleotide Variants

Risa Karakida Kawaguchi and Hisanori Kiryu

Abstract

A point mutation in coding RNA can cause not only an amino acid substitution but also a dynamic change
of RNA secondary structure, leading to a dysfunctional RNA. Although in silico structure prediction has
been used to detect structure-disrupting point mutations known as riboSNitches, exhaustive simulation of
long RNAs is needed to detect a significant enrichment or depletion of riboSNitches in functional RNAs.
Here, we have developed a novel algorithm Radiam (RNA secondary structure Analysis with Deletion,
Insertion, And substitution Mutations) for a comprehensive riboSNitch analysis of long RNAs. Radiam is
based on the ParasoR framework, which efficiently computes local RNA secondary structures for long
RNAs. ParasoR can compute a variety of structure scores over globally consistent structures with maximal
span constraints for the base pair distance. Using the reusable structure database made by ParasoR, Radiam
performs an efficient recomputation of the secondary structures for mutated sequences. An exhaustive
simulation of Radiam is expected to find reliable riboSNitch candidates on long RNAs by evaluating their
statistical significance in terms of the change of local structure stability.

Key words RNA secondary structure, Local structure, Maximal span constraint, riboSNitch, SNP,
Mutation

1 Introduction

RNA secondary structure is regulated by the primary sequence of
RNA , in which stable base pairs are formed between complemen-
tary bases, such as A–U and C–G, as well as other minor pairs (e.g.,
wobble pairs between G and U). Each base type within substruc-
tures, such as base pairs, their combinations (stacking), or loops,
differently contributes to the free energy changes of a specific
structure [1]. Due to the variety of free energy changes for each
substructure and base composition, the global structure can be
drastically changed if the formation of substructures is partially
inhibited by an external factor. A riboswitch is one such example,
where ligand binding triggers a dynamic conformational change by
inhibiting the formation of a local structure [2]. The characteristic

Risa Karakida Kawaguchi and Junichi Iwakiri (eds.), RNA Structure Prediction, Methods in Molecular Biology, vol. 2586,
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of a riboswitch is utilized for designing an intracellular sensor by
modulating the efficiency of RNA functions, such as downstream
translation or cleavage. Thus, even a local conformational change
can impair RNA function by globally inducing dynamic conforma-
tional changes.

Similar to a riboswitch, a conformational variation can be
induced through base differences among individuals, such as single
nucleotide polymorphisms (SNPs) or variants (SNVs). The
structure-disrupting variations, referred to as riboSNitches,
were found using the in silico structure prediction method SNPfold
[3]. A previous study also analyzed the effect of riboSNitches
around the binding sites of the RNA binding protein (RBP) HuR
using ViennaRNA [4]. Their results revealed the presence of SNPs
that have a manyfold effect on binding affinity and significant
under-selection of SNPs that decrease the binding affinity of the
RBP. Because of potentially a wide range of biological regulations
associated with RBPs, the relationship between riboSNitches and
disease phenotypes has been investigated in specific biological con-
texts. For example, He et al. performed a statistical analysis of
riboSNitch-enriched and -depleted elements in the cancer genome
[5]. They found that riboSNitches are significantly enriched or
depleted in long noncoding RNA (lncRNA) and mRNA untrans-
lated regions (UTRs) in certain types of cancers, suggesting the
influence of structure-disrupting mutations on pathogenesis.

Furthermore, in vitro genome-wide riboSNitch detection has
been performed using high-throughput RNA structure analysis,
which is an emerging technology for evaluating the likelihood of
being paired at single nucleotide resolution. Wan et al. performed
whole-transcriptome analysis of a human family trio using parallel
analysis of RNA structure (PARS) to evaluate the structural impact
of SNPs [6]. Their statistical analysis revealed selective depletion of
riboSNitches compared to structurally synonymous SNVs within
several types of functional regions, such as predicted target sites of
miRNAs and RBPs. This dataset and mutate-and-map strategy
from the RMDB database [7] were also applied to validate and
improve riboSNitch detection using in silico prediction [8, 9].

Although these in vitro analyses are a powerful tool, in silico
prediction plays an important role for riboSNitch detection because
few structure datasets of human trios are found in structure
databases (e.g., RNAex [10] or RMDB). However, the simulation
of RNA secondary structure is a time-consuming task itself and
hardly expanded to an exhaustive riboSNitch simulation. Thus,
most of the previous studies have focused on the fast simulation
of conformational changes for a limited number of observed muta-
tions (Table 1). The RiboSNitchDB database has been also con-
structed from a set of known eQTL SNVs [11].

On the other hand, performing an exhaustive simulation of
background mutations is critical for assessing the statistical impact



RNA Structure Alteration by SNPs 109

Table 1
Previous studies to evaluate the conformational impact of mutation on RNA secondary structure
stability

Method Description Reference

SNPfold Comparison of partition functions and structures obtained by
Boltzmann sampling

Halvorsen et al.
[3]

RNAsnp Empirical p-values for Euclidian distance of base pairing probability
differences

Sabarinathan
et al. [13]

remuRNA Relative entropy of Boltzmann ensembles Salari et al. [17]

mutaRNA RNAsnp + remuRNA Miladi et al. [18]

Rchange Changes of entropy of Boltzmann ensembles with the maximal span
constraint

Kiryu and Asai
[19]

RNAmutants MFE structure and the partition function over all secondary structures
for mutated sequences

Waldispühl et al.
[12]

Johnson AD
et al.

Differences of free energy changes between optimal and suboptimal
structures

Johnson et al.
[20]

of each mutation, particularly for the detection of significant
enrichment or depletion of structure-disrupting mutations. To
address this problem, Waldispühl et al. developed RNAmutants to
efficiently evaluate conformational changes caused by multipoint
mutations using the user-specified integer K [12]. RNAmutants
demonstrates the computation of minimum free energy (MFE)
structure and partition function using a dynamic programming
(DP) technique. However, it is not feasible for long RNAs due to
the high demand of computational time and resource. Specifically,
its computational complexity is O(N3K2) for the sequence of
length N. RNAsnp is another method that uses an empirical distri-
bution obtained from random sequences with varying GC content
to compute p-values for differences in base pairing probability
[13]. However, the scale of conformational change may vary
depending on both the mutated base and GC content of the
whole sequence (discussed in Notes). Therefore, using fast muta-
tion simulation within the input sequence may help evaluate statis-
tical significance of each riboSNitch candidate more precisely.

In this chapter, we introduce a novel algorithm Radiam (RNA
secondary structure Analysis with Deletion, Insertion, And substi-
tution Mutations), which can simulate RNA secondary structure
alterations by single point mutations based on the ParasoR plat-
form [14]. ParasoR is an algorithm designed to compute a variety
of RNA secondary structure scores, such as stem probability or
accessibility, for long RNAs. Using a structure database in the
form robust for overflow and underflow errors, ParasoR enables
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distributed computation of genome-level RNA sequences. In the
Radiam extension, the structure database is suitably updated after
introducing the mutation. Although the original computational
complexity is O(N2W2) for all possible mutations, where W is the
maximal span for base pair distance, Radiam can distribute the
simulation of all mutations to multiple computational nodes with
a computational complexity of O(W3) for a single mutation.

2 Methods

2.1 Radiam

Algorithm

We have developed Radiam, which can efficiently simulate struc-
tural alterations caused by every possible SNV, using the criteria of
structure score differences. Because Radiam is based on the frame-
work of the ParasoR algorithm [14], which is designed for genome-
wide local structure prediction, Radiam is also applicable to fast
SNV simulation for long RNAs using a precomputed structure
database.

To predict riboSNitches, Radiam evaluates the level of confor-
mational alteration induced by each SNV using two values, namely,
the maximum difference and Pearson’s correlation coefficient of
surrounding stem probabilities with and without mutations. In the
ParasoR framework, structure scores, such as stem probability, are
computed for all possible structures under the constraint of maxi-
mal base pair distance W, where W is generally set as �N (Fig. 1).
The computation of a “local structure” can significantly decrease
the computational complexity fromO(N3) toO(NW2) while ensur-
ing that a large portion of structure scores are less affected (also see
the ParasoR chapter).

Further implementation in Radiam is a function of recomput-
ing the minimum required region potentially changed by the SNV
in the DP ratio matrix of ParasoR. As shown in Fig. 2, the influence
of a single point mutation is propagated to inside and outside
matrices exclusively. For example, a mutation can affect the right
and left regions of inside and outside Outer variables from its
location, which correspond to the sum of free energy changes for
structures of a subsequence as defined in Rfold model [16]. Other
inside and outside variables (α and β, respectively) are also exclu-
sively dependent on the presence of the mutation, which leads to

Global structure Local structure

j - i  Maximal span W

i j

Distant base pair is allowed 
without maximal span

Fig. 1 Graphical examples of pseudoknot-free global and local RNA secondary structures
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Inside variables Outside variables

Mutation

i+1

i+W
i - Wi

βOuterαOuter

Fig. 2 Efficient recomputation of inside and outside variables using the Radiam algorithm. The red circle
corresponds to a mutated position. Rectangles at the bottom represent inside and outside Outer vectors,
whereas rectangles at the top represent inside and outside matrices of all other states. The region in white
shows values affected by mutations and is to be updated while the one in blue is independent from the
mutations

saving half the computation time. Although the idea does not
change its theoretical computational complexity O(NW2), a com-
bination of minimum computation and local recomputation
enables Radiam to simulate the SNV-induced conformational
change twice as fast as local probability computation using ParasoR.

Figure 3 shows a pseudocode of Radiam algorithm, in which
only inside and outside variables affected by a mutation are recom-
puted. For example, inside Outer variables, which are represented
by αOuter(i), correspond to the summation of free energy changes
of all structures for a partial sequence from the first to the ith base.
αOuter(i) is iteratively obtained as follows:

αOuter ið Þ ¼ αOuter i � 1ð Þ

þ
Xi�1

k¼i�W�1

αOuter kð Þ∙αStem k, ið Þ∙t Outer ! OuterñStemð

where αStem(k, i) represents an inside Stem variable for the struc-
tures that have a base pair between the k and ith position and
t(Outer ! Outer · Stem) represents a transition energy between
Outer and Stem state. As such, the computation of other DP
variables is performed iteratively following this equation. The par-
tition function, which is required to compute the probability of
each structure, is also obtained from αOuter(N), where the sequence
length is N. Using the location-specific dependency of inside and
outside variables in Rfold model, Radiam updates αOuter(i) only
when the mutated position m is equal to or larger than i � 1.
αOuter(m � 1) should be also updated because the mth base is
taken into account in αOuter(m � 1) via a dangling energy. While
Fig. 3 is an algorithm for Rfold model, Radiam actually carries out
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Algorithm 1 Radiam algorithm
1: N := sequence length
2: W := maximal span of base pair
3: m := position of a point mutation (starts from 0)
4: Compute DP matrices of inside (α) and outisde (β) variables for an original sequence.
5: Copy the DP matrices.
6: for j = m to N do
7: for i = (j −1) to (j −W −1) do
8: Update α(i, j)
9: end for
10: Update αOuter(j)
11: end for
12: for j = N to 0 do
13: for i = (j −W −1) to (j −1) do
14: if i < (m −1) and (m + 1) < j then
15: Update β(i, j)
16: end if
17: end for
18: if j <= (m + 1) then
19: Update βOuter(j)
20: end if
21: end for

Fig. 3 A pseudocode of Radiam algorithm based on Rfold platform

the same recomputation based on ParasoR model [14], in which
DP variables are stored in the form of the ratio of adjacent DP
variables to overcome overflow and underflow problems.

2.2 Preprocessing of

Radiam to Construct

ParasoR Databases

The preprocess step of Radiam is similar to that of ParasoR and
includes the construction of the structure database. Below is an
example of two steps using two computer nodes, namely, DP ratio
matrix and base pairing probability matrix computation. The name
of the structure database is set using the “name” option, while an
input sequence is set using either the f option (-f [sequence]) for a
character string or the “input” option (--input [fasta file]) to read
from a file.

Examples:

ParasoR -i 0 -k 2 –name=[database] # run using the first node

ParasoR -i 1 -k 2 –name=[database] # run using the second node

ParasoR -i 2 -k 2 –name=[database] # connect the ratios of

inside and outside variables

Examples:

ParasoR -i 0 -k 2 –name=[database] --stemdb

# compute the stem probability for the first half of the

sequence.
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ParasoR -i 1 -k 2 –name=[database] --stemdb

# compute the stem probability for the last half of the

sequence.

ParasoR -i 2 -k 2 --name=[database] –stemdb

# connect the stem probability files

Based on the computed database, Radiam partially recomputes
the ratios of inside and outside variables for a sequence with a single
point mutation.

2.3 Simulation of

Single Point Mutations

The trigger of Radiam computation is the m option with either of
the initials of substitution, insertion, or deletion as Examples 1, 2,
and 3, respectively. Other options related with the database and
structure prediction follow the ParasoR framework, including “--
constraint” for the maximal span and “--window” for the target
window size, used for feature computation. The output can be
selected from the difference of stem probability, accessibility, or
base pairing probability using --stem, --acc, and --bpp options,
respectively. While Examples 1–3 specify a target region based on
each chunk size (e.g., the first of two chunks for a whole sequence
in Examples), the exact start and end point for the mutation
location can be set as Example 4. The mout option can set the
output file name to write the result of Radiam simulation.

Example 1:

ParasoR -i 0 -k 2 --name=[database] --mout=[file name] -m S --

stem # insertion

Example 2:

ParasoR -i 0 -k 2 --name=[database] --mout=[file name] -m I --

stem # insertion

Example 3:

ParasoR -i 0 -k 2 --name=[database] --mout=[file name] -m D --

stem # deletion

Example 4:

ParasoR -s 1 -e 100 --name=[database] --mout=[output file

name] -m S --stem # substitution

Below is an example output of p53 mRNA substitution analysis
using the --stem option. Each column of the output exhibits infor-
mation on mutation location, base type after mutation (0: deletion,
1: A, 2: C, 3: G, and 4: U), maximum difference of stem probability
within the region (�W,W) from the mutation, Pearson’s correla-
tion coefficient between stem probabilities of original and mutated
sequences within the region (�W,W), and the same coefficient
within the region of the specified window size (�window/2,
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window/2) around the mutation. The window size can be set using
the “window” option.

Example outputs:

pos base_type max_diff correlation correlation(win)

1 2 0.049896 0.999977 0.998630

1 3 0.989273 0.995392 0.988951

1 4 0.0637124 0.999934 0.998632

2 1 0.814961 0.991746 0.763569

2 2 0.804554 0.984432 0.953104

2 3 0.810627 0.994746 0.88879

...

2.4 Computation of

p-Values

In the ParasoR source code directory, we prepared an R script
plot_mut_max_diff.R for the basic analysis of the Radiam output.
It can compute the empirical p-value from the ranking of the
maximum difference of stem probability for any base type and
each base individually.

Example: Rscript plot_mut_max_diff.R [Radiam output file name]

3 Notes

For detecting a riboSNitch, Radiam computes the maximum dif-
ference and correlation coefficient of stem probabilities between
the original and mutated sequences. These scores and other values
obtained from the correlation coefficient were applied for riboS-
Nitch detection in a previous study [6]. Most other scores used in
previous studies, such as relative entropy of structures and compar-
ison of MFE structures [12, 20], are not feasible for long RNA
analysis or exhaustive mutation simulation. Radiam can reproduce
the computation of a classical structure prediction only with the
limitation for the maximal base pairing span and, therefore, has
wide applicability in computing multiple structure scores, such as a
variety of distances for the base pairing probability matrix
[13]. Although a suitable score for riboSNitch detection was eval-
uated using in vitro structure data [9], a significant difference has
not been found between score choices for in silico methods. Hence,
the use of other features for computation would be an important
future work to identify the best criteria for detecting conforma-
tional changes.
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Fig. 4 Relationship between the impact of point mutations and GC content according to the base pairing
probability difference (W ¼ 200). The average of maximum differences of base pairing probability for each
position is computed for 200 random sequences, which are 500 nt long and have a GC content ranging from
0% to 100%, with a step of 20%. A single point substitution is introduced at the center of the sequence

For local structure analysis using the ParasoR framework, the
propagation of conformational changes becomes weak in general
with the distance from the mutation. For example, the average of
the maximum difference of base pairing probabilities and accessi-
bilities between sequences with and without substitutions shows a
sharp peak around the mutation and modest changes over the
entire region (Fig. 4). Regarding the conformational changes
induced by deletions and insertions, we computed the maximum
difference of base pairing probability for each base of random
sequences with deletions and insertions. For structure prediction,
several maximal constraints are applied, ranging from 50 to
300, which is considered a reasonable range for local structure
analysis [14]. A substantial impact is observed within range (–W,
W) from the mutation regardless of the constraint difference
(Fig. 5). Moreover, impact scores are almost consistent across
different maximal constraints, except for the shortest one
(W ¼ 50). Because the recommended maximal constraint ranges
from 150 to 200 [15, 16], the evaluation of conformational
changes within the range (–W,W) from the mutation used in
Radiam would be a promising approach for local riboSNitch
detection.
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Fig. 5 The average of maximum differences of base pairing probability produced by (a) deletion and (b)
insertion. Base pairing probability matrices are computed 1000 times for random sequences of 10,000 nt, with
GC content ¼ 50%. The x-axis shows the distance from the mutation relative to the maximal span W ¼ 50,
100, 150, 200, and 300

The advantage of comprehensive simulation of single point
mutations using structure databases of ParasoR is that we can
extract riboSNitch candidates using a statistical criterion beyond
known biases for conformational vulnerability. GC content of the
original sequence is the most well-known bias for the structure
stability as well as base pairing probability [13, 14]. In general,
sequences with high GC% tend to contain more base pairs due to a
higher contribution of GC-included stacking loops to structural
stability. This may contribute to the results of Fig. 4, where
sequences with a higher GC content tend to exhibit stronger and
wider impacts caused by a mutation as expected.

To evaluate the relationship between the base type and strength
of deleterious effect, we show examples of riboSNitch analysis for a
substitution introduced into the p53 mRNA sequence (N¼ 1749).
Using an empirical distribution approach for the maximum differ-
ence of stem probability around the mutation, the conformational
impact score of each mutation is converted to a p-value based on
the ranking of all scores (Fig. 6). Consequently, the mutation
introduced to a G base is most biased to have lower p-values or
cause the stronger changes compared to other base types. The high
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Fig. 6 Comparison of the p-values converted from the ranking of the maximum
differences of stem probability around the mutation. The conformational impact
scores are obtained by comparing the original and mutated p53 mRNA
sequence (N ¼ 1749) for every possible point substitution. The scores are
then converted to the p-values based on the empirical distribution at once
(y-axis) or within the groups according to the original base type at the mutated
position (x-axis)

potential of G to form stable base pairs either with C or U may
explain its specific tendency for p-value distribution.

To assess significant enrichment or depletion of riboSNitches in
a specific RNA or region, selecting an appropriate way to normalize
frequency and background impact on local structure stability is
critical. While each mutation type is expected to cause a different
conformational effect as shown in Fig. 5, the substitution pattern
has also a different probability of appearing by different biological
mechanisms, such as the high C to U mutation rate due to UV
radiation [21, 22]. Using our Radiam extension, the maximum
difference and correlation coefficient of stem probability between
the original and mutated sequences are computed for each substi-
tution type (Figs. 7 and 8). They show a roughly opposite tendency
for each substitution pattern in terms of their medians, suggesting
the similar direction of the conformational changes. However,
there is a difference between these two scores that the maximum
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Fig. 7 Distribution of maximum difference of stem probabilities between the original and substituted
p53 mRNA

difference tends to show less overlap between the boxes of the
interquartile range. This is possibly because the maximum differ-
ence is likely to be obtained from a drastic conformational change
from the proximal region while the computation of correlation
highly depends on the modest changes over the entire region as
well as the proximal one. The maximum difference is, therefore,
expected to detect riboSNitch candidates that have a strong impact
on the proximal region, whereas the correlation of stem probabil-
ities may be suitable for detecting those which cause a modest but
wider impact on RNA structure.

Thus, Radiam is a promising method that has a high potential
in identifying conformational impacts of mutations from various
aspects, considering known biases for riboSNitch detection. The
flexibility of Radiam analysis can be used to explore the evolution-
ary selection of a mutation through dynamic changes in local
secondary structures.
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Fig. 8 Distribution of Pearson’s correlation coefficient for stem probabilities between the original and
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Chapter 8

Evolutionary Conservation of RNA Secondary Structure

Maria Beatriz Walter Costa

Abstract

Noncoding RNAs, ncRNAs, naturally fold into structures, which allow them to perform their functions in
the cell. Evolutionarily close species share structures and functions. This occurs because of shared selective
pressures, resulting in conserved groups. Previous efforts in finding functional RNAs have been made in
detecting conserved structures in genomes or alignments. It may occur that, within a conserved group,
species-specific structures arise after species split due to positive selection. Detecting positive selection in
ncRNAs is a hard problem in biology as well as bioinformatics. To detect positive selection, one should find
species-specific structures within a conserved set. This chapter provides protocols to detect and analyze
positive selection in ncRNA structures with the SSS-test and other free software.

Key words Noncoding RNA, Secondary structure, Evolution, Conservation, Positive selection

1 Introduction

Conservation of noncoding RNA structures is a fundamental topic
in evolution [1–5]. A conserved set of ncRNAs is a result of
negative selection on a set of species. Positive, or adaptive, selection
causes a branch (or species) to acquire species-specific functions. In
this case, the positively selected molecule distinguishes itself from
its orthologs [6]. Detecting positive selection helps us understand
speciation and is therefore extremely valuable. It is however a hard
problem in bioinformatics.

In this chapter, we will discuss evolution of ncRNA structures
with focus on positive selection. The introduction contains theo-
retical principles of structure prediction, structure conservation,
detection of positive selection, and visualization. Afterward, proto-
cols will be provided to detect and analyze positive selection with
the SSS-test and other free software.

This chapter is targeted to researchers from a biological back-
ground who wish to study ncRNA evolution. The SSS-test and
many other tools for studying ncRNAs were developed for Unix
platforms. For this reason, a Unix platform is required, such as
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Linux or MacOS operating systems. Alternatively, a Windows vir-
tual machine for a Linux system could be used. Advanced skills in
programming are however not required.

1.1 Structure

Prediction

The structure of a ncRNA is key to its function. They naturally fold
into 3D structures in the cell, which are extremely difficult to
predict. Fortunately, approximations in the form of 2D, or second-
ary structures, can be accurately predicted from the primary
sequence. The folding occurs through a series of chemical interac-
tions of base pairs: A-U, G-C, and wobble G-U. Each stacked base
pair contributes with energy to the structure. Neighboring base
pairings also form structural motifs, such as hairpins, stems, bulges,
and loops. The idea behind most prediction software is to find the
optimal combination of base pairs so that the energy of the whole
structure is minimized and the structure is the most stable [7].

There are two main approaches to this: thermodynamics and
statistics. Thermodynamic methods use pre-calculated tables of
free-energy parameters derived from physical experiments of RNA
melting [8]. Statistical methods train their parameters by building
probabilistic models from closely related families of ncRNAs
[9]. An advanced technique of computer science named dynamic
programming is used for finding the optimal structure by recursive
reconstruction.

The stability of the structure is described in entropic terms by
the uncertainty of prediction, which depends on the number of
possible structures of the ensemble. The uncertainty is calculated by
the partition function Q, defined by:

Q ¼
X

e�E sð Þ=RT

where s∈Ω is each structure s that belongs to the ensemble Ω, E(s)
is the energy of the structure, R is the gas constant, and T is the
absolute temperature. The equilibrium partition function of a base
pair i,j is defined by:

Pi,j ¼
P

e�E sð Þ=RT

Q

where s ∈ Ω is a sequence that contains the base pair i,j [10]. As
results of the partition function, we get probabilities of base pairs.
The more probable they are, the more stable the structure will be
and less fluctuation it will have in the ensemble. This can be intui-
tively seen through visualizations of secondary structures.

The minimum free energy (MFE) is the optimal and most
stable secondary structure (Fig. 1). The centroid structure
(Fig. 1) better represents the whole ensemble, because it is formed
by the base pairs that are more likely to occur in all possible
structures. Visually analyzing the secondary structure of the cen-
troid can yield valuable clues as to how stable the ensemble actually
is. Base pairings are often represented in color code, indicating
probabilities (Fig. 1).
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Fig. 1 Secondary structures of a theoretical hairpin. The MFE structure (left) is
the most stable structure. The centroid structure (right) is composed of the base
pairs that are more likely to occur in all possible structures. In addition to the
structures, individual bases are color-coded according to their probability of
being paired with another base or of being completely unpaired. The color code
is depicted on the top, with lower probabilities in purple and blue, intermediate
probabilities in green, and higher probabilities in orange and red. As an example,
paired bases in green have around ~50% probability of being paired, while
unpaired bases in red have around ~100% probability of being unpaired

As known from the biochemical properties of base pairings,
G-C pairs are formed by three hydrogen bonds, while A-U and
G-U pairs by two bonds. The energy required to break a bond
depends not only on these intrinsic properties but also on the
neighboring pairs or lack thereof. This algorithm is called nearest
neighbor model, which is built into the Turner model for structure
prediction [8, 11]. This model also contains rule sets for motifs
such as helices and loops, which are coded into the Nearest Neigh-
bor Database [12, 13].

The Turner model (as described in [12]) is implemented in the
Vienna RNA package 2.0 [7], a package for analysis of ncRNA
structures. RNAfold is its main program which computes the parti-
tion function, the MFE, and centroid secondary structures from an
ncRNA primary sequence. One informative optional output of
RNAfold is a PostScript file containing the base pair probabilities
of the given sequence. This file can be viewed as text or image
(Fig. 2). The top right part of the figure shows the partition
function and the bottom left the MFE base pairing, which corre-
sponds to Fig. 2.

1.2 Tools for

Studying ncRNAs

RNAfold applies global folding. This means that the entire
sequence of the ncRNA is considered in the structure prediction.
This approach is ideal for small ncRNAs (�200 nucleotides, nts),
especially since the majority of the base pair interactions occur
within a span of 150–200 nts [14]. Long ncRNAs, lncRNAs for
short (>200 nt), can span thousands of nts and do not always use
their structures for function [15–17]. In this case, it is more
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Fig. 2 Dot plot of a theoretical hairpin and loop structure. The rows and columns
indicate the input sequence. The match between a row and a column represents
the probability of base pair i,j, with bigger squares indicating larger probabilities.
The ensemble of possible base pairs is represented in the top right corner, while
the MFE base pairing is represented in the bottom left corner

sensible to consider local approaches. RNALfold, also part of the
Vienna RNA package, uses RNAfold to scan sequences and output
local stable structures.

RNAalifold is another tool of the Vienna package that is useful
when studying RNA evolution [18]. It searches for consensus
structures in FASTA alignments. In addition, a difficult problem
in RNA biology is to compare structures of different lengths.
RNAforester can do that by using a tree alignment model [19].

RNAsnp calculates the structural impact of a single nucleotide
polymorphism, SNP for short, in a ncRNA structure [20]. Firstly,
RNAsnp uses RNAfold internally to fold the original and the
SNP-containing sequences. It then compares the partition func-
tions of the two structures and afterwards compares the result with
a precomputed database. Lastly, it outputs p-values that indicate
structural impacts.

In addition to probing structures directly, studying the primary
sequence of ncRNAs is also paramount for understanding their
evolution. Muscle is a multiple sequence aligner [21] that produces
alignments from multi-FASTA files. With a multiple alignment, it is
possible to detect species-specific substitutions as well as species-
specific indels (insertions and deletions).
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1.3 Evolutionary

Conservation and

Orthology Annotation

Orthology annotation is key to analyzing ncRNA evolution. The
principle behind it is finding similar structures in the group of
studied species. Similar structures indicate common selective pres-
sures. This problem has been extensively studied in RNA bioinfor-
matics, and there are many tools that perform well when detecting
conservation in RNAs, such as RNAz [2], SISSIz [22], EvoFold
[3], CMfinder [4], AlifoldZ [23], and qrna [24], among others.

Although sequence similarity, e.g., BLAST [25], is still used for
RNA orthology in the computational biology community, BLAST
is not ideal for ncRNAs due to their weaker sequence conservation.
Evolution of ncRNAs is rather constrained by structure. Different
sequences can fold into the same structures. This principle is used in
Infernal [26], which calculates covariance models based on struc-
ture similarity. It then uses these models to find new orthologs.
RNAz [2] is another alternative for orthology and works on species
alignments. Importantly, these tools are adequate for small RNAs
(<200 bp).

Orthology of lncRNAs has different principles, due to the fact
that only some of their sequences fold into stable structures. Their
sequences are poorly conserved, making BLAST a suboptimal
choice for orthology annotation. Their splice sites however are
well conserved [27, 28], which can be used for this purpose. The
SpliceMap tool [29] annotates ortholog splice sites in different
species given a multiple alignment and a list of lncRNAs of a
reference species. The output splice sites can then be fed into a
second tool, buildOrthologs (unpublished), which reconstructs
complete ortholog transcripts.

Orthologs of ncRNAs in a multi-FASTA file constitute the
input to the SSS-test, which outputs selection scores. The matter
of noncoding orthology is out of scope for the test itself and as such
should be handled previously by the user.

1.4 Positive

Selection Annotation

Genes under positive (or adaptive) selection indicate specialized
function in a species of interest. The main idea to detect positive
selection is to compare the observed changes with the expectation
of neutral evolution. The Ka/Ks, or dN/dS, test [30] implements
this idea and has been routinely used for protein coding genes
(PCGs):

K a

K s
¼

non�synonymous�substitutions
non�synonymous�sites

synonymous�substitutions
synonymous�sites

If the ratio of Ka is larger than Ks, the value is larger than 1.0
and positive selection is more likely. Conversely, ifKa is smaller than
Ks, negative selection is more likely. Importantly, a
non-synonymous substitution in the PCG will change the protein
structure because it changes the amino acid of the translated pro-
tein. Conversely, a synonymous substitution will not change the
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translated protein. It can be said that the effect of the combined
substitutions in the protein can be inferred from the effect of the
individual substitutions in the PCG.

Adapting this test to ncRNAs is in principle possible but yields
spurious results [6] and should therefore not be pursued. Although
there are substitutions that either change or maintain the structure,
which could be deemed synonymous/non-synonymous, it is not
trivial to systematically predict these in a noncoding context. Dif-
ferently from proteins, the effect of the combined changes in the
ncRNA cannot be easily inferred from the effect of the individual
changes in the noncoding gene. In addition, insertions and dele-
tions (indels) also impact the structure and should therefore be
included in the calculations of positive selection.

The SSS-test is the first attempt, to my knowledge, that predicts
positive selection in ncRNAs [6]. The tool receives a multi-FASTA
as input and outputs selection scores for each species (Fig. 3). The
main steps of the pipeline are described next. Note that all of them
are already implemented in the SSS-test script, so the user does not
have to concern oneself about any implementation details.

1.4.1 Species-Specific

Changes

If the input given by the user is already aligned, it is submitted
directly to a module that detects species-specific changes. Other-
wise, muscle is used for the alignment. Species-specific changes can
be either substitutions or indels. These two types will be processed
separately in the pipeline.

To detect species-specific substitutions, each column of the
alignment will be considered separately. Every base will be counted,
and the most frequent one will be considered the “dominant base”
if it occurs more frequently than a predefined threshold (Fig. 4). A
base that differs from the dominant one will be classified as a
species-specific substitution. Importantly, the species-specific sub-
stitution will be disconsidered if it forms a compensatory base
pairing in the species structure, when compared to the consensus.

To detect species-specific indels, a two-way alignment will be
considered. One of the two sequences is from the analyzed species
and the other from a consensus produced by RNAalifold. This
consensus contains all species except the one being analyzed, in
order to exclude any bias from it. A consecutive sequence of gaps
will be classified as a deletion if the species contains gaps while the
consensus contains bases. A consecutive sequence of bases will be
classified as an insertion if the species contains bases while the
consensus contains gaps.

RNAsnp
The structural impact of each substitution is calculated with
RNAsnp. The p-values calculated by RNAsnp indicate the struc-
tural impact of the substitution. High p-values indicate low
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Fig. 3 The pipeline of the SSS-test

structural impact and vice-versa. Due to the multiple observation
issue, all p-values are corrected using the Benjamini-Hochberg test
[31]. Afterward, the corrected log p-values are summed, yielding a
substitution score.



128 Maria Beatriz Walter Costa

Fig. 4 Graphical representation of the SSS-test module to detect species-
specific substitutions. The input of the module is a multiple sequence alignment,
and each column is probed individually. First, the frequency of each base is
calculated. Afterward, the frequency of the most frequent base is compared to a
threshold to decide if it is a “dominant base.” If so, species-specific substitutions
are detected whenever a base differs from the dominant one. If there is no
“dominant base” in the column, no base is considered to be species-specific

1.4.2 Rank Statistics The problem of indel impact on ncRNA structures is still open,
since there are currently no accurate models for it. In the SSS-test,
rank statistics were used to produce a p-value for an observed indel
that indicates its structural impact.

For that, the distance between the structures of the species and
the family’s consensus is first calculated. Afterward, it is calculated
how likely it is to observe this indel within a neutral model. For
that, the consensus ncRNA is mutated all along its sequence to
obtain deletions of the same size of the observed indel. The struc-
tural distances are then calculated between the mutated sequence
with and without the constraint of the original structure. All these
calculations yield a series of values that form the ranks. If the
observed indel occurs in the higher ranks (unlikely indels), it
receives a low p-value. If the observed indel occurs in the lower
ranks (likely indels), it receives a high p-value. The structural dis-
tances are calculated with RNAforester [32].

As for the substitutions, all indel p-values are corrected for
multiple testing. Afterward, the corrected log p-values are also
summed, yielding an indel score.

1.4.3 Selection Scores To produce a selection score for each of the input species, the
substitution and indel scores of the species are summed using the
formula:

scoreselection ¼ 2� scoresubstitution þ scoreindel

The substitution score is given a weight of 2, while the indel
score is given a weight of 1. This is an heuristic decision based on
the knowledge that the calculation of the structural impact of the
substitution is grounded in a well-established model, while the
indel impact still lacks a stronger model.
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Fig. 5 Lowly diverged ncRNA family, left, and highly diverged ncRNA family, right
(adapted from the supplemental file of [6]). In each panel, the primate phyloge-
netic tree is shown on the left along with the divergence score of each species in
relation to the family’s consensus. On the right side of each panel, the species
structures are shown. The family divergence score is the median species score:
d 0.0 (left) and d 57.9 (right)

Finally, the species score will inform the user about how unex-
pected the detected changes are, which is a measure of positive
selection.

1.5 Family

Divergence

Positive selection is only assumed to occur in a species if the ncRNA
family went through a high level of negative selection beforehand.
Therefore, this type of analysis is only appropriate in families that
have low structural divergence (Fig. 5). The SSS-test outputs a
structural divergence score to help the user filter the families. This
score is based on the comparison of the partition functions of the
species and the family’s consensus (Fig. 5). To choose an appropri-
ate cutoff, refer to the protocols Sect. 2.7.

1.6 Evolutionary

History of a Structure

After identifying a structure that is under positive selection, it is
possible to study its evolutionary process through time in a detailed
manner using dynamic programming [33]. HAR1 is a perfect
example for that, since it has accumulated 18 species-specific sub-
stitutions in only 1 lineage, human, and remained very well con-
served in other species [34]. This is the fastest-evolving region in
the human genome [34]. In addition, HAR1 is also interesting
from a biological perspective because of its human structure,
which differs from the other species [35–37]. Although these topics
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are still under investigation, it seems that HAR1 is under positive
selection [33] and has an important role in brain development and
that its 118 bp local structure is key to its function [34, 35].

The mutationOrder software [33] was applied to HAR1 to
study its evolutionary history. That has been done by analyzing all
0.64� 1016 possible combinations of order of substitutions (muta-
tions) from the last common ancestor from human and chimpanzee
until the current human version. From these results, it could be
concluded that the current human structure evolved to be more
stable and is likely under positive selection in humans [33]. As
exemplified by HAR1, studying the evolutionary history of a non-
coding structure can yield valuable information.

1.7 Visualization of

Base Pair Probabilities

A secondary structure of a ncRNA, such as the MFE, can be easily
visualized in a 2D form, as shown in Fig. 1. However, as discussed
in Sect. 1.1, a ncRNA does not fold into one unique structure but
rather fluctuates between some stable structures. Therefore, ana-
lyzing theMFE alone does not yield the complete picture or inform
the viewer of how stable a structure is. Traditionally, researchers
turn to dot plots (Fig. 2) to get a more comprehensive picture of
base pair probability.

Although very informative, dot plots are not intuitive, espe-
cially for researchers from biological fields. A more intuitive alter-
native to dot plots are circular plots that show the MFE as well as all
other possible base pairs (Fig. 6). The CS2BP2-Plot [38] is an easy-
to-use tool that allows for an intuitive visualization of the evolution
of a structure (see [33] for the HAR1 evolution), as well as the
comparison of two or more structures [38]. The tool also allows for
comparison of structures of different lengths, which is an improve-
ment over other comparative tools, such as diffRNABow [39].

2 Methods

2.1 Software

Installation

The SSS-test is a free software, available at the link https://github.
com/waltercostamb/SSS-test, along with its help and usage pages.
It was developed for Linux but runs onMacOS systems as well. The
RNAfold program from the Vienna RNA package is used within the
SSS-test to predict secondary structures and their partition func-
tions. In addition, the SSS-test uses RNAalifold and RNAforester,
also part of the Vienna package, as well as the muscle aligner and
three Perl packages. To install the required software, follow the
instructions of the links below on your Unix system.

RNAsnp: http://rth.dk/resources/rnasnp/software

Muscle aligner: http://www.drive5.com/muscle

Vienna RNA package: https://www.tbi.univie.ac.at/RNA/
#download

https://github.com/waltercostamb/SSS-test
https://github.com/waltercostamb/SSS-test
http://rth.dk/resources/rnasnp/software
http://www.drive5.com/muscle
https://www.tbi.univie.ac.at/RNA/#download
https://www.tbi.univie.ac.at/RNA/#download
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Fig. 6 Different visualization techniques for ncRNA structures. The CS2BP2-Plot on the right combines
information of both the planar graph and dot plot (adapted from [38]). The most stable MFE base pairs are
colored red, while the other base pair probabilities are colored in blue, red, green, or yellow, according to their
values



export RNASNPPATH=/path-to/RNAsnp-1.2

export PATH = $PATH:/path-to/RNAsnp/bin:/path-to/ViennaRNA/

bin:/path-to/ViennaRNA/\

share/ViennaRNA/bin:/path-to/muscle/bin

./SSS-test

./SSS-test -i FOLDER/FILE -f FORMAT -s STRUCTURE
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Bio::AlignIO from cpan: https://metacpan.org/pod/Bio::
AlignIO

fasconvert from cpan: http://search.cpan.org/dist/FAST/bin/
fasconvert

Statistics::R from cpan: http://search.cpan.org/~gmpassos/Statis
tics-R-0.02/lib/Statistics/R.pm

After installation, if necessary, copy the lib/distParam directory
from the RNAsnp sources over to the RNAsnp installation location.
You may also need to export the path to RNAsnp installation
location:

In addition, make sure that all binaries of the required software
are in the bash path, with /path-to/, /RNAsnp/ /ViennaRNA/,
etc. replaced appropriately.

Note that the command above corresponds to one command
line. The backslash symbol indicates that the line continues below.

A common error when running the SSS-test is when the bash
does not find the script relplot.pl, from the Vienna package. To
solve this, simply export its path to the bash $PATH variable. Note
that relplot.pl is provided in a subfolder of the share folder of the
Vienna package.

An easier alternative that does not require you to install any
software is to download the SSS-test bundle directly available at
http://www.bioinf.uni-leipzig.de/Software/SSS-test/.

After download, the software can be used directly.

2.2 Usage of the

SSS-Test

The help page of the SSS-test can be accessed by typing the follow-
ing command line:

The general command line of the SSS-test is:

https://metacpan.org/pod/Bio::AlignIO
https://metacpan.org/pod/Bio::AlignIO
http://search.cpan.org/dist/FAST/bin/fasconvert
http://search.cpan.org/dist/FAST/bin/fasconvert
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
http://www.bioinf.uni-leipzig.de/Software/SSS-test/


./SSS-test -i example/input.fasta -f fasta -s Yes

>species1

ACACAGAGGGCCCTCTCTGCCTCTGGCCACCACAGCCCCTAGGCCAGGCATGGGTATT-

T A T T C T T A G G T A T G T T G C T T T T A A G A A G A T G T A A T C A G C A T C T T -

GAGCCGGGCCTCCCTTTGTGA

>species2

ACACAGAGGGCCCTCTCTGCCTCTGGCCACCACAGCCCCTAGGCCAGGCATGGGTATT-

T A T T C T T A G G T A T G T T G C T T T T A A G A A G C T G T A A T C A G C A T C T T -

GAGCCGGGCCTCCCTTTGTGA

>species3

ACACAGAGGGCCCTCTCTGCCTCTGGCCACCACAGCCCCTAGGCCAGGCATGGGTATT-

T A T T C T T A G G T A T G T T G C T T T T A A G A A G A T G T A A T C A G C A T C T T -

GAGCCGGGCCTCCCTTTGTGA

ls -lh example/input_structures/
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The parameter -i takes as argument the subfolder and input
file. The parameter -f takes as argument the format of the input file,
which can be either fasta (not previously aligned) or aligned

(if previously aligned). The parameter -s takes as argument either
Yes or No depending on if the user wishes the structure files to be
saved in the subfolder FOLDER/FILE_structures.

A valid command line of the SSS-test is:

In the example, the input file is input.fasta, which is located in
subfolder: example/. It is a requirement of the SSS-test that the
input file should be located inside a subfolder as exemplified above.
Note that, independently of being aligned or not, the input file
should always be in the classic FASTA format, with a header marked
by the symbol “>” in the first line and sequences in the subsequent
lines. Space characters are not allowed in the header. An example of
a valid input follows below:

The parameter -s in the valid command line above received a
Yes as an argument, indicating that the user wanted the secondary
structures to be saved. You can see those files with the command
below:

Inside this folder you will find six files for each input species.
Three of them correspond to the species itself and three correspond
to the consensus of the group without the species. Those are:

– Centroid secondary structure for the species (FILE-SPECIES-
centroid_rss.ps)

– MFE secondary structure for the species (FILE-SPECIES-
MFE_rss.ps)



./SSS-test -i FOLDER/FILE -f FORMAT -s STRUCTURE -d DOMINANT_-

BASE_THRESHOLD

./SSS-test -i example/input.fasta -f fasta -s Yes -d 50
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– Dot plot for the species (FILE-SPECIES_dp.ps)

– Centroid secondary structure for the consensus of the group,
without the species (FILE-SPECIES-consensus-centroid_rss.
ps)

– MFE secondary structure for the consensus of the group, with-
out the species (FILE-SPECIES-consensus-MFE_rss.ps)

– Dot plot for the consensus of the group, without the species
(FILE-SPECIES-consensus_dp.ps)

The three parameters detailed above,-i, �f, and -s, are manda-
tory. The parameter -d is optional and can be changed, according to
the user. It refers to the threshold in percent of the dominant base
and can take any value from 0 to 100. This threshold is used when
detecting species-specific substitutions (Fig. 4). As detailed in Sect.
1.4, a species-specific substitution is detected when it differs from
the column’s dominant base, which has a frequency equal to or
higher than the threshold. If not indicated, it will receive a default
value of 60.

The lines below correspond to a general command and a valid
command changing the threshold to 50, as an example.

In this example, if your input has six species, the SSS-test will
already consider a dominant base if it occurs in at least three species.
Say, for a substitution s with s1 ¼ “A,” s2 ¼ “A,” s3 ¼ “A,”
s4 ¼ “T,” s5 ¼ “T,” and s6 ¼ “G,” the dominant base will be “A”
and s4, s5, and s6 will be considered as species-specific substitutions.
Unless you have specific reasons for changing this threshold, you
should use the default.

Once you run the SSS-test for the first time for any multi-
FASTA file, intermediate files will be created within the input
subfolder. The next time you run the test again for the same file,
the calculation of the scores will be considerably faster. Note that
you may receive errors from the test in case you make modifications
in the input file after the first calculations and try to run it again. In
this case, remove all intermediate files produced by the test and run
it one more time.

The main output of the SSS-test is a file with the species scores.
You will find it in the subfolder where the input file is located. The
contents of this file will also be output in the terminal. If the input
name is input.fasta, the name of the score file will be input.sss.



./local-structure-pipeline

./local-structure-pipeline -i FOLDER/FILE -f FORMAT -o OUT-

PUT_FOLDER

./local-structure-pipeline -i example/family.fasta -f fasta -o

local_family

Block Gorilla Human Macaque Orangutan Pan

sub1 3-126 284-360 11-112 3-126 3-126

sub2 - 370-490 - - -

sub3 - 537-622 - - -

sub4 605-674 840-911 686-764 - 711-853

sub5 - 1072-1181 - - 981-1090

sub6 - 1188-1248 - - 1097-1157
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2.3 Usage of the

Local Structure

Pipeline

The SSS-test uses RNAfold internally to predict global folding of
structures. This approach is appropriate for small RNAs.
Long ncRNAs, lncRNAs, have a different dynamic, and do not
always fold into stable structures. In this case, it is more sensible
to consider local instead of global structures. If you wish to study
selection in lncRNAs, it is advisable to first use the local pipeline to
find conserved local structures and then submit these to the
SSS-test.

The help page of the local structure pipeline can be accessed by
typing the following command line:

The general command line and a valid example are:

As for the SSS-test, the input file is indicated by parameter -i.
The file in the example above is family.fasta, which is located in
subfolder: example/. The requirements for the input are the same,
including the FASTA contents. Also like the SSS-test, the parame-
ter -f indicates the format of the input file, which can be either fasta
or aligned. The last parameter is -o, which indicates where the
pipeline should save the output files. If the folder does not exist,
the pipeline will create it.

The pipeline will search for conserved local structures and will
output all their FASTA files in the output folder. These FASTA files
are ready to be input to the SSS-test. In addition to the FASTA files,
you will also find in the output folder a file with species positions
(OUTPUT_FOLDER/FILE-local_positions.txt). This file follows
the following format:

The block column refers to the local structure. For example,
sub1 refers to file OUTPUT_FOLDER/FILE_sub1.fasta. The fol-
lowing columns refer to each of the input species and the positions
of their local sequences. For example, sub1 of Gorilla is located in
the gorilla lncRNA sequence between the third and the 126th base.



RNAsnp --pvalue1 = 10.0 –pvalue2 = 10.0 -f SIX3_AS1sub10-

consensus_without_the_\ SPECIES.alg -m 3

¼

RNA_length gap_start gap_length structural_distance

10 1 2 15

10 2 2 15

10 3 2 12

10 4 2 0

10 5 2 0

10 6 2 0

10 7 2 0

10 8 2 12

10 9 2 15

10 10 2 15
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2.4 Running the SSS-

Test with an Example

After installing or downloading the SSS-test to your computer, you
will find folder examples/, which contains two FASTA files: SIX3_-
AS1sub10.fa and H19X.fa. The first file is a local structure block
from the lncRNA SIX3-AS1. This block can be submitted to the
SSS-test directly. The second file, H19X.fa, contains orthologs of a
long ncRNA, which should be submitted first to the local structure
pipeline. After finding conserved local structure blocks with the
pipeline, these can be submitted to the SSS-test.

To run the SSS-test for the local block 10 of the SIX3-AS1
lncRNA, use the following command line:

./SSS-test -i example/SIX3_AS1sub10.fa -f fasta -s Yes

You will receive in the terminal notification messages of the test
along with the selection scores. In addition, an output file will be
produced, examples/SIX3_AS1sub10.sss, which will contain the
selection scores of each input species. Intermediate files of two
types will also be produced for the input species. The first file is
an RNAsnp report, obtained with the command below:

The remaining intermediate files are indel reports from the gap
modeling pipeline that is used internally in the SSS-test. These are
named FILE-SPECIES-i.indel, with the i being the indel size. An
example of a file of this type of file with i 2 follows:

This file summarizes the structural impact of a gap i ¼ 2, indi-
cated in the third column, in an example sequence of length ¼ 10,
as indicated in the first column. The gap i is applied from the first to
the last base, as indicated in the second column, and its structural
impact as calculated by RNAforester is indicated in the fourth
column.
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Fig. 7 Structural impact of differently sized gaps inserted in a transfer RNA, tRNA, with a length of
78 nucleotides (adapted from the supplemental file of [6]). The secondary structure is given as a reference
on the x axis in dot bracket format, with dots representing unpaired bases and brackets paired bases. The
structural impact was calculated with RNAforester

Generally, high impacts are observed whenever the gap is
applied to a base paired position, while low to zero structural
impacts are observed in unpaired positions (Fig. 7). Interestingly,
the size of the gap does not seem to matter (Fig. 7). This is a recent
topic in RNA biology that has not yet been fully covered. Future
advances in this area will surely benefit the SSS-test and studies in
positive selection in ncRNA structures.

The secondary structures are also output by the SSS-test and
are located in the folder:. /examples/SIX3_AS1sub10_structures/
. To learn how to analyze and interpret the results, proceed to
section “Interpreting Results.”

2.5 Running the

Local Structure

Pipeline with an

Example

To measure structural selection locally in the H19X lncRNA, you
should first calculate local structure blocks and then apply the
SSS-test separately for each block. For calculating conserved blocks,
use the command line below.

./local-structure-pipeline -i example/H19X.fa -f fasta -o

H19X_local_structures

The command will create a new folder, H19X_local/, with all
the local structure blocks as well as a file indicating the sequence
positions of each block. Now that you calculated the local blocks,



./SSS-test -i H19X_local/H19X_sub1.fa -f fasta -s Yes

seqID nr_ch sp_dist sp_len alg_len sc_ind sc_ch sp_sc famil-

y_div

Orang 0 0.0 123 123 0 0 0.0000 0.0

Human 1 33.4 123 123 0 12.1497 12.1497 0.0

Pan 0 0.0 123 123 0 0 0.0000 0.0
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you can submit them to the SSS-test in the “not aligned” mode
(fasta). If you want to calculate a block individually, say for local
block 2, type:

If you wish to run the SSS-test for all local blocks at once with a
bash loop, type:

./loop_SSS-test.sh -i H19X_local/*fasta -f fasta -s Yes

2.6 Interpreting

Results

After running the SSS-test, the results should be carefully consid-
ered. The following aspects should be taken into account: (i) the
family divergence, (ii) the selection scores, and (iii) the secondary
structures. The main output of the SSS-test is a .sss file, in which
each line corresponds to an input species. The lines below refer to
the .sss file of the example input and were slightly modified for
better visualization.

This file contains nine columns: (1) ID of the file and species;
(2) number of species-specific substitutions; (3) structural distance
between the species and the consensus; (4) length of the species
sequence; (5) length of the alignment with all species; (6) indel
score; (7) substitution score; (8) species selection score, consider-
ing both indel and substitutions score; and (9) structural diver-
gence of the family (median value of column 3).

2.7 Analyzing and

Filtering Families

Analyzing structural selection for a species is only sensible if its
family is conserved. The family divergence score given in the output
of the SSS-test (ninth column) indicates this context. Low values,
e.g., � 10.0, indicate a very conserved family, while high values,
e.g., > 45.0, indicate a diverged family. You should consider your
species set critically in this aspect and choose an empirical threshold.
For that you can select families with different divergence scores and
analyze them manually. As an example, for primate species,
12 families of lncRNAs (Fig. 8) were chosen with scores ranging
from 0.0 to 65.0 (supplemental file of [6]). These were classified
according to their visual profile (Table 1).

As a result of this visual analysis, a threshold of �10.0 was
empirically chosen for conserved families. Note that primates are
evolutionarily close. For another set of species, a different threshold
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Fig. 8 Centroid structures of conserved local blocks of lncRNAs with increasing divergence scores (adapted
from the supplemental file of [6]). Left panel: scores from 0.0 to 15.0; right panel: scores from 20.0 to 65.0. In
each panel from left to right: human, chimpanzee/bonobo, orangutan, gorilla, and rhesus macaque. Visual
structural trends are marked in purple rectangles, thicker rectangles refer to clear trends, and thinner
rectangles refer to possible trends. Note that the values refer to the divergence scores of each conserved
block

may be chosen. After choosing a threshold, you can filter results
systematically.

2.8 Analyzing

Selection Scores

After filtering the families by divergence, you should analyze the
selection scores of each species. First, choose appropriate thresholds
of negative and positive selection. For this you can follow a similar
idea as for choosing a threshold of divergence score. As an example,
also for primates, ten conserved blocks of lncRNAs (Fig. 9) were
chosen with the human selection score ranging from 0.0 to 30.0
(supplemental file of [6]). These were classified according to their
visual profile (Table 2).

In this case, thresholds of �3.0 and � 10.0 were empirically
chosen for negative and positive selection, respectively. After defin-
ing your thresholds, you can filter your species sequences
systematically.

The final step of considering your results is to visually analyze
the secondary structures and critically decide if they match the
selection scores. If they do, they become candidates of positive
selection and can proceed to the wet lab for in vitro analysis.
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Table 1
Summary of the visual analysis of 12 conserved local blocks of lncRNAs

Family ID and local structure Score Visual profile

blastnMouse.CUFF.110475 (sub2) 0 1 clear trend

blastnMacaque.Locus 40302 (sub4) 5 1 clear trend

ENSG00000237166 (sub4) 7.5 1 clear trend

blastnPan.Locus 7625 (sub1) 10 1 clear trend

ENSG00000243012 (sub2) 12.5 1 possible trend

blastnOpossum.Locus 375118 (sub1) 15 1 possible trend

ENSG00000256802 (b-1) 20 2 clear trends

blastnMacaque.Locus 429229 (sub1) 25 1 possible trend

ENSG00000236466 (sub1) 35 2 possible trends

blastnPan.Locus 105878 (sub1) 45 No trend

ENSG00000226526 (sub3) 55 No trend

blastnPan.Locus 566 (sub1) 65 No trend

Adapted from the supplemental file of [6]

Score refers to the divergence score of the local block yielded by the SSS-test

2.9 Visual Analysis The selection scores for SIX3_AS1sub11 are 12.2, 0.0, and 0.0 for
human, orangutan, and chimpanzee/bonobo, respectively. This
indicates positive selection in the human branch. As a visual inter-
pretation of the centroid structures of the species, we see that the
human species is more stable, especially considering the lower stem
(Fig. 10). This stabilization could have occurred due to positive
selection.

To get a more comprehensive view of the structures of each
species, and to compare them directly, you can go to the CS2BP2-
Plot webpage, https://nrcmonsrv01.nrc.ca/cs2bp2plot/, and
input the FASTA sequences. You will obtain two circular plots
(Fig. 11) and will be able to change the displayed species at the
“Sequence” option on top. Secondary structures (planar graph
diagrams) are available on the bottom along with arc and circular
diagrams and dot bracket structures. A statistics summary and an
alignment report are also available below. This information will help
you to further characterize your positive selection candidates.

In our example, there is only one base substitution between the
human and the other two sequences (base 87 from A to C, which is
marked with red circles in Fig. 11). Since the sequences for

https://nrcmonsrv01.nrc.ca/cs2bp2plot/
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Fig. 9 Centroid structures of conserved local blocks of lncRNAs with increasing selection scores of the human
structure (adapted from the supplemental file of [6]). Left panel: scores from 0.0 to 5.0; right panel: scores
from 9.0 to 30.0. In each panel from left to right: human, chimpanzee/bonobo, orangutan, gorilla, and rhesus
macaque. Visual structural trends are marked in purple rectangles, thicker rectangles refer to clear trends,
and thinner rectangles refer to possible trends. Note that the values refer to the selection scores of the human
structure only (the leftmost structure in each panel)

Table 2
Summary of the visual analysis of ten human structures in conserved lncRNA blocks

Family ID and local structure Score Visual profile

blastnMacaque.Locus 61692 (sub1) 0 Similar form and stability

ENSG00000224711 (sub5) 1 Similar form and stability

blastnMacaque.Locus 62244 (sub4) 2 Similar form and stability

blastnMacaque.Locus 473621 (sub6) 3 Similar form, higher stability

blastnPan.CUFF.296990 (sub7) 5 Slight different form, lower stability

blastnMacaque.Locus 474656 (sub2) 9 Different form, similar stability

Locus 193583 (subb3) 10 Shorter form, higher stability

ENSG00000227509 (sub7) 13.3 Different form, higher stability

blastnPan.Locus 17197 (sub1) 20 Longer form, lower stability

blastnMacaque.Locus 210980 (sub8) 30 Different form, higher stability

Adapted from the supplemental file of [6]

Score refers to the selection score of the human structure yielded by the SSS-test. The visual profile refers to form and

stability of the human structure in comparison with its orthologs
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a

b

c

Fig. 10 Local structures of lncRNA SIX3-AS1sub10 of the following species: (a)
human, (b) chimpanzee/bonobo, and (c) orangutan



Fig. 11 Base pairing probabilities of local structures SIX3-AS1sub10 of human
(top) and orangutan (bottom). The sequences match perfectly with the exception
of base 87, which is marked with red circles. The MFE base pairings are
depicted in red, while other base pairings are marked in other colors from
orange to blue, depending on their probabilities
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orangutan and chimpanzee/bonobo are the same, it is reasonable
to assume that the human sequence acquired this substitution,
A87C, after the split from these two species.

Was this substitution caused by positive selection in the human
branch? The results of the SSS-test indicate so. However, to answer
this question, more evidence should be collected. By visual analysis,
it seems that the substitution stabilized the human structure
(Fig. 11). This can be inferred by an absence of intermediately
strong pairings in the human structure, depicted by orange and
green, and their presence in the other species. Notice (i) the green
connections in the orangutan and chimpanzee/pan structures
between bases 15, 16, 17, and 103, 104, and 105; (ii) the orange
connection between bases 24 and 46; and (iii) the green connec-
tions between bases 62–70 and 74–84 (Fig. 11). All these are
absent in the human structure, strengthening the MFE and making
it more likely. This corroborates the hypothesis that the human
structure is under positive selection.

An analysis of SNPs in human populations would also give clues
about the evolutionary history of this local structure. In addition,
wet lab experiments would inform of functionality and differences
between the species.

3 Notes

There are many aspects of ncRNA evolution that are not yet fully
understood. Conservation of ncRNA structures, caused by negative
selection, has been extensively researched [1–5], yielding many
research tools and solid models. Positive selection, in turn, has
not been as extensively researched. The SSS-test is the first tool
(to my knowledge) that addresses this point and offers a practical
solution [6].

It is important to keep in mind, though, that solid models are
still missing for grounding the theory of positive selection in
ncRNA structures. For this reason, the SSS-test uses heuristic
decisions whenever a model is lacking, so that a selection score
can be calculated. One of the most important aspects that will
benefit from future research is the calculation of indel impact.
Currently, the SSS-test uses rank statistics for calculating p-values
that indicates structural impact.

Taking this into consideration, an empiric intuition of the
analyst is valuable, so that he or she uses visual analysis together
with the selection scores. The SSS-test is most powerful when used
in a larger dataset that would be difficult to be analyzed manually.
In this case, one can screen hundreds of thousands of families and
obtain a smaller set that could be individually analyzed.
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Dunjić M, Stadler PF, Nowick K (2019)
SSS-test: a novel test for detecting positive
selection on RNA secondary structure. BMC
Bioinformatics 20(1):151

7. Lorenz R, Bernhart SH, Höner zu
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Chapter 9

Network-Based Structural Alignment of RNA Sequences
Using TOPAS

Chun-Chi Chen, Hyundoo Jeong, Xiaoning Qian, and Byung-Jun Yoon

Abstract

TOPAS (TOPological network-based Alignment of Structural RNAs) is a network-based alignment
algorithm that predicts structurally sound pairwise alignment of RNAs. In order to take advantage of
recent advances in comparative network analysis for efficient structurally sound RNA alignment, TOPAS
constructs topological network representations for RNAs, which consist of sequential edges connecting
nucleotide bases as well as structural edges reflecting the underlying folding structure. Structural edges are
weighted by the estimated base-pairing probabilities. Next, the constructed networks are aligned using
probabilistic network alignment techniques, which yield a structurally sound RNA alignment that considers
both the sequence similarity and the structural similarity between the given RNAs. Compared to traditional
Sankoff-style algorithms, this network-based alignment scheme leads to a significant reduction in the
overall computational cost while yielding favorable alignment results. Another important benefit is its
capability to handle arbitrary folding structures, which can potentially lead to more accurate alignment for
RNAs with pseudoknots.

Key words RNA structural alignment, Network-based RNA alignment, Network alignment

1 Introduction

Sequence alignment has become a staple in modern biomedical
research, as it provides effective computational means for compara-
tive analysis of biological sequences. Nowadays, sequence align-
ment techniques lie at the core of various bioinformatics tools
that are used for predicting novel genes and studying the function
and structure of biomolecules. This is also the case for RNA
research, where RNA alignment methods are widely used for com-
parative studies of RNA families and the prediction of novel non-
coding RNAs (ncRNAs). For RNAs, their folding structure is
known to play critical roles in carrying out their function, hence
also well conserved among members in the same family. As a result,
most RNA sequence alignment techniques consider the underlying
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structure of the RNAs to be aligned to ensure that the obtained
alignment results are biologically meaningful.

While such a structural alignment approach can enhance the
overall accuracy of the RNA alignment, incorporating structural
aspects of the RNAs into the alignment process tends to be com-
putationally expensive. The first such algorithm was proposed by
Sankoff based on a dynamic programming approach, aiming to
simultaneously predict the best alignment and the consensus sec-
ondary structure for a given set of RNA sequences whose structure
is unknown [1]. The computational cost for simultaneous align-
ment and folding of two RNA sequences of length n is O(n6) for
the Sankoff algorithm, which makes it impractical for long
sequences. To remedy this problem, various Sankoff-style align-
ment algorithms have been developed to date, which incorporate
various speed improving heuristics while preserving the benefits of
structural alignment [2–11].

Recently, with the availability of large-scale biological
networks – especially, protein-protein interaction (PPI) networks –
there have been significant research efforts to develop efficient tools
for network alignment [12, 13]. While the general network align-
ment problem is computationally more complex compared to
sequence alignment, this high complexity has inspired various com-
putationally efficient network alignment techniques that can pre-
dict an accurate alignment of two or more networks with arbitrary
topology. Notable examples are random walk-based Schemes [13],
which will be discussed in further details in the next section. Build-
ing on recent advances in network alignment, TOPAS (TOPologi-
cal network-based Alignment of Structural RNAs) takes a network-
based approach for an efficient and accurate structural alignment of
RNA sequences [14]. TOPAS first constructs a topological network
for each RNA to be aligned, by integrating its sequence and struc-
tural properties. Subsequently, the resulting topological networks
are efficiently aligned to each other using network alignment tech-
niques. This network-based structural RNA alignment approach
has several benefits, including enhanced accuracy, reduced compu-
tational cost, and higher flexibility. In fact, TOPAS can effectively
handle RNAs with arbitrary folding structures, including RNA
pseudoknots.

This chapter is organized as follows: In Subheading 2, w
briefly discuss the network alignment problem and present existing
network alignment approaches with a focus on random walk-based
schemes. In Subheading 3, we provide an overview of TOPAS
followed by a detailed description of the algorithm. Instructions
for using the algorithm and examples will be provided in Subhead-
ing 4. We conclude the chapter in Subheading 5 with a brief
discussion about TOPAS and some future perspectives regarding
network-based RNA alignment.
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2 Network Alignment

Network-based data representation provides an intuitive means to
describe complex relationships between multiple variables. Due to
the distinctive advantages of the network-based data representa-
tion, diverse network-based data interpretation algorithms have
been developed and successfully applied to the analysis of social
networks [15, 16], images [17–19], single-cell RNA sequencing
data [20, 21], and biological networks [12, 13, 22–26].

Recently, thanks to various high-throughput measurement and
large-scale data collection techniques, a growing number of
biological networks with functional annotations have been archived
in public databases. This has asked for the development of compu-
tational methods that can effectively analyze and utilize the col-
lected biological networks. One possible solution is biological
network alignment, which aims to identify similarities and differ-
ences between two (or more) biological networks by finding their
best mapping [13]. As network alignment can identify conserved
nodes or subnetworks across different biological networks, through
the comparative analysis of the biological network of well-studied
species and that of less-studied species, it enables knowledge trans-
fer between species. For example, prior knowledge (e.g., functional
annotation) regarding biomolecules or pathways may be trans-
ferred based on the predicted network mapping, which may in
turn help the computational prediction of their functions (and
other features of interest) without time-consuming and expensive
biological experiments (Fig. 1).

To date, diverse network alignment algorithms have been pro-
posed based on the different strategies and optimization objectives.
For example, graphlet-based algorithms have been successfully
applied to the network alignment and have been shown to yield
reliable results [27–30]. The GRAAL (GRAph ALigner) family of

Fig. 1 Illustration of a biological network (left) and global network alignment (right). A network consists of
nodes and edges, where the nodes represent biomolecules such as proteins or genes, and their relationships,
interactions, or regulations can be represented by edges. Global network alignment aims to identify the best
overall mapping between nodes across different networks
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algorithms utilizes the graphlet signature for each node as the
feature vector representing the topological structure of its sur-
rounding local subnetwork. These algorithms yield the final net-
work alignment based on the similarities of the given graphlet
signature vectors. Another popular approach adopted by many
network alignment algorithms is seed-and-extension, which has
been shown to yield good results while being computationally
efficient [31–33]. Network alignment algorithms in this category
typically adopt a two-step approach, where they first compute a
node alignment score that combines both topological and node-
level similarities and then use a seed-and-extension scheme to find
the network alignment that maximizes the overall alignment score.
To estimate reliable alignment scores, various similarity measures
can be exploited, such as GO similarity [31], topological signifi-
cance [32], and so forth. Alternatively, various optimization tech-
niques based on different objective functions have been employed
to derive reliable network alignments [34–36]. These direct
optimization-based algorithms first define an objective function
that can quantify the quality of a network alignment based on the
topological similarity and the node-level similarity between net-
works. Then, they optimize the objective function by using
simulated annealing [34] or genetic algorithms [35, 36] to con-
struct the optimal network alignment.

Recently, several network alignment algorithms have been
developed based on a variety of random walk models, which have
demonstrated accurate alignment performance at a relatively low
computational cost [13, 22–26]. Random walk models are used to
perform simultaneous random walk on a pair of networks, where
the stationary probabilities resulting from the random walk can be
used to quantify the similarity between nodes across networks in a
way that integrates topological similarity as well as node-level simi-
larity (e.g., sequence similarity). The resulting node correspon-
dence scores (or node alignment probabilities) can be used for
constructing the pairwise or multiple network alignment that max-
imizes the overall alignment score. IsoRank [22] is probably one of
the first algorithms based on this approach, which adopted a ran-
dom walk with restart model. SMETANA adopts a semi-Markov
random walk (SMRW) model to derive multiple network align-
ments [23]. A context-sensitive random walk (CSRW) model that
can switch its mode of random walk depending on the context
(e.g., local network similarities) was used in [24], yielding accurate
network alignment results. There are several distinctive advantages
of random walk-based network alignment algorithms compared to
other alignment methods. First of all, random walk models have
been demonstrated to be very effective for integrating different
types of similarities, such as topological similarity and node similar-
ity, which is pivotal for obtaining accurate and biologically signifi-
cant network alignment algorithms. Furthermore, random walk
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models can provide a flexible framework for estimating the node
correspondence for networks with arbitrary topological structures –
i.e., without restricting them to simple structures such as linear
paths or trees. Another important advantage of random walk mod-
els is that they can be efficiently implemented by taking advantage
of the rich theoretical results in linear algebra and graph theory.

3 Overview of the TOPAS Algorithm

TOPAS is an efficient network-based RNA alignment algorithm
that considers the structural similarity between RNAs. This algo-
rithm takes a widely different approach from other classical Sankoff-
style algorithms. By constructing topological networks that capture
the potential folding structures underlying the RNA sequences to
be aligned, TOPAS utilizes efficient network diffusion and align-
ment techniques to predict a structurally sound RNA alignment,
where both sequence and structural similarities are considered
simultaneously. The overall computational complexity is O(n2) for
aligning two RNA sequences of length n, which is fairly efficient,
and it practically outperforms many Sankoff-style alignment algo-
rithms in terms of the actual CPU time needed for finding the
structural alignment.

For each RNA, TOPAS constructs the topological network by
first taking the RNA sequence as the backbone of the topological
network. Each node in the topological network represents a nucle-
otide base in the RNA, following the original sequential order, and
the edges in this backbone connect the neighboring nucleotides.
To incorporate the structural information of the corresponding
RNA into the topological network, weighted edges are added
into the backbone network for node pairs that can form base-
pairs. The edge weight is proportional to the base-pairing proba-
bility. Edges with low probability values (less than a threshold PTh)
can be removed from the network, which helps TOPAS to focus on
the most likely folding structure and also improves its computa-
tional efficiency.

Figure 2 illustrates the topological network constructed from
an RNA sequence, whereas Fig. 3 illustrates the alignment of two
RNAs based on their corresponding topological networks. The
network Gn = (Vn,En) denotes the nth topological network con-
structed from the nth RNA sequence, where Vn represents the set
of nodes (i.e., nucleotides) and En consists of the edges (i.e., both
the backbone edges and the weighted edges based on the base-
pairing probability).

To construct a structurally sound RNA alignment, TOPAS
considers integrating three different types of similarities that cap-
ture different aspects of the RNAs to be aligned. The three
similarities – the structure similarity RS, the connected similarity
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Fig. 2 Illustration of the topological network construction based on an RNA
sequence. The backbone edges for neighboring nodes are shown in solid lines.
The dashed lines show the weighted edges between nodes that can potentially
form base-pairs

Fig. 3 Illustration of the RNA alignment based on topological networks. Network
G1 represents the first RNA and the network G2 represents the second RNA.
TOPAS utilizes network diffusion and alignment techniques to align the
networks, thereby predicting the structural alignment of the original RNAs. R(c,
d) denotes the pairwise similarity that captures the sequence similarity between
the nucleotide bases represented by the corresponding nodes at position c in
network G1 and position d in network G2. PS1 a, cð Þ is the base-pairing probability
for the nodes at positions a and c in network G1. The set of the neighbors of the
node at position a is denoted by NG1 að Þ if there exist base-pairing interactions in
network G1. (Reprinted with permission from Ref. [14])

RC, and the sequence similarity RE – are combined to measure the
overall similarity R between nodes.

The structure similarity RS is used to guarantee that the
resulting RNA alignment incorporates the similarity between the
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underlying structures of the two RNAs and the presence of a
common consensus structure. This similarity is defined as:

RS a, bð Þ=
X

c∈NG1
að Þ

d∈NG2
bð Þ

PS1 a, cð ÞPS2 b, dð Þ
D cð ÞD dð Þ R c, dð Þ, ð1Þ

where NGn vð Þ is the set of connected neighbors of the node v in
the network Gn. PS1 a, cð Þ is the base-pairing probability between
nodes a and c in network G1. Similarly, PS2 b, dð Þ denotes the
base-pairing probability between nodes b and d in network G2.
The weighted degree of nodes c in network G1 is given by
D cð Þ=P

u∈NG1
PS1 u, cð Þ , and similarly, the weighted degree of

nodes d in the network G2 is given by D d =
P

v∈NG
PS2 v, d .

2

The connected similarity RC is used to measure the similarity
between neighborhoods. The connected similarity is defined as:

RC a, bð Þ= 1
2

R a-1, b-1ð Þ þR a þ 1, b þ 1ðð : ð2Þ
As shown here, the overall similarity R is used to capture the

sequence and structural similarities for the nodes adjacent to (a, b)
in the respective networks. It is critical to note that RS and RC are
defined in a recursive fashion to enable effective network-based
similarity scoring in TOPAS that captures the global sequence and
structure conservation across the given RNAs.

In addition to the similarities RS and RC, the sequence simi-
larityRE aims to capture the nucleotide-base similarity between the
RNAs in terms of their sequence composition. In TOPAS, the
sequence similarity RE between two nodes in different topological
networks is estimated by computing the sequence-level alignment
probability PA by using a sequence alignment algorithm.

The overall similarity R between any node pair across the
topological networks is computed by integrating the structure
similarity RS, the connected similarity RC, and the sequence simi-
larity RS as follows:

R a, bð Þ= α∙RS a, bð Þ þ β∙RC a, bð Þ þ 1- α- βð Þ∙RE a, bð Þ, ð3Þ
where α and β are topological weighting parameters for the struc-
ture similarity RS and connected similarity RC respectively. The
topological weighting parameters are nonnegative and α + β ≤ 1.
These parameters can be used to control and balance the trade-off
among the three similarity measures. Note that Eq. 3 is also recur-
sive if we plug in Eqs. 1 and 2.

Equation 3 can be written in a matrix form as R = AR. The
matrix A is the overall weighting coefficient matrix for the linear
combination of the three similarities (RS,RC,RE), and it can be
derived from Eq. 3. Based on this recursive matrix equation, we can
efficiently estimate the overall network-based similarity R by using
the power method through the following iterative updates:
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R kþ1ð Þ ← AR kð Þ

AR kð Þ�� ��
1

, ð4Þ

whereR(k) is the estimation of the overall similarity score R in the k-
th iteration. The initial similarity R(0) can be set to a nonnegative
random matrix with the constraint |R(0)|1 = 1. The convergence
rate of the power method is dominated by the second-largest
eigenvalue of the matrix A. This iterative procedure based on the
power method resembles the random walk, belief propagation, or
network diffusion procedure on the “alignment network” in the
IsoRank network alignment algorithm [22]. In practice, we can
limit the number of iterations to a fixed number NIt if needed.

Based on the estimated network-based similarity score R, we
can find the optimal pairwise alignment of the topological networks
by maximizing the sum of the overall similarity scores of the aligned
nodes. While finding the exact solution for general networks is
computationally costly, the inherent ordering of the nodes in each
topological network (arising from the original base positions in the
corresponding RNA) allows us to find the optimal solution using
dynamic programming, namely, the well-known Needleman-
Wunsch algorithm.

The pseudo-code of TOPAS is shown below.

TOPAS: network-based RNA structural alignment algorithm
Output: structural alignment cS1, cS2� �
Input: RNA sequences (S1, S2), probabilistic model (PA,PS1 ,PS2 )
Parameters: (α, β, NIt, PTh)

1. Construct topological networks
for n=1 to 2
Construct Gn = (Vn,En) from the sequences data Sn,PSn ,PThð )

2. Run power method to estimate similarity R
Initialize the similarity R(0) with a nonnegative random unit vector
for k=1 to NIt

Initialize RS, RC to 0
for a= 1 to length(V1)
for b= 1 to length(V2)

Update structure similarity
for each c, dð Þ∈ NG1

að Þ, NG2
bð Þð Þ

RS a, bð Þ þ =R k- 1ð Þ c, dð Þ PS1 a, cð ÞPS2 b, dð Þ=D cð ÞD dð Þ½
Update connected similarity
if Exist R(a - 1, b - 1)
RC a, bð Þ þ = 1

2R
k- 1ð Þ a- 1, b- 1ð Þ

if Exist R(a + 1, b + 1)
RC a, bð Þ þ = 1

2R
k- 1ð Þ a þ 1, b þ 1ð Þ

Update overall similarity
R

kð Þ
A a, bð Þ= αRS a, bð Þ þ βRC a, bð Þ þ 1- α- βð ÞRE a, bð Þ

end
end
Normalize and update the overall similarity
R kð Þ =AR

kð Þ
A = AR

kð Þ
A

��� ���
1

(continued)



Stop criterion
if |R(k) - R(k - 1)| < Tolerance

break
end

3. Run dynamic programming (Needleman-Wunsch algorithm) to find
the alignment that maximizes the overall similarity score R cS1, cS2� �
4. Output the corresponding RNA structural alignment cS1, cS2� �

[output_sequence1,output_sequence2] = TOPAS(input_sequence,

file_basepair1, file_basepair2, file_alignment, Alpha, Beta)

Network-Based RNA Structural Alignment 155

The computational complexity of the TOPAS algorithm is
dominated by the step that estimates the overall similarity R. The
memory complexity of TOPAS isO(N2) while its time complexity is
O(kd1d2N

2), where k is the number of iterations in the power
method and dn is the number of effective base-pairing edges in
the network Gn. In general, for topological networks constructed
from real RNAs, the effective base-pairing interaction edges tend to
be sparse in the constructed networks; hence, we have kd1d2 ≫N2.

4 Running the TOPAS Algorithm

TOPAS is implemented in Matlab and it can be downloaded at
https://github.com/bjyoontamu/TOPAS.

One can use TOPAS to predict the structural alignment of two
RNAs by invoking the following Matlab function:

The first argument input_sequence specifies the file that con-
tains the RNA sequences to be aligned. The file should contain two
RNA sequences in FASTA format. The second and third arguments
file_basepair1 and file_basepair2 specify the files containing the
base-pairing probabilities. The fourth argument file_alignment

refers to the file that contains the (sequence-based) alignment
probabilities. Finally, Alpha and Beta are, respectively, used to spec-
ify the weighting parameter α for the topological similarity and the
parameter β for the connected similarity in Eq. 3, which are used to
compute the overall network-based similarity score R. The input
file formats are summarized in the following Table 1.

We now showcase the usage of TOPAS using the RNA
sequences taken from the Rfam database [37] as examples. In the
examples that will follow, the base-pairing probabilities and base
alignment probabilities are estimated by the RNAstructure package
[38]. RNAstructure is a software package for RNA and DNA
secondary structure analysis that provides RNA secondary structure
prediction and the sequence alignment based on a pair-HMM
model.

https://github.com/bjyoontamu/TOPAS
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Table 1
Summary of input file formats

Input sequences FASTA format

Base-pairing probabilities Position1 Position2 probability

Alignment probabilities Position1_of_sequence1 Position2_of_sequence2 probability

Fig. 4 Illustration of the secondary structures of the tRNAs X52070.1/699-771 and X01078.1/1396-1463. The
secondary structures are drawn using VARNA [39]. (a) The secondary structure of tRNA X52070.1/699-771. (b)
The secondary structure of tRNA X52070.1/699-771

Example 1: Alignment of tRNAs
In this example, the tRNA pair X52070.1/699–771 and
X01078.1/1396–1463 are aligned using TOPAS. The secondary
structures of these tRNAs are shown in Fig. 4. Furthermore, the
tRNA sequences are shown in Table 2, where the bases forming the
clover structure are colored. Each color represents one of the leaves
in the clover structure for readability. The goal of structural align-
ment is to align the two RNAs such that the alignment result
faithfully reflects the matching sequence and structure. As a com-
parison, we also show the sequence-based alignment result using a
pair-HMM.

By comparing the predicted RNA alignment with the ground
truth (obtained from Rfam), one can evaluate the performance of
the alignment by estimating sensitivity (SEN), positive predictive
value (PPV), and accuracy (ACC), which are defined as follows:
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Table 2
The tRNA sequences and the comparison of the alignment

X52070.1/699-771

UCCUCGGUAGCUCAAUUGGCAGAGCAGCCGGCUGUUAACCGGCAGGUUACUGGUUCGA

GUCCAGUCCGGGGAG

X01078.1/1396-1463

ACUAUUUUGGCAGAUUAGUGCAGUAAAUUUAGAAUUUAUUUAUAUAAUUUAAUUAAUU

AUAAAUAGUA

Ground truth alignment in Rfam:
UCCUCGGUAGCUCAAUUGGCAGAGCAGCCGGCUGUUAACCGGCAGGUUACUGGUUCGA

GUCCAGUCCGGGGAG

ACUAUUUUGGCAGAUU----AGUGCAGUAAAUUUAGAAUUUAUUUA-

UAUAAUUUAAUUAAUUAUAAAUAGUA

Sequence-based alignment using pair-HMM:
UCCUCGGUAGCUCAAUUGGCAGAGCAGCCGGCUGUUAACCGGCAGGUUACUGGUUCGA

GUCCA------GUCCGGGGAG

---------ACUAUUUUGGCAGAUUAGU--

GCAGUAAAUUUAGAAUUUAUUUAUAUAAUUUAAUUAAUUAUAAAUAGUA

Structural alignment based on TOPAS (a=0.50, b=0.48):
UCCUCGGUAGCUCAAUUGGCAGAGCAGCCGGCUGUUAACCGGCAGGUUACUGGUUCGA

GUCCAGUCCGGGGAG

ACUAUUUUGGCAGAUU----AGUGCAGUAAAUUUAGAAUUUAUUU-

AUAUAAUUUAAUUAAUUAUAAAUAGUA
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Fig. 5 Illustration of the structural alignment performance for the tRNA pair X52070.1/699-771 and X01078.1/
1396-1463. (a) Accuracy (ACC) for the tRNA pair. (b) Sensitivity (SEN) for the tRNA pair. (c) Positive predictive
value (PPV) for the tRNA pair

SEN=
TP

TPþ FN
,PPV=

TP
TPþ FP

,ACC=
TPþ TN

TPþ TNþ FPþ FN
:

The TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively. They can
be calculated by comparing the predicted alignment with the
target alignment (i.e., the ground truth). The accuracy of the
tRNA alignment based on the pair-HMM is only 13.7%, which
clearly shows that sequence-based RNA alignment may not yield
structurally sound alignment results. The accuracy of the tRNA
pairwise alignment reaches 97.3% when one uses TOPAS
(α=0.50, β=0.48, NIt = 30, PTh = 0.01). The structural alignment
obtained from TOPAS is shown in Table 2. Figure 5 shows SEN,
PPV, and ACC of TOPAS for the given tRNA pair for various
combinations of weight parameters (α, β). The plots in Fig. 5
show that one needs to utilize all three different types of similarities
in TOPAS to attain the best results possible. If one has confidence
in the RNA structure predictions, a larger weight may be assigned
to the topological similarity score. In general, by incorporating
both topological similarity and connected similarity and assigning
a relatively small (but nonzero) weight to sequence similarity, one
can obtain accurate alignment results using TOPAS.

Example 2: Alignment of Downstream-Peptide RNAs
TOPAS can also effectively handle the alignment of RNAs whose
structures contain pseudoknots, which is illustrated in this example.
The downstream-peptide RNAs AACY021152154.1/3–79 and
AACY023856379.1/52–113 both have non-nested secondary
structures that contain crossing base-pairs. This is shown in
Fig. 6, where base-pairs in different stems are shown in different
colors so that it is easy to see that these base-pairing interactions
cross each other. The alignment results for the give RNA pair are
shown in Table 3. In this example, the accuracy of the downstream-
peptide RNA alignment obtained using a pair-HMM was only
54.55%, while the accuracy reached 87.01% when TOPAS was
used (α=0.50, β=0.48, NIt = 30, PTh = 0.01). Figure 7 shows
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Fig. 6 Illustration of the secondary structure for the downstream-peptide RNA AACY021152154.1/3-79 and
AACY023856379.1/52–113. The secondary structures are modified from the drawing by using VARNA [4]. (a)
The secondary structure of downstream-peptide RNA AACY021152154.1/3-79. (b) The secondary structure of
downstream-peptide RNA AACY023856379.1/52-113

the SEN, PPV, and ACC of TOPAS for using different weight
parameters (α, β) for finding the structural alignment. The overall
trends are similar as in the previous example. As illustrated in this
example, TOPAS is capable of predicting an accurate RNA struc-
tural alignment even when the RNAs have pseudoknot structures.

5 Notes

While Sankoff-style algorithms dominate the field, a network-based
RNA structural alignment, such as TOPAS, may potentially provide
several benefits over those methods. In fact, comprehensive perfor-
mance assessment based on several RNA families and the BRAliBase
2.1 K2 dataset has shown that TOPAS outperforms several popular
Sankoff-style RNA alignment algorithms in many cases, in terms of
both accuracy and computational efficiency [14]. Furthermore,
TOPAS represents RNA sequences as topological networks,
which enables handling arbitrary folding structures (such as
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Table 3
The downstream-peptide RNA sequences and the comparison of the alignment

AACY021152154.1/3-79

UUACGUUCAUCCAUACAUAACCUAAUAACAGGUUGUAUGGACGCAUCAAUACAUUAUU

CAGGGAACGGGGGAUGGUG

AACY023856379.1/52-113

UCACGUUCACCUCGUCUUCGGCGAGGCGCAGUUCGACUCAGGCCAUGGAACGGGGACC

UGAG

Ground truth alignment in Rfam:
UUACGUUCAUCCAUACAUAACCUAAUAACAGGUUGUAUGGACGCAUCAAUACAUUAUUCAGGGAACGGGGGAUGGUG

UCACGUUCACCUCGU--------CUUCG-------GCGAGGCGCAGUUCGACUCAGGCCAUGGAACGGGGACCUGAG

Sequence-based alignment using pair-HMM:
UUACGUUCAUCCAUACAUAACCUAAUAACAGGUUGUAUGGACGCAUCAAUACAUUAUUCAGGGAACGGGGGAUGGUG

UCACGUUCACCUCGUCUUCGGCGAGGCGCAGUUCG---------------ACUCAGGCCAUGGAACGGGGACCUGAG

Structural alignment based on TOPAS (a=0.50, b=0.48):
UUACGUUCAUCCAUACAUAACCUAAUAACAGGUUGUAUGGACGCAUCAAUACAUUAUUCAGGGAACGGGGGAUGGUG

UCACGUUCACCUCGUCUUC---------------GGCGAGGCGCAGUUCGACUCAGGCCAUGGAACGGGGACCUGAG

Fig. 7 Illustration of the structural alignment performance for downstream-peptide RNA pair
AACY021152154.1/3-79 and AACY023856379.1/52-113. (a) ACC for the downstream-peptide RNA pair. (b)
SEN for the downstream-peptide RNA pair. (c) PPV for the downstream-peptide RNA pair

pseudoknots) without any restriction. To the best of our knowl-
edge, TOPAS is the first RNA structural alignment algorithm that
represents RNA sequences as topological networks and directly
takes advantage of network alignment techniques for constructing
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RNA sequence alignments that are structurally sound. We expect
that the performance of TOPAS may be further improved in the
future by enhancing the network construction scheme – i.e., how
the topological network is constructed from a given RNA
sequence – and by exploring other potential network alignment
strategies. The original TOPAS adopted a network alignment
scheme similar to the one proposed in IsoRank [22], which is
essentially based on a random walk with restart. TOPAS may
potentially benefit from more recent random walk models [23–
25], which have been shown to enhance network alignment per-
formance. Moreover, customized random walk schemes that are
specifically designed and optimized for the comparative analysis of
topological networks representing RNA sequences and their under-
lying structures could improve the accuracy and efficiency of
network-based RNA structural alignment algorithms even further.
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Chapter 10

Fast RNA-RNA Interaction Prediction Methods
for Interaction Analysis of Transcriptome-Scale
Large Datasets

Tsukasa Fukunaga and Michiaki Hamada

Abstract

The computational prediction of RNA-RNA interactions has long been studied in RNA informatics. Most
of the existing approaches focused on the interaction prediction of short RNAs in small datasets. However,
in recent years, two fast prediction methods, RIsearch2 and RIblast, have been developed to predict
transcriptome-scale interactions or long RNA interactions. The key idea of the software acceleration of
these tools was the integration of a seed-and-extend method, which is used in fast sequence alignment tools,
into RNA-RNA interaction prediction. As a result, the two software programs were ten to a thousand times
faster than the existing tools; because of this acceleration, detection of genome-wide microRNA target sites
or interaction partners of function-unknown long noncoding RNAs has become possible. In this review, we
describe the basic concept of the algorithm, its applications, and the future perspectives of the fast
RNA-RNA interaction prediction tools.

Key words RNA-RNA interaction, lncRNA, miRNA target prediction, Seed-and-extension method,
RNA accessibility

1 Introduction

Many functional noncoding RNAs (ncRNAs) exert their functions
through complementary base-pairing interaction with other RNA
molecules. For example, microRNAs (miRNAs) regulate gene
expression by binding their seed regions to 30-untranslated regions
(30-UTRs) of the target mRNAs [1]. As another example, 7SL,
which is a human long noncoding RNA (lncRNA), suppresses the
translation of TP53 by interacting with the 30-UTR of the mRNA
[2]. These examples demonstrate that the identification of
RNA-RNA interactions is an effective approach for estimating the
function of ncRNAs.

Recent advances in high-throughput sequencing technologies
have enabled the comprehensive experimental detection of in vivo
RNA-RNA interactions [3–7]. However, because many transcripts,
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especially lncRNAs, show tissue-specific or developmental stage-
specific expression patterns [8], performing these experiments on
various tissues or developmental stages is necessary to understand
the overall picture of RNA-RNA interactions. Because these experi-
ments are labor-intensive, the computational prediction of compre-
hensive RNA-RNA interaction is an essential method.

To date, various software programs have been developed for
predicting RNA-RNA interactions with high accuracy [9–12].
However, most of these programs have focused on predicting the
interactions of short RNAs in small datasets, and they cannot be
used for comprehensive prediction in transcriptome-scale large
datasets because of the prohibitive computation time. Therefore,
in recent years, two fast RNA-RNA interaction prediction methods
have been developed, RIsearch2 [13] and RIblast [14]. These tools
enable us to conduct biological studies based on large-scale predic-
tion results.

In this chapter, we review the basic concept of the algorithms
and the applications of the fast RNA-RNA interaction prediction
tools. This chapter is organized as follows: In Subheading 2, w
briefly explain the basic algorithms of RIsearch2 and RIblast. In
Subheading 3, we introduce the recent updates of RIblast. In
Subheading 4, we present some examples of biological studies
that have used these software programs. Finally, we give a conclu-
sion and discuss future perspectives in Subheading 5.

2 Basic Algorithms for Fast RNA-RNA Interaction Prediction

We first briefly describe the concept of the RNA-RNA interaction
prediction algorithms for small datasets. Although a variety of
approaches have been developed for this purpose [15], several
benchmarking studies have demonstrated that the methods based
on the following two energies can achieve high accuracy: the hybri-
dization energy and the accessibility energy [16–17]. Hybridization
energy is the stabilizing energy of the RNA-RNA interaction,
which is derived from hybridization between the complementary
regions of two RNAs (see Fig. 1a). Programs such as IntaRNA [9]
accurately calculate the energy using nearest-neighbor energy mod-
els [18]. However, this method requires relatively large computa-
tion times. Therefore, some methods, such as RIsearch [11], use
the approximate scores for a less accurate but faster calculation of
the hybridization energy. Accessibility energy is the energy that
represents the ease of formation of RNA-RNA interactions in the
region, and it is calculated based on the internal secondary struc-
ture of each of the RNAs (see Fig. 1b). Briefly, a region that tends to
form intramolecular base pairs has high accessibility energy, and
such regions are unlikely to form interactions with other RNAs.
Accessibility energy can be calculated based on partition function
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Fig. 1 (a) An example of hybridization energy calculation. Hybridization energy can be calculated as the
summation of loop energies and stacking energies in the interaction region using the nearest-neighbor energy
model. In this example, we used Turner 2004 parameters for the energy model [18]. (b) A schematic
illustration of the influence of the accessibility energy on the RNA-RNA interactions. Regions with low
accessibility energy are likely to interact with other RNAs

algorithms [19–20]. Highly accurate RNA-RNA prediction meth-
ods, such as IntaRNA [9], calculate the sum of these two energies
and envisage regions with the lower values as the interaction
regions.

However, these methods are too computationally time-
consuming to be applied to large datasets. In particular, the calcu-
lation of hybridization energy needs extensive computational costs.
As a result, faster RNA-RNA interaction prediction tools are
required for the interaction analysis of the transcriptome-scale
datasets. In recent years, two fast prediction tools, RIsearch2 [13]
and RIblast [14], have been developed for this purpose. RIsearch2
and RIblast are freely available at https://rth.dk/resources/
risearch/ and https://github.com/fukunagatsu/RIblast, respec-
tively. These methods focus on the similarity between the calcula-
tion of hybridization energy and that of the sequence alignment
score. They achieve significant acceleration by utilizing the seed-
and-extend method, which is an acceleration technique widely used
in sequence alignment tools, such as BLAST [21] and LAST
[22]. In these methods, the programs first rapidly search perfectly
complementary short regions using a suffix array, which is an effi-
cient text indexing data structure. The regions detected in this step
are called the “seed” regions. Next, the programs “extend” the
interaction regions from both ends of the seed regions based on the
calculation method of the hybridization energy. Namely, the seed-
and-extend method reduces the computation time by calculating
the hybridization energy of only the vicinity of the seed region and

https://rth.dk/resources/risearch/
https://rth.dk/resources/risearch/
https://github.com/fukunagatsu/RIblast


166 Tsukasa Fukunaga and Michiaki Hamada

not that of the whole sequence region. Note that the seed-and-
extend method is an approximate approach and thus may fail to
detect the interactions that could be detected by the existing
software.

Both RIsearch2 and RIblast achieved faster computations than
their predecessor tools. However, there are three main differences
between RIsearch2 and RIblast. The first difference is in the design
of the seed regions. RIsearch2 uses fixed-length seeds, which are
consecutive complementary regions with a user-defined parameter
length k. This seed design is also used in BLAST for sequence
alignment. On the other hand, RIblast adopts score-based seeds,
which were proposed by Suzuki et al. in their work on the
GHOSTX sequence alignment tool [23]. In this design, the seed
regions were defined as the complementary regions whose hybridi-
zation energy is less than a user-defined parameter energy e. The
second difference is in the calculation of the hybridization energy in
the extension step. RIsearch2 rapidly calculates the energy based on
the approximate score like RIsearch, whereas RIblast uses a nearest-
neighbor energy model like IntaRNA to achieve accurate calcula-
tion. In this step, RIblast uses Andronescu’s BL* energy model,
which is estimated from thermodynamic melting data and experi-
mentally determined RNA structure data using the Boltzmann
likelihood method [24]. The third difference is in the usage of
the accessibility energy. RIsearch2 does not calculate the accessibil-
ity energy and predicts the interactions based on only the hybridi-
zation energy, whereas RIblast uses the sum of the hybridization
energy and the accessibility energy. As a result of these differences,
although RIsearch2 can detect RNA-RNA interactions much faster
than RIblast, RIblast can detect RNA-RNA interactions with
higher accuracy than RIsearch2 [25].

3 Recent Updates of RIblast

In this section, we present the improvements of the RIblast soft-
ware after the original RIblast study was published.

The first improvement is the development of a method for
calculating the p-value in the RIblast evaluation results
[26]. Although the interaction score calculated based on the hybri-
dization and accessibility energies is a good indicator of the
RNA-RNA interaction strength, the direct usage of the raw scores
has no statistical guarantee and, thus, may result in the detection of
false-positive interactions. Therefore, several previous studies cal-
culated the p-values of the detected RNA-RNA interactions for the
statistical assessment [27–28]. However, the p-value calculations
focused only on small RNAs and could not be applied to long
RNAs, which are the targets of RIblast. Accordingly, we developed
a method for assessing the statistical significance of the RNA-RNA
interactions between two long RNAs. We applied RIblast to
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randomized pairs of human lncRNA sequences cut to specific long
sequence lengths and validated that the minimum interaction
scores between two RNAs follow a Gumbel distribution under
the condition that repetitive sequences are masked. Next, we calcu-
lated the p-values by assuming that the null distribution of the
interaction scores follows the Gumbel distribution.

The second improvement is the further acceleration from the
original version of RIblast while retaining the prediction accuracy.
For the acceleration, we introduced two techniques into RIblast.
The first technique is the usage of the approximate calculation of
the logarithmic and exponential functions. In calculating the acces-
sibility energy in RIblast, we used the log-sum-exp method to avoid
underflows in the numerical computation. However, because the
method requires the execution of the logarithmic and the exponen-
tial functions with substantial calculation costs many times, the
calculation of the accessibility energy needs a lot of computation
time. To reduce the computation time, we used approximate but
fast logarithmic and exponential functions provided in the “fast
math” library instead of the default C++ library; we achieved the
acceleration of the accessibility energy calculation [29]. The second
technique is the usage of a stacked pairing constraint in the exten-
sion step of RIblast [12]. The idea is based on the following proper-
ties of the nearest-neighbor energy model: The regions that
contribute to stabilizing the RNA-RNA interactions are stacked
base pair regions, and thus, base pairs that do not form the stack
or those that are too short-stacked are less likely to be included in
the actual RNA-RNA interactions. Therefore, even if we restrict the
candidate base pairs in the extension step to only the consecutive
stacked base pairs with length l or more, we can still detect the
actual RNA-RNA interactions. The speedup would be achieved by
reducing the number of candidate base pairs when l is an appropri-
ate value. Here, l is a user-defined parameter. Note that the RIblast
extension step consists of the gapless extension step and the gapped
extension step, and we applied this constraint to only the gapped
extension step. Refer to the original RIblast study for details [14].

We compared the prediction accuracy and the computation
times of the original version 1.0 with the newly developed version
1.2 of RIblast. In this comparison, we set the parameter l to 3. We
conducted the same experiments as in the original RIblast study to
evaluate their performances. Refer to the original study for more
details on the experiments [14]. First, we evaluated the accuracy of
bacterial small RNA target prediction based on 18 E. coli small
RNAs and 4319 mRNAs. We used 64 sRNA-mRNA pairs with
experimentally validated RNA-RNA interactions and all the other
pairs in all the sRNA-mRNA combinations as the positive data and
the negative data, respectively. Figure 2a shows the ROC-like
curves of the two versions of RIblast. The results were almost
similar, and this means that there was little difference in the predic-
tion accuracy between the two versions of RIblast. Second, we
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Fig. 2 (a) The prediction accuracy of bacterial small RNA target prediction. The x-axis and y-axis represent
target prediction numbers per sRNA and true positives, respectively. The light gray and dark gray lines
represent the RIblast versions 1.0 and 1.2, respectively. (b) The prediction accuracy of human lncRNA TINCR
target prediction. The x- and y-axes represent the threshold number of interacted segments and the AUROC
score, respectively. The light gray and dark gray bars represent the RIblast versions 1.0 and 1.2, respectively

Table 1
The computational times of the two versions of RIblast on the partial human lncRNA and mRNA
datasets

The number of lncRNAs and mRNAs

Program 5 10 50 50 100 100 500 500

Version 1.0 33.16 s 61.18 s 375.31 s 1055.79 s 18205.53 s

Version 1.2 15.11 s 28.72 s 169.8 s 482.88 s 8235.23 s

The speedup ratio 2.19 2.13 2.21 2.19 2.21

Note: The columns represent the numbers of lncRNAs and mRNAs included in the datasets. We created the dataset to

ensure that the small datasets were subsets of the large datasets

assessed the human lncRNA target prediction performances using
an RIA-seq-based TINCR interaction dataset [3]. In this dataset,
we regarded RNAs with more than a threshold number of interac-
tion regions as the positive dataset, and we used a number from 1 to
5 as the threshold values. Here, the positive dataset with a large
threshold value is a subset of the positive dataset with a smaller
threshold value. Figure 2b shows the AUROC scores, and the
results illustrate that the two versions of RIblast have comparable
predictive performances. Finally, we evaluated the computational
speed of the two versions of RIblast by predicting all-to-all interac-
tions among randomly selected human lncRNAs and mRNAs.
Table 1 shows the computational times of the two versions of
RIblast for each dataset size. In all cases, version 1.2 was about
two-times faster than version 1.0. In summary of the results, ver-
sion 1.2 of RIblast succeeded in doubling the computational speed
while retaining the prediction accuracy.
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4 Applications of Fast RNA-RNA Interaction Prediction Methods

RIsearch2 and RIblast enabled us to conduct biological studies
based on the transcriptome-scale RNA-RNA interaction prediction
results. In this section, we introduce some application studies using
RIsearch2 or RIblast.

The first is the prediction research of competing endogenous
RNAs (ceRNAs) from the genome sequence based on the compre-
hensive detection of miRNA binding site clusters [30]. CeRNAs,
which are also called miRNA sponges, regulate gene expression by
binding to miRNAs and preventing the miRNAs from binding to
mRNAs. Because ceRNAs with many binding sites have significant
effects on gene expression regulation [31], this study hypothesized
that transcripts derived from genomic regions with concentrated
miRNA binding sites might act as ceRNAs. Here, this study applied
RIsearch2 to 2578 human miRNAs and whole human genomes
and predicted miRNA binding sites in the whole genome. Note
that the genome-scale miRNA binding site prediction would not
have been possible without ultrafast RNA-RNA interaction predic-
tion methods. Next, the authors regarded the genomic regions
with statistically significant concentrated predicted binding sites as
novel ceRNA candidates and predicted 3673 ceRNA candidates,
including ciRS-7, which is the experimentally verified ceRNA [32].

The second application study is the discovery of an lncRNA
involved in the drug sensitivity of patients suffering from renal cell
carcinoma (RCC) [33]. RCC is a type of urological tumor, and
sunitinib is the first-line drug for the metastatic RCC patients.
However, many patients exhibit resistance to the drug. Therefore,
revealing the molecular mechanisms responsible for sunitinib
administration is a crucial study for the treatment of this type of
cancer. In this study, the authors first discovered that TR4, which is
a ligand-activated transcription factor, influences the resistance to
sunitinib by altering the expression of AXL, which is a receptor
tyrosine kinase. However, as a result of the ChIP-binding assay, the
authors revealed that TR4 does not directly regulate the transcrip-
tion of AXL. Next, the authors hypothesized that TR4 regulates
AXL expression via lncRNAs and searched lncRNAs binding to
AXL mRNAs using RIblast from a dataset of lncRNAs
co-expressed with AXL. Consequently, the authors discovered
lncTASR, which is an lncRNA regulated by TR4 and binds to
AXL mRNA. Because the clinical data analysis also showed that
patients with high lncTASR expression have significantly shorter
survival rates, the authors concluded that TR4/lncTASR/AXL
signaling is a vital mechanism of the sunitinib resistance to RCC.
This study demonstrated that fast RNA-RNA interaction predic-
tion software is useful in the elucidation of novel molecular regu-
latory mechanisms of lncRNAs.
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Third, we introduce LncRRIsearch, a web server for human
and mouse lncRNA-RNA interaction predictions [34]. Although
RIblast is faster than the existing programs, a lot of computational
costs are required to calculate the interactions between all tran-
scripts exhaustively. Therefore, this study focused on lncRNAs and
pre-calculated all human and mouse lncRNA-lncRNA and
lncRNA-mRNA interactions using RIblast. Next, this study con-
structed the LncRRIsearch web server that can access all the pre-
diction results. Additionally, the tissue-specific expression and
subcellular localization data of transcripts were integrated with
LncRRIsearch to enable searching for tissue-specific or subcellular
localized lncRNA interactions. This integration is based on studies
demonstrating that the tissue-specific expression data enhances the
prediction performances of lncRNA-RNA interactions
[35]. LncRRIsearch is freely available at http://rtools.cbrc.jp/
LncRRIsearch/.

In LncRRIsearch, users can select one of the three methods for
the analysis method: (1) the analysis of interactions of a specific
transcript, (2) the analysis of tissue-specific interactions, and (3) the
analysis of subcellular localized interactions. First, for the interac-
tion analysis of a specific transcript, users select the target species
and the energy threshold for the interaction prediction and input a
Gencode gene/transcript name or ID on the top page (see Fig. 3a).
If users specified a gene name or ID and not a transcript name or
ID, they choose a transcript isoform of the gene on the next page.
Next, because all the interacting RNAs for the query transcripts are
listed, users select a pair of transcripts of interest. Finally, the details
of the RNA-RNA interactions between the selected pair of tran-
scripts are provided. Here, an image of the global interaction
pattern and a graphical view for each local base-pairing interaction
are provided for the visualization (see Fig. 3b, c). Second, for the
analysis of tissue-specific interactions, on the top page, users select
the target species, the energy threshold for the interaction predic-
tion, the RNA-seq dataset for the analysis of the tissue specificity,
the tissue of interest, and the patterns of the tissue specificity, for
example, a pattern in which both expressions of two RNAs are
specifically increased in the tissue. Next, users select an
RNA-RNA pair of interest on the next page, after which the details
of the RNA-RNA interactions are provided, like in the first analysis
method. Third, for the subcellular localized interaction analysis,
users select the energy threshold for the interaction prediction, the
cell line, the relative concentration index (RCI), and the threshold
of the RCI. Here, RCI was defined as the log2-transformed ratio
between the expression levels of two cellular compartments
[36]. The subsequent steps are the same as in the second analysis
method. Note that LncRRIsearch supports only human lncRNA
interactions for the analysis of subcellular localized interactions.

http://rtools.cbrc.jp/LncRRIsearch/
http://rtools.cbrc.jp/LncRRIsearch/
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Fig. 3 (a) The top page of LncRRIsearch for the analysis of interactions of a specific transcript. (b) A global
interaction pattern of the predicted interaction results in LncRRIsearch. In this example, the interaction
between 7SL lncRNA and TP53 mRNA is shown. The blue and red lines represent the lncRNA and the
mRNA, respectively. Additionally, the non-filled and filled red lines represent the UTR and the CDS region of the
mRNA, respectively. Both the gray and black lines represent predicted RNA-RNA interactions; the darker the
color, the stronger the interaction. (c) A local base-pairing interaction of predicted interaction results in
LncRRIsearch. The two lines at the bottom of the figure represent two RNA regions, and the elliptical arcs
between the two lines represent the predicted base pairs. Different colors of the lines and the arcs represent
different bases and base pairs, respectively

5 Conclusion and Future Perspectives

In this review, we focused on two ultrafast RNA-RNA interaction
prediction tools, RIsearch2 and RIblast. The software acceleration
based on the seed-and-extend method enabled us to carry out
transcriptome-scale interaction target prediction, and the predic-
tion results can help us in discovering novel functional RNAs or in
revealing molecular regulatory mechanisms. In particular, these
tools are expected to play a crucial role in the elucidation of the
function of lncRNAs, most of which are unknown [37].
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Although RIsearch2 and RIblast can predict RNA-RNA inter-
actions with high speed and accuracy, the development of faster or
more accurate software programs is an essential issue. One of the
promising methods for software acceleration is the utilization of
parallel computing. Currently, many sequence alignment tools
based on various parallelization methods [38–39] have been devel-
oped. The application of these methods for predicting RNA-RNA
interactions would be an interesting research topic. On the other
hand, as a method for improving the prediction accuracy, the
incorporation of a co-transcriptional folding model to the accessi-
bility calculation [40–41] or the development of a machine
learning-based prediction method using experimental detection
results [3–7] may be a promising approach.
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Chapter 11

Web Services for RNA-RNA Interaction Prediction

Tsukasa Fukunaga, Junichi Iwakiri, and Michiaki Hamada

Abstract

Non-coding RNAs have various biological functions such as translational regulation, and RNA-RNA
interactions play essential roles in the mechanisms of action of these RNAs. Therefore, RNA-RNA interac-
tion prediction is an important problem in bioinformatics, and many tools have been developed for the
computational prediction of RNA-RNA interactions. In addition to the development of novel algorithms
with high accuracy, the development and maintenance of web services is essential for enhancing usability by
experimental biologists. In this review, we survey web services for RNA-RNA interaction predictions and
introduce how to use primary web services. We present various prediction tools, including general interac-
tion prediction tools, prediction tools for specific RNA classes, and RNA-RNA interaction-based RNA
design tools. Additionally, we discuss the future perspectives of the development of RNA-RNA interaction
prediction tools and the sustainability of web services.

Key words RNA-RNA interaction, Web service, Non-coding RNA, miRNA, RNA design

1 Introduction

Many recent studies have suggested that non-coding RNAs
(ncRNAs) play a central role in various cellular functions such as
epigenetic, transcriptional, and translational regulatory mechan-
isms. Functional biomolecules, including these ncRNAs, do not
function independently but cooperate with other molecules to
achieve their functions. To clarify the molecular mechanism of
functional RNAs, the identification of interacting partners (e.g.,
DNA, RNA, and protein) of these RNAs is necessary. Several
functionally important RNA-RNA interactions (RRIs), have
been observed in translational regulation [1–4], liquid-liquid
phase separation (LLPS) [5], and others [6–9]. Moreover, RRIs
play an important role in RNA editing using CRISPR-Cas13
[10, 11].

A unique feature of RRIs compared with RNA-protein inter-
actions is that it is easier to achieve specificity for the target RNA.
This is because RRIs are capable of base-pair-based interactions

Risa Karakida Kawaguchi and Junichi Iwakiri (eds.), RNA Structure Prediction, Methods in Molecular Biology, vol. 2586,
https://doi.org/10.1007/978-1-0716-2768-6_11, © Springer Science+Business Media, LLC, part of Springer Nature 2023

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-2768-6_11&domain=pdf
https://doi.org/10.1007/978-1-0716-2768-6_11#DOI


176 Tsukasa Fukunaga et al.

(cf. G:C and A:U for Watson-Crick base pairs, G:U for Wobble
base-pair). Short ncRNAs, such as microRNAs (miRNAs) [1],
piwi-interacting RNAs (piRNAs) [9], small nucleolar RNAs (snoR-
NAs) [9], and the CRISPR-Cas13 system, take advantage of this
feature to serve as a rigorous guide for the target RNA.

Various experimental methods have been proposed to identify
RRIs [12–14]; however, their detection sensitivity is still limited. In
particular, ncRNAs have low expression levels and tissue specificity
[15], and it is, therefore, difficult to identify ncRNA-RNA interac-
tions experimentally. In contrast, computational approaches enable
unbiased and comprehensive identification of RRIs (cf. [16]). In
the computational prediction of RRIs, external base pairs as well as
internal base pairs should be considered. Hence, similar to RNA
secondary structure predictions, the prediction of RRIs is highly
compatible with computational approaches. As a result, many stud-
ies related to RRIs have been performed, for example, [16–18].

Because of the biological importance of RRIs and the advent of
relevant computational approaches, many web services for RRI
predictions, which can be easily used by experimental biologists,
have been developed. In this article, we survey web servers closely
related to RRIs, including general RRI prediction, small RNA
(sRNA) target prediction, miRNA target prediction, and
RRI-based RNA design.

2 Web Services for RNA-RNA Interaction Prediction

Table 1 is a comprehensive list of RRI prediction web services that
are currently available. There are four primary types of prediction
tools. The first type is a general RRI prediction tool. These tools do
not assume the input RNA class and predict interactions based on
an RNA energy model or evolutionarily conserved pattern. These
tools can be further divided into two types: joint structure predic-
tion and local (global) interaction prediction. The former predicts
both base pairs within individual RNAs and between two RNAs
simultaneously, whereas the latter predicts only base pairs between
two RNAs. These tools have been mainly used to predict the targets
of microbial sRNAs. The second type is the miRNA target predic-
tion tool. miRNAs are small ncRNAs that are widely conserved in
eukaryotes and repress the expression of mRNAs by interacting
with the 3

0
-UTR of the target mRNAs [19]. Therefore, miRNAs

have attracted attention as important molecules for post-
transcriptional regulation, and their physical and biochemical bind-
ing mechanisms have been experimentally revealed. The second
type of tool predicts interactions by utilizing knowledge of the
binding mechanisms. The third type is the RNA design tools for
CRISPR gene editing, RNAi, and PCR. These biotechnologies
require nucleic acids that complementarily bind to the target
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Table 1
Comprehensive list of RNA-RNA interaction prediction web services

Methods Keywords Ref.

General prediction/sRNA target prediction tools

PETcofold Joint, Comparative [39]

Rtips Joint, Integer programming [40]

CopraRNA Local, Comparative, Accessibility [18]

IntaRNA Local, Accessibility [22]

RNAcofold Joint, Concatenation [26]

RNAup Local, Accessibility [26]

RNApredator Local, Accessibility [41]

TargetRNA2 Local, Comparative, Accessibility [42]

DuplexFold Global [43]

BiFold Joint, Concatenation [43]

VfoldCPX Joint, Concatenation [44]

miRNA target prediction tools

metaMIR Ensemble [45]

TargetScan Comparative, Accessibility [30]

DIANA-tools Comparative, Accessibility [46]

RNA22 Pattern match [47]

ComTAR Plant miRNAs, Comparative [48]

miRror Emsemble [49]

PACCMIT/PACCMIT-CDS Comparative, Accessibility [50]

ToppMiR Ensemble [51]

RNA design tools

CRISPRdirect gRNA design [34]

CRISPOR gRNA design [52]

CHOPCHOP gRNA design [53]

CCTOP gRNA design [54]

siDrect siRNA design [55]

Oligowalk siRNA design [56]

Primer3 PCR primer design [57]

MODENA web server RRI switch design [58]

https://rth.dk/resources/petcofold/
http://rtips.dna.bio.keio.ac.jp
http://rna.informatik.uni-freiburg.de/CopraRNA/Input.jsp
http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAcofold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAup.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNApredator/target_search.cgi
http://cs.wellesley.edu/~btjaden/TargetRNA2/
https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/DuplexFold/DuplexFold.html
https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/bifold/bifold.html
http://rna.physics.missouri.edu/vfoldCPX/
http://rna.informatik.uni-freiburg.de/metaMIR/Input.jsp
http://www.targetscan.org/vert_72/
http://diana.imis.athena-innovation.gr/DianaTools/index.php
https://cm.jefferson.edu/rna22/
http://rnabiology.ibr-conicet.gov.ar/comtar/
http://www.proto.cs.huji.ac.il/mirror/
https://paccmit.epfl.ch
https://toppmir.cchmc.org
https://crispr.dbcls.jp/
http://crispor.tefor.net
https://chopchop.cbu.uib.no
https://cctop.cos.uni-heidelberg.de
http://sidirect2.rnai.jp
http://rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk/oligowalk_form.cgi
https://primer3.ut.ee
http://rna.eit.hirosaki-u.ac.jp/modena/web/
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(continued)

Methods Keywords Ref.

The others

LncRRIsearch LncRNAs [36]

RILogo Visualization of RRIs [59]

psRNATarget Plant small ncRNAs, Accessibility [60]

Snoscan C/D box snoRNAs [32]

snoGPS H/ACA snoRNAs [33]

pirScan C. elegans piRNAs [61]

“Joint” means joint structure prediction tools, and “Local” (“Global”) means local (global) interaction prediction tools.

“Comparative” means that the methods use the comparative genomic approach. “Ensemble” means ensemble tools of

multiple prediction methods

nucleic acids, and the third type of tool helps users design nucleic
acids that efficiently bind to the targets. We included design tools
for a wide range of nucleic acid interactions not limited to RRIs.
Note that we only introduced a few representative tools in this list
because there are too many tools in this class. The fourth type
comprises the remaining tools, which mainly include prediction
tools for specific RNA classes other than miRNAs. In this review,
we introduce only representative web services in detail.

2.1 IntaRNA and

CopraRNA

Freiburg RNA tools are web services of RNA informatics software
developed by Professor Backofen’s group at the University of Frei-
burg [20]. These web services include various analysis tools, such as
for RNA structural alignments, RNA sequence design, and
RNA-RNA interactions. We focused on two RRI prediction tools,
IntaRNA [21, 22] and CopraRNA [18, 23].

IntaRNA is of the first type of local interaction prediction tools
for general RRI prediction. IntaRNA predicts interactions based on
two scores: hybridization energy and accessibility. The hybridiza-
tion energy is the stabilization energy derived from the hybridiza-
tion between two RNAs. Accessibility represents the difficulty of
forming internal RNA secondary structures, that is, the ease of
forming interactions with external RNAs. Recent benchmarking
studies revealed that the methods based on these two scores have
a high prediction performance, and IntaRNA is one of the state-of-
the-art general RRI prediction tools [17, 24]. However, it should
be noted that IntaRNA can only be applied to short RNAs because
of its long computation time. CopraRNA predicts microbial sRNA
targets by integrating the prediction results of IntaRNA for multi-
ple genome sequences. Using the comparative genomic approach,
CopraRNA shows an even higher prediction performance than
IntaRNA [25].

http://rtools.cbrc.jp/LncRRIsearch/
https://rth.dk/resources/rilogo/
http://plantgrn.noble.org/psRNATarget/
http://lowelab.ucsc.edu/snoscan/
http://lowelab.ucsc.edu/snoGPS/
http://cosbi4.ee.ncku.edu.tw/pirScan/
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The main inputs of IntaRNA are two types of RNAs: query
RNAs and target RNAs. Queries should be short RNAs in the
multi-FASTA format, whereas targets may be as long as several
hundred bases. Users can specify the target RNAs using either the
multi-FASTA format or the Refseq ID of a prokaryotic genome. In
the latter case, as IntaRNA cannot handle the whole genome as
input, RNA sequences around the start or stop codons are regarded
as the target RNAs (the details are user-configurable). As optional
inputs, the web service allows users to adjust various runtime para-
meters, such as the number of interactions per RNA pair, the
maximal interaction length, the handling of G-U wobble base
pairs, and the energy model for RNA secondary structure analysis.

IntaRNA outputs are provided in various forms. The most
important result is a detailed description of the predicted interac-
tion, which is composed of the interacting regions, base pairs, and
score of the interaction (Fig. 1a). When users specify the target
RNAs using the multi-FASTA format, figures of position-wise
minimal energy profiles are provided that show the RNA regions
likely to interact with each other. Figure 1b is an example figure and
shows that the target RNA has two sites interacting with the query
RNA. When users specify the target RNAs using the Refseq ID, a
summarized figure of the interacting regions in the query and
target RNAs is provided. Figure 1c shows the prediction results
when the query is ChiX and the targets are RNAs around the start
codon of E. coli K-12 MG1655. The figure suggests that ChiX has a
specific interacting region and tends to bind regions slightly
upstream of the start codon. Additionally, a heatmap of the func-
tional enrichment analysis of the predicted targets is provided.

In CopraRNA, only queries in the multi-FASTA format (simi-
lar to IntaRNA) and targets as Refseq IDs are accepted as inputs.
Users need to specify from three to eight Refseq IDs for compara-
tive genome analysis and select one organism as the primary target.
The outputs of the web service are similar to those of the IntaRNA.

2.2 RNAup and

RNAcofold

The Vienna RNA Websuite is a web service of RNA secondary
structure analysis software developed by Professor Hofacker’s
group at the University of Vienna [26]. This web service also
includes various software tools, such for as secondary structure
prediction, RNA discovery, and folding kinetics analysis. Here, we
focused on two RRI prediction tools, RNAup [27] and
RNAcofold [28].

RNAup is a local interaction prediction tool, whereas RNAco-
fold is a joint structure prediction tool. RNAup utilizes hybridiza-
tion energies and accessibilities for prediction, as with IntaRNA.
Therefore, RNAup has a very high prediction performance compa-
rable to that of IntaRNA but requires a much longer computation
time [17, 24]. RNAcofold predicts the interactions using a
concatenation-based algorithm, which calculates a minimum free



Fig. 1 Prediction results of IntaRNA. (a) The main result of IntaRNA prediction is composed of the interacting
regions, base pairs, and interaction score. (b) Results of position-wise minimal energy profiles. Different colors
indicate regions that are more likely to bind. (c) Prediction results for ChiX and RNAs around the start codon of
E. coli K-12 MG1655. The left and right figures represent the sRNA and mRNA interaction regions,
respectively. The lower figures represent interactions for each mRNA, and the horizontal and bold lines
indicate each mRNA and predicted interaction, respectively. The upper figures represent a summary of all the
predicted mRNA interactions. Position 0 to the right of figures indicates the start codon
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Fig. 2 Interaction prediction of two RNAs using RNAcofold. (a) User needs to input two RNA sequences in the
single-FASTA format. (b) Prediction results of RNAcofold

energy structure for concatenated sequences of two input RNAs.
RNAcofold shows a faster prediction speed and a lower prediction
performance than IntaRNA and RNAup.

RNAup accepts two input RNA sequences in the single-FASTA
format only. RNAup also allows users to set some optional para-
meters, such as the length of the unstructured region and the
handling of isolated base pairs. The main result of RNAup is the
predicted interaction with binding energy. Additionally, figures
showing position-wise hybridization energies and position-wise
accessibilities for the longer sequence are supplied.

RNAcofold also accepts two input RNAs in the single-FASTA
format only and allows users to set some optional parameters
(Fig. 2a). The characteristics of RNAcofold, including predicted
interactions between RNAs and internal structures of two RNAs,
are shown in Fig. 2b. Additionally, the base-pairing probabilities of
two RNAs are provided as output [29].
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2.3 TargetScan TargetScan is an miRNA target prediction tool for several animal
species [30]. Although miRNAs are conserved throughout eukar-
yotes, their mechanisms of action differ between plants and ani-
mals. For miRNAs to function in animals, the full lengths do not
need to be complementary to the target regions, but 6–8 base seed
regions must form completely complementary regions. Here, the
seed region refers to the region starting from the second nucleotide
position from the 5

0
-end of the miRNA. In addition to the interac-

tion in the seed regions, TargetScan uses a conservation index as a
useful feature for interaction prediction because miRNA-mRNA
interactions are widely conserved among species. Furthermore,
TargetScan uses 14 RNA features, such as accessibility, 3

0
-UTR

lengths, and AU contents near the interaction site, for highly
accurate prediction. These features were selected using a stepwise
regression model based on 74 microarray datasets.

To use TargetScan, users must first select the target species. At
present, it supports 13 animals, including human, mouse, rat,
chimpanzee, rhesus, cow, dog, opossum, chicken, frog, worm, fly,
and zebrafish. Next, the users specify a target RNA or miRNA. A
target gene/transcript is specified using the gene symbol or the
ENSEMBL gene/transcript ID. A target miRNA is specified by
directly entering its name or selecting the name from a tab. These
are all user inputs, making them simple and easy to use.

When users specify a target RNA as input, TargetScan outputs a
list of miRNAs predicted to bind to the 3

0
-UTR of the transcript.

Figure 3a shows an example result for ENST00000403681.2
(a transcript of the human HMGA2 gene). Additionally, multiple
alignments of the transcripts among species are displayed to con-
firm the conservation of the interacting regions of the seed regions
(Fig. 3b). If the seed region is conserved, the background color of
the alignment changes, and users can quickly identify the species
that have no conserved seed regions. For example, Fig. 3b shows
that the target region of miR-26-5p in ENST00000403681.2 is
not conserved in brown bats, lizards, and Xenopus tropicalis (west-
ern clawed frog). When users specify an miRNA as the input,
TargetScan outputs a list of predicted target transcripts (Fig. 3c).
Because the list includes hyperlinks to the Ensemble annotation
page for the corresponding genes, users can readily investigate the
target gene functions.

2.4 Snoscan/snoGPS snoRNAs are a family of small ncRNAs that mediate several types of
RNA modification for other non-coding/coding RNAs via base-
pairing RRIs with their target RNAs. Two types of RNA modifica-
tion, ribose 2

0
-O methylation for every nucleotide and pseudour-

idylation of uridine, have been investigated over the past decades
[31]. snoRNAs interact with several proteins, including modifica-
tion enzymes such as methyltransferases and pseudouridine synthe-
tase, comprising snoRNPs (small nucleolar ribonucleoprotein
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Fig. 3 Prediction results of TargetScan. (a) A list of miRNAs predicted to bind to the 30-UTR of
ENST00000403681.2, a human HMGA2 transcript. (b) Multiple alignment of transcripts among species.
White indicates a conserved seed region. (c) List of predicted target transcripts of human miR-9-5p
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complex). The major target RNAs for snoRNA-mediated modifi-
cation are four ribosomal RNAs (rRNAs), in which more than
100 modification sites have been identified.

snoRNAs are categorized into the following two types: box
C/D type (ribose 2

0
-O methylation) and box H/ACA type (pseu-

douridylation). Box C/D snoRNAs are characterized by their con-
served sequence motifs and secondary structures. The secondary
structure of box C/D snoRNA is a stem-loop with four conserved
sequences (called box C, C’, D, D’) in the loop region as follows:
5

0
-(box C:AUGAUGA)-[guide sequence1]-(box D’:CUGA)-(box

C’:UGAUGA)-[guide sequence2]-(box D:CUGA)-3
0
. The guide

sequences are complementary to the target sites of rRNAs, in which
the methylation sites are specified by a 5-nt upstream position from
boxD/D’. BoxH/ACA snoRNAs consist of two hairpin structures
connected with linker sequences containing two conserved
sequences called (box H and ACA) as follows: 5

0
-(hairpin1 with

guide sequence1)-[linker with box H:ANANNA]-(hairpin2 with
guide sequence2)-[box ACA: ACA]-3

0
. The target sequences are

located at the internal loop regions of hairpin structures and are
complementary to the target site of rRNAs, guiding precise
pseudouridylation.

Snoscan [32] is a web service for the prediction of box C/D
type snoRNAs and modification of target sites in rRNAs based on
the detection of box C and D sequences, secondary structure, and
RRI between the snoRNA and rRNA. Users need to prepare can-
didate snoRNA sequences and target RNA sequences as input data
for Snoscan. For the target RNA sequences, Snoscan also provides
rRNA sequences of several species, such as human, mouse, fly, and
worm, for the alternative input data. Thus, target RNA sequences
are not necessary for these species. In addition, users need to specify
the phylogenetic group (Mammalian, Yeast, Archaea) to apply an
appropriate prediction model. Users can also specify several search
options, such as the length of RRI between snoRNA and rRNA and
distances between boxes C and D, to control the prediction results
(Fig. 4a). The prediction results of Snoscan contain several kinds of
information, such as RNA-RNA base-pairing interaction between
the snoRNA and the target RNA, the position of box sequences,
stem region of the snoRNA secondary structure, and the methyla-
tion site/position in the target RNA sequence (Fig. 4b).

snoGPS [33] is also a web service for predicting H/ACA
snoRNAs and modification sites in target RNAs based on the
secondary structures and RRI between these RNAs and the box
sequences. For the input data of snoGPS, users need to prepare the
candidate H/ACA snoRNA sequences and target RNA sequences.
snoGPS also provides rRNA sequences only for human and yeast as
alternative input data. In addition, users also need to specify the
phylogenetic group (human, yeast, and archaea) of the input
sequence. An important difference between snoGPS and Snoscan



is that users need to specify the search mode (one or two stems) for
snoGPS. The “one stem” mode is useful for several archaeal snoR-
NAs that comprise a single hairpin, whereas “two stem” mode is
useful for predicting eukaryotic snoRNAs consisting of two hair-
pins (Fig. ). The prediction results of snoGPS provide the fol-
lowing information: pseudouridylation sites in the target RNAs,

5a
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Fig. 4 Prediction of box C/D snoRNA using Snoscan. (a) The user needs to input candidate snoRNA sequences
(as query sequences) and target RNA sequences. For the target RNA sequences, the user can select the rRNA
sequences of several species provided by Snoscan. (b) Prediction results for Snoscan
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Fig. 5 Prediction of box H/ACA snoRNA using snoGPS. (a) The user needs to input candidate snoRNA
sequences (as query sequences) and target RNA sequences. For the target RNA sequences, the user can
select the rRNA sequences of several species provided by snoGPS. (b) Prediction results for snoGPS
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RRI between the snoRNA and the target RNA (indicated as
LLLLL or RRRRR sequences shown in the bottom/next line of
the snoRNA sequence), hairpin structures, and box sequences
(Fig. 5b).

2.5 CRISPRdirect The clustered regularly interspaced short palindromic repeat
(CRISPR)-CRISPR associated protein 9 (Cas9) system is one of
the most popular tools for genome DNA editing in biological
research. In particular, the CRISPR-Cas9 system is frequently
used in gene knockout experiments. In the CRISPR-Cas9 system,
a single guide RNA (gRNA) is designed for site-specific DNA
editing based on RNA-DNA base-pairing interactions, which
leads to precise DNA cleavage by the Cas9 endonuclease. The
length of the gRNA is approximately 100 nt, in which the first
20 nt sequence (5

0
-end) needs to be complementary to the target

DNA sequence. The target DNA sequences should be adjacent to
the 5

0
-NGG motif (NGG for Cas9 derived from Streptococcus pyo-

genes, NNGRRT for Cas9 derived from Staphylococcus aureus)
called protospacer adjacent motif (PAM), which is recognized and
cleaved by Cas9 at a site 3 nt upstream of the sequence.

However, one of the major concerns of the CRISPR-Cas9
system is the off-target effect that occurs when arbitrary target
DNA sequences or similar DNA sequences are present in the
genome, which causes unintended DNA cleavage. Thus, the target
DNA sequence within the gene of interest should not be similar to
other part of the genome sequence to reduce off-target effects.

CRISPRdirect [34] is a web service that assists users in design-
ing the gRNA sequence by searching the PAM with 20-mer DNA
sequences in a user-defined sequence (e.g., a knockout target
gene). For the input data of CRISPRdirect, users need to prepare
the DNA sequence or specify its accession number (RefseqID) or
genomic coordinate, which is targeted by CRISPR-Cas9. In addi-
tion, users also specify the PAM sequence to adapt to the type of
Cas9 used in their experiment. To check the specificity of the target
DNA sequences in the reference genome, the genome sequence
needs to be specified. Currently, CRISPRdirect supports more than
600 reference genomes, including several assemblies/versions. Fig-
ure 6 shows an example of the search result of CRISPRdirect
against human genome (hg38) using NGG PAM sequence and
NEAT1 genes (NR_028272.1) as input data. The result list
includes the position of candidate target sequences (20-mer) with
PAM and the number of target sites detected in reference genome
sequence. The numbers of 12-mer and 8-mer subsequences of the
candidate target sequences are also shown for the estimation of the
off-target effect. The “show highly specific target only” checkbox
would be useful to find a target sequence with small off-target
effects. The graphical view provides visualization of the positions
and strands of candidate target sites.
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Fig. 6 Search of target DNA sequences for the CRISPR-Cas9 system using CRISPRdirect. (a) Sequence/ID input
form for CRISPRdirect search. (b) Search results for CRISPRdirect
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2.6 LncRRISearch LncRRIsearch is a web service/database that searches/stores pre-
dicted long non-coding RNA (lncRNA)-RNA interactions in
humans and mice, where the interactions are based on locally stable
interactions predicted by RIblast [35], an ultrafast RRI prediction
tool that enables us to derive comprehensive local RRIs from the
entire Human/Mouse transcriptome [36]. Although RIblast pre-
dicts RRIs based on interaction energy that is computed using
internal and external base pairs and is expected to generate unbi-
ased predictions, a relatively large number of interactions are
provided. To narrow down the candidate RRIs, LncRRIsearch
incorporates two kinds of experimental information: expression
and subcellular localization. Note that the server accepts only
lncRNA as query RNA and accepts both mRNA and lncRNA as
target RNAs in the middle of the search.

In LncRRIsearch, users can search for local RRIs using one of
the following three modes:

Search by name or ID. Users can search RRIs by gene/
transcript name or ID, where both
the query and target RNAs are
provided by the users. In this
mode, the parameters that users
can specify are Species (“Human”
and “Mouse”) and the Energy
thresholds (� 16 and � 12 kcal/
mol) of the interaction energy.

For example, if users select
“Human” as Species and “� 16,
kcal/mol” as Energy threshold,
and set “NEAT1” as Query, the
server returns RRIs between
NEAT1 and other transcripts that
have an interaction energy smaller
than � 16 kcal/mol. Note that
users can also select a transcript var-
iant as query RNA.

Search by expression pattern. Expression patterns of query/target
transcripts are useful indicators for
narrowing down RRIs. In this
mode, users can search for RRIs
using expression patterns for query
and target RNAs. The parameters
users can specify in this mode are
“Species” (Human or Mouse),
“Energy threshold,” “RNA-seq
study” (five studies), “Tissue,” and
“Expression pattern”; “Expression
pattern” includes three patterns,
“lncRNA UP Target UP,”



“lncRNA UP Target DOWN,” and
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“lncRNA DOWN Target UP,”
where UP and DOWNmean specif-
ically up- and downregulated in the
selected tissue, respectively.

For example, if users select
“brain” as Tissue and “lncRNA
UP, Target UP” as expression pat-
tern, LncRRIsearch returns a list of
lncRNA-RNA interactions, where
the lncRNA is specifically upregu-
lated in brain and its target RNA is
specifically upregulated.

Search by lncATLAS RCI. Subcellular localization is another
indicator for narrowing down RRI,
because only RNAs in the same
location have a chance to interact
with each other [15]. In this
mode, users can search RRIs while
considering the localization of the
query and target transcripts.

The parameters that users can
specify are “Energy threshold,”
“Cell line” (among 15 cell lines),
“RCI” (Relative Concentration
Index [37]) type (cytosol/nucleus
or nucleus/cytosol), and “RCI
threshold.”

For example, if a user selects
“CN-RCI” as RCI, “A549” as Cell
line, and “2” as RCI threshold, the
server returns a list of RRIs where
CN-RCI of both target and query
transcripts is greater than 2 in the
A549 cell line. Here, the CN-RCI is
defined by CN-RCI ¼ log2
(FPKM_cyto/FPKM_nuc) where
FPKM_cyto and FPKM_nuc indi-
cate FPKM of cytosol and nucleus,
respectively. The larger CN-RCI
values indicate that the transcripts
tend to localize to the cytoplasm.

After searching in any of the three modes described above, the
user obtains the following results.

l Genomic location of query and target RNAs/transcripts with
the link to UCSC genome browser [38].

l Expression pattern and subcellular localization of query/target
sequences among several tissues (Fig. 7a, b).
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Fig. 7 An example of results by LncRRIsearch: RRI between ENST00000565493 (NORAD, chr20(�)
36045622–36050960) and ENST00000612423 (PLP1, chrX(+ ) 103776511–103792616) (a) Expression
pattern. (b) Subcellular localization (cytoplasm and nucleus). (c) Global view of RRI, including many local
RRIs. (d) Example of a local RRI
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l Visualization of the set of local interactions in the whole query
and target sequences, the sum/minimum and the number of
local interaction energies [16] (Fig. 7c)

l Detailed base pairs of local interactions between query and
target sequences (predicted by RIblast) (Fig. 7d).

3 Conclusion

In this review, we introduced various web services for RRI predic-
tion. For bioinformatics software to be widely used, it must have
both good performance and high usability. Web service develop-
ment is an effective way to increase the number of users; thus,
webserver papers are cited more often than method development
papers in some cases. In the future, along with the development of
novel algorithms, the development of user-friendly web services
will continue.

Although many web services for CRISPR gRNA design have
been developed in recent years, few web services for miRNA target
prediction, which were very popular a decade ago, have been devel-
oped. Additionally, web services for interaction prediction for spe-
cific ncRNA classes, such as snoRNAs and piRNAs, have not been
well developed. This underdevelopment probably does not result
from existing methods being so accurate that there is no room for
improvement but rather that the corresponding research fields are
not receiving sufficient attention. Recently, progress has been made
in developing high-accuracy machine learning techniques such as
deep learning and experimental methods for large-scale RRI detec-
tion based on high-throughput sequencers. The development of
novel web services for predicting RRIs for specific ncRNA classes
using these technologies is an essential research direction.

One of the most difficult problems in web service development
is the sustainability of services. A recent study revealed that only
about half of the web services developed ten years ago are still
available today [62]. When we surveyed web servers for this review,
we found that many RRI prediction web services are no longer
unavailable. This unsustainability causes not only inconvenience for
users performing data analysis but also non-reproducibility of
experiments. Web service developers should ensure the availability
of web services even after publishing the paper. Additionally, the
research community should continue to ensure that the number of
unavailable tools does not increase, for example, by providing web
service repository maintenance.
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Chapter 12

ResidualBind: Uncovering Sequence-Structure Preferences
of RNA-Binding Proteins with Deep Neural Networks

Peter K. Koo, Matt Ploenzke, Praveen Anand, Steffan Paul,
and Antonio Majdandzic

Abstract

Deep neural networks have demonstrated improved performance at predicting sequence specificities of
DNA- and RNA-binding proteins. However, it remains unclear why they perform better than previous
methods that rely on k-mers and position weight matrices. Here, we highlight a recent deep learning-based
software package, called ResidualBind, that analyzes RNA-protein interactions using only RNA sequence as
an input feature and performs global importance analysis for model interpretability. We discuss practical
considerations for model interpretability to uncover learned sequence motifs and their secondary structure
preferences.

Key words Deep learning, RNA-binding proteins, Motif analysis, Model interpretability, RNAcom-
pete, RNA-protein interactions, Global importance analysis

1 Introduction

Deep neural networks (DNNs) are a powerful class of models that
can learn a functional mapping between input genomic sequences
and experimentally measured labels, requiring minimal feature
engineering [1, 2]. Recently, DNNs have been employed to
model RNA-protein interactions [3–10]. Consisting of
244 in vitro affinity selection experiments that span across many
RNA-binding protein (RBP) families, the 2013-RNAcompete
dataset serves as a standard benchmark dataset to compare compu-
tational methods [11]. DeepBind was the first deep learning
approach to analyze RBP-RNA interactions [3]. At the time, it
demonstrated improved performance over position weight matrix
(PWM)- and k-mer-based methods [12–15]. Since then, other
deep learning-based methods have emerged [4–6], further improv-
ing prediction performance on this dataset and other CLIP-seq-
based datasets [8–10, 15]. To validate that DNNs have learned
biologically meaningful features, previous methods have visualized
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representations from first convolutional layer filters and attribution
methods [3–5, 8]. First layer filters have been shown to capture
motif-like representations, but their efficacy depends highly on
model architecture [16, 17]. First-order attribution methods,
including in silico mutagenesis [3, 18] and other gradient-based
methods [19–22], are interpretability methods that identify the
independent importance of single nucleotide variants in a given
sequence toward model predictions. The utility of these interpret-
ability methods has mainly been limited to showing that DNNs
learn motif representations that resemble known motifs, previously
identified by PWM- and k-mer-based methods, which raises the
question, “Why are DNNs performing better?”

Here we highlight ResidualBind, a convolutional neural net-
work with a dilated residual block that has demonstrated improved
performance compared to previous methods [7]. Unlike previous
DNNs designed for this task, ResidualBind employs a residual
block consisting of dilated convolutions, which allows it to fit the
residual variance not captured by previous layers while considering
a larger sequence context [23]. Moreover, the skipped connection
in residual blocks fosters gradient flow to lower layers, improving
training of deeper networks [24]. To understand why ResidualBind
performs better than previous methods, we employ global impor-
tance analysis (GIA). Unlike previous attribution methods, which
only identify the importance of individual variants within features
local to an individual sequence, GIA quantifies the global impor-
tance of features across a population of sequences. Using GIA, we
show that in addition to sequence motifs, ResidualBind learns a
model that includes the number of motifs, their spacing, and
sequence context, such as positive and negative effects of RNA
structure context and GC-bias.

2 Methods

2.1 ResidualBind

Package Overview

The ResidualBind is a Python package that uses TensorFlow for
DNN training and evaluation and is hosted on GitHub: http://
github.com/koo-lab/residualbind.

2.1.1 Dependencies l Python 3.5 or greater.

l Pandas, NumPy, SciPy, Matplotlib, H5py.

l TensorFlow 1.15 or greater.

Logomaker (Tareen and Kinney)

2.1.2 Source Files

l

l residualbind.py – contains class for ResidualBind and
GlobalImportance,

l helper.py – functions for file handling, loading data, and data
preprocessing,

http://github.com/koo-lab/residualbind
http://github.com/koo-lab/residualbind
https://paperpile.com/c/AF0p0f/feBe
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l explain.py – functions for in silico mutagenesis and k-mer
alignment-based motif visualization,

l E_RNAplfold, H_RNAplfold, I_RNAplfold, M_RNAplfold -
RNAplfold – script to calculate probability of external loop,
hairpin loop, internal loop, and multi-loop, respectively.

2.1.3 Example Files l generate_rnacompete_2013_dataset.py – scripts to process the
RNAcompete dataset,

l train_rnacompete_2013.py – trains ResidualBind models on all
RNAcompete experiments,

l test_rnacompete_2013.py – tests ResidualBind models on all
RNAcompete experiments,

l global_importance_analysis.py – runs GIA experiments system-
atically across all RNAcompete,

l Figure1_performance_analysis.ipynb – Jupyter notebook that
generates Fig. 1 in [7].

l Figure2_RBFOX1_analysis.ipynb – Jupyter notebook that gen-
erates Fig. 2 in [7].

l Figure3_VTS1_analysis.ipynb – Jupyter notebook that gener-
ates Fig. 3 in [7].

l Figure4_GC-bias_analysis.ipynb – Jupyter notebook that gen-
erates Fig. 4 in [7].

The 2013-RNAcompete dataset can be obtained from [11]. The
2013-RNAcompete experiments consist of ~241,000 RNA
sequences each 38–41 nucleotides in length, split into two sets
“set A” (120,326 sequences) and “set B” (121,031 sequences).
Each sequence from “set A” and “set B” was converted to a
one-hot representation. We then performed either clip-
transformation or log-transformation. Clip-transformation is per-
formed by clipping the extreme binding scores to the 99.9th per-
centile. Log-transformation processes the binding scores according
to the function: log(S� SMIN + 1), where S is the raw binding score
and SMIN is the minimum value across all raw binding scores. This
monotonically reduces extreme binding scores while maintaining
their rank order and also yields a distribution that is closer to a
normal distribution. The processed binding scores of either clip-
transformation or log-transformation were converted to a z-score.
We randomly split set A sequences to fractions 0.9 and 0.1 for the
training and validation set, respectively. Set B data was held out and
used for testing. RNA sequences were converted to a one-hot
representation with zero-padding added as needed to ensure all
sequences had the same length of 41 nucleotides.

The script to generate the 2013-RNAcompete dataset is gen-
erate_rnacompete_2013_dataset.py. The output is a file rnacom-
pete2013.h5, which contains datasets: X_train, Y_train, X_valid,

2.2 Data
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Fig. 1 Global importance analysis. (a) Box plot of the local importance for synthetic sequences with varying
numbers of the canonical RBFOX1 motif (UGCAUG) embedded progressively at positions 4–9, 11–16, and
18–23. Black dashed line represents a linear fit, red horizontal dashed line represents the median, and green
triangles represent the global importance. (b) Box plot of the local importance for synthetic sequences with
varying degrees of separation between two RBFOX1 motifs (“N” represents a position with random nucleo-
tides). (c) Box plot of local importance for a ResidualBind model trained on VTS1 from the 2009-RNAcompete
dataset where the top scoring 6-mer was embedded in the stem and loop region of synthetic sequences
designed with a stem-loop structure and in the same positions in random RNA sequences. (d) Box plot of local
importance for a ResidualBind model trained on 2013-RNAcompete data for HuR (RNCPT00112) where the top
scoring 6-mer was embedded in position 18–24 and GCGCGC embedded at positions 1–7 (Motif+GC, left) or
positions 35–41 (Motif + GC, right) of synthetic sequences. As a control, the GC content embedded at
positions 35–41 without any motif is also shown. (Each figure was replicated from Ref. [7])
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Y_valid, X_test, Y_test, and experiment (id number of each RNA-
compete experiment). To load and preprocess the data, run the
command:

train, valid, test = helper.load_rnacompete_data(data_path, ss_type, 

normalization, rbp_index)

l data_path – path to rnacompete2013.h5.

l ss_type – input data features: “seq” (sequence only), “pu”
(sequence + PU), and “struct” (sequence + PHIME).

l normalization – type of normalization to perform, log_norm, or
clip_norm.

l rbp_index – index of the RNAcompete experiment ranging from
[0, 243].

l train, valid, and test are dictionaries with keys “inputs” for input
data and “targets” for labels.

2.3 Secondary

Structure Features

Two types of secondary structure profiles can be incorporated into
ResidualBind as additional input features: paired-unpaired
(PU) structural profiles calculated using RNAplfold [25] and
paired, hairpin-loop, internal-loop, multi-loop, and external-loop
(PHIME) calculated using a modified RNAplfold script [13]. By
default, the window length (-W parameter) and the maximum
spanning base-pair distance (�L parameter) are set to the full
length of the sequence (script to generate data: generate_rnacom-
pete_2013_dataset.py).

ResidualBind takes RNA sequence (and optional secondary struc-
ture profiles) as input and outputs a single binding score prediction
for a given RBP. ResidualBind consists of (1) convolutional layer
(96 filters, filter size 11), (2) dilated residual module [23],
(3) mean-pooling layer (pool size 10), (4) fully connected hidden
layer (256 units), and (5) fully connected output layer to a single
output. The dilated residual module consists of three convolutional
layers with a dilation rate of 1, 2, and 4, each with a filter size of
3. Each convolutional layer employs batch normalization prior to a
rectified linear unit (ReLU) activation and dropout probabilities
according to layers (1) 0.1, (2) 0.2, (4) 0.5. The pre-activated
output of the third convolutional layer is added to the inputs of
the dilated residual module, a so-called skipped connection [24],
the output of which is then activated with a ReLU. The stride of all
convolutions is 1 and set to the pool size for the mean-pooling
layer.

2.4 ResidualBind
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For regression tasks like the RNAcompete dataset, the output
activation should be set to linear (default setting), and the loss
function is given by the mean squared error function. For binary
classification tasks, such as CLIP-seq datasets, the output activation
should be set to sigmoid, and the loss function is given by the
binary cross-entropy function. For classification-based methods,
users should set the classification flag to True. The ResidualBind
class is contained in residualbind.py. To instantiate a ResidualBind
model, run command:

from residualbind import ResidualBind

resnet = ResidualBind(input_shape, output_shape, num_class, 

weights_path, classification=False)

l input_shape – shape of the input data (length of sequence, #
channels – 4 for just RNA, 6 for RNA + PU, and 9 for
RNA + PHIME).

l output_shape – shape of the output predictions (should be the
same dimensions as labels). For a single-task problem, the out-
put shape is 1.

l num_class – number of class labels, i.e., dimensionality of output
predictions.

l weights_path – path to store the model weights – it should have a
.hdf5 extension (e.g., /path/to/results/model_weights.hdf5).

l classification – specifies whether to perform a binary classifica-
tion. By default, it is set to False, which means it is set for a
regression task (for RNAcompete data).

2.5 Training ResidualBind is trained by minimizing the loss function with mini-
batch stochastic gradient descent (mini-batch of 100 sequences)
with Adam updates [26] with a decaying learning rate – the initial
learning rate is set to 0.001 and will decay by a factor of 0.3 if the
model performance on a validation set (as measured by the Pearson
correlation) does not improve for seven epochs. Training stops
when the model performance on the validation set does not
improve for 25 epochs. Optimal parameters are selected by the
epoch which yields the highest performance metric on the valida-
tion set – Pearson correlation or area under the receiver operating
characteristic curve for regression and classification tasks, respec-
tively. The parameters of each model are initialized according to
Glorot initialization [27].
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resnet.fit(train, valid, num_epochs=300, batch_size=100, patience=20, 

lr=0.001, lr_decay=0.3, decay_patience=7)

To train a ResidualBind model, run the command:

l train – dictionary with keys “inputs” for input data and “tar-
gets” for labels.

l valid – dictionary with same keys as train.

l num_epochs – maximum number of epochs to train – early
stopping may truncate this time.

l batch_size – number of sequences to include for gradient
updates.

l patience – number of epochs to wait for validation metric to
improve before stopping training.

l lr – initial learning rate.

l decay_patience – number of epochs to wait for validation metric
to improve before decaying the learning rate by a factor lr_decay.

l lr_decay – factor to decay the learning rate when decay_patience
is not satisfied.

To evaluate the model after training, run the command:

metrics = resnet.test_model(test, batch_size=100, load_weights=False)

l test – dictionary with keys “inputs” for input data and “targets”
for labels.

l batch_size – number of sequences to load onto GPU for each
batch.

l load_weights – a Boolean that when set to True loads the saved
weights from training. This option is important when employing
a previously trained ResidualBind model.

l metrics – performance on the test set. For regression, metrics
represent the Pearson correlation. For classification, metrics give
[accuracy, AUROC, AUPR], where AUROC is the area under
the receiver operating characteristic curve and AUPR is the area
under the precision recall curve.
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3 Model Interpretability with Global Importance Analysis

3.1 In Silico

Mutagenesis

In silico mutagenesis employs a trained model to predict the effects
of all possible single nucleotide mutations in a given sequence. The
predictions can be ordered as a nucleotide-resolution map (4 x L,
where 4 is for each nucleotide and L is the length of the sequence).
Each prediction is subtracted by the wild-type prediction, effec-
tively giving zeros at positions where the variant matches the wild-
type sequence. To visualize an in silico mutagenesis map, the
L2-norm across variants for each position can be calculated and
plotted as a sequence logo for the wild-type sequence, where
heights correspond to the sensitivity of each position via the
L2-norm.

import explain

attr_scores = explain.mutagenesis(resnet, X, class_index=0, layer=-1)

scores = np.sum(attr_scores**2, axis=2, keepdims=True)*X

To perform in silico mutagenesis, run the command:

l model – keras model within ResidualBind class, i.e., model.
model.

l X – one-hot sequences to perform mutagenesis analysis.

l class_index – index for the class to investigate; default is 0 but
can be changed for multi-class problems.

l layer – layer to get neuron activations from (default is �1) the
final output layer.

l attr_scores – mutagenesis scores (same dimensions as X).

l scores – L2-norm of mutagenesis scores in a one-hot-like
representation.
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Logomaker [28] is used to plot a sequence logo from an in
silico mutagenesis map.

import logomaker

import pandas as pd

index = 0  # sequence index 

N, L, A = X.shape

counts_df = pd.DataFrame(data=0.0, columns=list('ACGU'), 

index=list(range(L)))

for a in range(A):

for l in range(L):

counts_df.iloc[l,a] = scores[index,l,a]

plt.figure(); logomaker.Logo(counts_df)

3.2 Global

Importance Analysis

While in silico mutagenesis, which is the gold standard of model
interpretability of DNNs in genomics, is a powerful approach to
highlight learned representations that resemble known motifs, it
cannot inform the effect size of larger patterns, such as motifs or
combinations of motifs. Global importance analysis measures the
population-level effect size that a putative feature, like a motif, has
on model predictions. Given a sequence-function relationship, i.e.,
ℱ : x ! y, where x is a sequence of length L (x ∈ ℝL) and
y represents a corresponding function measurement (y ∈ ℝ), the
global importance of pattern ϕ embedded starting at position i in
sequences under the data distribution Dis given by:

ℐglobal ¼ xϕi�D yjx½ � � x�D yjx½ �, ð1Þ
where  is an expectation.

Equation 1 quantifies the global importance of an embedded
feature (ϕ) while marginalizing out the contribution from other
positions across a population of sequences. Important to this
approach is the randomization of other positions, which is neces-
sary to mitigate the influence of background noise and extraneous
confounding signals that may exist in a given individual sequence. If
the dataset is sufficiently large and randomized, then Eq. 1 can be
calculated directly from the data. Alternatively, a trained DNN can
be employed as a surrogate model for experimental measurements
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by generating synthetic sequences necessary to calculate Eq. 1 and
using model predictions as a proxy for experimental measurements.
Given a DNN that maps input sequence to output predictions, i.e.,
f : x ! y�, where y� represents model predictions, the estimated
global importance of pattern ϕ embedded starting at position
i under the synthetic data distribution D� is given by:

bℐ
global � 1

N

X
N

n

f xϕi
n

� �� f xnð Þ, ð2Þ

b

global
where ℐ represents an estimate of ℐglobal and the expectation is
approximated with an average of N samples from a synthetic data
distribution D� � D . By embedding pattern ϕ in position i of the
nth sample xn, i.e., x

ϕi
n , the difference in the summation of Eq. 2

estimates the local effect size of the pattern in a given sequence,
while the average estimates the global, i.e., population-level,
effect size.

To demonstrate how to employ GIA, we generate 1000 syn-
thetic RNA sequences, each 41 nucleotides long, by sampling from
a profile-based sequence model, which is estimated by the observed
nucleotide frequency at each position of the training data. Patterns
under investigation were embedded in positions specified in each
GIA experiment. A trained ResidualBind model can be queried
with these sequences with and without the embedded pattern. We
refer to the difference between the predictions with and without
the pattern for each sequence as the “local” importance (the value
inside the summation of Eq. 2) and the average across the popula-
tion as the “global” importance. Below, we detail how to employ
GIA using ResidualBind and provide additional considerations in
Notes.

GIA is a class in residualbind.py and can be instantiated with
this command:

from residualbind import GlobalImportance

alphabet = 'ACGU'

gia = GlobalImportance(resnet, alphabet)

l resnet – a ResidualBind model.

l alphabet – the order of the nucleotides in the dataset; by default,
it is “ACGU.”
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profile_model = np.mean(np.squeeze(train['inputs']), axis=0)           

profile_model /= np.sum(profile_model, axis=1, keepdims=True)  

gia.set_null_model(null_seq_model, num_sim=1000)

To generate a profile sequence model, run:

l train – dictionary with keys “inputs” for input data and “tar-
gets” for labels,

l profile_model – observed nucleotide frequencies at each position
(shape: L x 4),

Experiment: k-mer Motif Discovery GIA can be used for ab
initio motif discovery by embedding all possible k-mers in the null
sequences. To perform this analysis, run:

kmers, kmer_scores = gia.optimal_kmer(kmer_size=6, position=17, 

class_index=0)

l kmer_size – the size of the kmer to embed in the null sequences.

l position – the start position to embed the kmers.

l class_index – index of the output class – nonzero values are rele-
vant for multitask problems.

l kmers – list of all possible kmers that were embedded.

l kmer_scores – global importance corresponding to the list of kmers.

Experiment: Mutagenesis of k-mer Using the top scoring k-mer
as a base binding site, we can determine the importance of each
nucleotide variant by calculating the global importance for all
possible single nucleotide mutations. To perform this analysis, run:

motif = kmers[0]

mean_scores = gia.kmer_mutagenesis(motif, position=17, class_index=0)

l motif – pattern to be investigated, e.g., k-mer with the highest
global importance score,

l position – the start position to embed the kmer along the sequence.
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Visualizing Motif Representations A motif representation can
be generated from the global in silico mutagenesis analysis in
two ways: (1) by plotting the top k-mer with heights scaled by
the L2-norm of the GIA-based in silico mutagenesis scores at each
position and (2) by creating an alignment of the top k-mers and
calculating a weighted average according to their global impor-
tance, which provides a position frequency matrix representation
that can be used to generate a sequence logo.

1. Top k-mer motif with heights scaled according to the L2-norm
of the global importance of nucleotide variants at each posi-
tion, which is measured by an in silico mutagenesis of the top k-
mer, can be computed with the command:

kmer_motif = np.sqrt(np.sum(mean_scores**2, axis=1, keepdims=True))

kmer_onehot = np.array([self.alphabet.index(i) for i in pattern])

logo = kmer_onehot * kmer_motif

l mean_scores – results from k-mer mutagenesis analysis.

2. The alignment-based k-mer motif can be calculated with the
command:

kmer_motif = explain.kmer_alignment_motif(kmers, kmer_scores, 

alphabet)

I = np.log2(4) + np.sum(kmer_motif * np.log2(kmer_motif+1e-

7),axis=1,keepdims=True)

logo = I * kmer_motif

Both logos from top k-mer motif and the alignment-based k-
mer motif can be visualized as a sequence logo using Logomaker,
according to:
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import logomaker

import pandas as pd

L = len(kmer_motif)

counts_df = pd.DataFrame(data=0.0, columns=list('ACGU'), 

index=list(range(L)))

for l in range(L):

for a in range(len(alphabet)):

counts_df.iloc[l,a] = kmer_motif[l,a]

logomaker.Logo(counts_df)

Experiment: Multiple Sites To test how ResidualBind considers
multiple binding sites, a GIA experiment can be performed by
progressively embedding the putative motif (or top k-mer) in syn-
thetic sequences at various positions. For instance, Fig. 1a shows a
ResidualBind model that learns each additional RBFOX1 motif
(UGCAUG, which was identified as the top 6-mer) is additive.
To perform this analysis, run:

all_scores = gia.multiple_sites(motif, positions=[4, 12, 20], 

class_index=0)

l positions – start positions to successively add additional motifs.

Experiment: Binding Site Spacing To test whether ResidualBind
considers the spacing between motifs, a GIA experiment can be
performed by varying the spacing between two binding sites. For
example, Fig. 1b shows a ResidualBind model trained on an RNA-
compete experiment for RBFOX1 learns that binding scores can
decrease when two motifs are too close, which manifests biophysi-
cally through steric hindrance. To perform this analysis, run:
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motif = 'UGCAUG'

positions = [[17,17], [16, 20], [15, 21], [13, 22]]

all_scores = []

for position in positions:

interventions = []

for pos in position:

interventions.append((motif, pos))

all_scores.append(gia.embed_predict_effect(interventions, 

class_index))

l positions – start positions to add motifs – each pair of positions are
independent GIA experiment.

Experiment: Positional Bias To test whether ResidualBind learns
a positional bias for a given binding site, a GIA experiment can be
performed by systematically embedding the pattern in different
locations of the synthetic sequences. To perform this analysis, run:

positions = [3, 10, 16, 22, 28, 34]

all_scores = gia.positional_bias(motif, positions, class_index=0)

l positions – start positions to place motifs – each position is an
independent GIA experiment.

Experiment: Secondary Structure Preference To test whether
ResidualBind learns secondary structure context, a GIA experiment
can be performed by embedding a motif in either the loop or stem
region of synthetic sequences designed to have a stem-loop struc-
ture – enforcing Watson-Crick base pairs. Figure 1c shows a Resi-
dualBind model trained on the 2009-RNAcompete dataset for
VTS1, a well-studied RBP with a sterile-alpha motif (SAM) domain
that has a high affinity toward RNA hairpins that contain “CNGG”
[29, 30], learns that the canonical VTS1 motif embedded in the
context of a hairpin loop leads to higher binding scores compared
to when it is placed in other secondary structure contexts. To
perform this analysis, run:
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positions = [17, 9]

all_scores = []

# embed patterns in random RNA (as a control)

for position in positions:

all_scores.append(gia.embed_predict_effect((motif, position), 

class_index=0))

# embed patterns in sequences with stem-loop structure

for position in positions:

pattern = (motif, position)

one_hot = gia.embed_pattern_hairpin(pattern, stem_left=8, 

stem_right=24, stem_size=9)

all_scores.append(gia.predict_effect(one_hot))

l positions – start positions to place motifs – each position is an
independent GIA experiment.

l stem_left – start index of the stem on the left side.

l stem_right – start index of the stem on right side – complimentary
to left side.

l stem_size – length of stem – number of base pairs.

Experiment: GC-bias To test whether ResidualBind learns posi-
tional sequence context that may influence predictions, a GIA
experiment can be performed by embedding both the motif in
one position and placing the sequence context in another position.
In the 2013-RNAcompete dataset, we noticed that in silico muta-
genesis plots for top scoring sequences exhibited importance scores
for known motifs along with GC content toward the 30 end [7]. We
did not observe any consistent secondary structure preference for
the 30 GC-bias using structure predictions given by RNAplfold.
Using GIA, we can test the effect size of the GC-bias for sequences
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with a top 6-mer motif embedded at the center (Fig. 1d). To
perform this analysis, run:

motif_position = 17

gc_motif = 'GCGCGC'

gc_positions = [34, 2]

all_scores = gia.gc_bias(motif, motif_position, gc_motif, 

gc_positions, class_index=0)

l motif_position – start positions to place motifs – each position is an
independent GIA experiment.

l gc_motif – GC-content pattern.

l gc_position – position of the gc_motif – each position experiment is
independent.

4 Notes

1. Data processing – we noticed that the preprocessing step
employed by previous DNN methods for the RNAcompete
dataset, which clips large experimental binding scores to their
99.9th percentile value and normalizing to a z-score, a tech-
nique we refer to as clip-transformation, adversely affects the
fidelity of ResidualBind’s predictions for higher binding scores,
the most biologically relevant regime. Instead, we prefer pre-
processing experimental binding scores with a
log-transformation similar to a Box-Cox transformation so
that its distribution approaches a normal distribution while
also maintaining their rank order.

2. Visualization of filters – visualizing first layer convolutional
filters can sometimes resemble known motifs. Filter representa-
tions are sensitive to network design choices [16, 17]; Resi-
dualBind is not designed with the intention of learning
interpretable filters. Hence, visualization of the filters may not
be informative.

3. In silico mutagenesis is an informative approach to uncover
features without any prior knowledge. Since it only informs
the effect size of single nucleotide variants on an individual
sequence basis, insights have to be gleaned by observing pat-
terns that generalize across multiple sequences. Without
ground truth, interpreting in silico mutagenesis plots can be
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challenging. Global importance analysis provides a framework
to quantitatively test hypotheses of the importance of features
and explore their specific functional relationships.

4. In silico mutagenesis analysis is a first-order interpretability
approach, and hence it cannot specify which nucleotides are
interacting. Second-order in silico mutagenesis analysis, which
scores all 16 possible nucleotide pairs for every pair of posi-
tions, can reveal detailed base-pairing interactions [31].

5. Null sequence selection – the synthetic data distribution must be
chosen carefully to minimize a distribution shift between the
synthetic sequences and the data distribution. Here we high-
light how GIA can be employed with a profile model – average
nucleotide frequency at each position – and a random sequence
model with a stem-loop structure. A profile model captures
position-dependent biases while averaging down position-
independent patterns, like motifs. Alternative sequence models
include random shuffling and dinucleotide shuffling of the real
sequences in the dataset. If there exist high-order dependencies
in the observed sequences, such as RNA secondary structure or
motif interactions, a distribution shift between the synthetic
sequences and the data distribution may arise, which can lead
to misleading results. A synthetic sequence model can also
sample real sequences directly from the dataset, although this
requires careful selection such that unaccounted patterns do
not persist systematically, which can act as a potential con-
founder. Prior knowledge can help design a suitable synthetic
sequence model.

6. Ideally, a computational model trained on an in vitro dataset
would learn principles that generalize to other datasets, includ-
ing in vivo datasets. However, models trained on one dataset
typically perform worse when tested on other datasets derived
from different sequencing technologies/protocols [32], which
have different technical biases [33, 34]. While ResidualBind
learned that GC-bias helps performance on test sequences
derived from the same technology, we do not expect this
feature to generalize to other datasets. Nevertheless, GIA high-
lights a path forward to tease out sequencing biases, which can
inform downstream analysis to either remove/debias
unwanted features from the dataset.

7. Versions of TensorFlow – the ResidualBind package is compat-
ible with TensorFlow version 1.15 and version 2.0. Different
versions of TensorFlow are not necessarily compatible, and
hence it may be beneficial to deploy it in its own Python
environment.

8. The global importance of features can be estimated experimen-
tally with sequences designed to contain a pattern under
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investigation and randomizing the other positions. Calculating
this through experimental measurements can be time-
consuming and costly due to the large number of sequences
required to calculate Eq. 1. Here we demonstrate how a well-
trained neural network can be employed as a proxy for these
wet lab experiments, generating predictions (instead of experi-
mental measurements) for sequences necessary to calculate
Eq. 1. However, in silico experiments are not a true replace-
ment for experiments as predictions are based on the model’s
fit of the data. Treated as a model interpretability tool, GIA
enables the quantification of the effect size of patterns that are
causally linked to model predictions. Calculating GIA with wet
lab experiments also has its limitations due to measurement
noise, which can skew biological processes with technical
biases.

9. Using model predictions as a proxy for experimental measure-
ments means that GIA quantifies the effect size for a pattern
under investigation through the lens of a DNN, and hence
results should be taken from the perspective of model inter-
pretability. While Eqs. 1 and 2 describe the global importance
of a single pattern, GIA supports embedding more than one
pattern. GIA can also be extended to multitask problems by
treating each class independently.
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Chapter 13

RNA Structure Determination by High-Throughput
Structural Analysis

Naoki Takizawa

Abstract

RNA functions are closely linked with their structures. Therefore, elucidating the secondary structure of
RNAs provides crucial information regarding their function. The chemical modification or RNase-
mediated digestion of single-stranded RNA has been utilized to experimentally reveal RNA secondary
structures. Owing to advances in high-throughput sequencing technology and chemical analysis, RNA
structural analyses that enable structural profiling at the transcriptomic scale in living cells have been
developed. Here, we provide an overview of the high-throughput RNA structural (HTS) analyses and
describe the computational processing steps of recent HTS analysis pipelines: PROBer, BUMHMM, and
reactIDR.

Key words RNA structure, Secondary structure, High-throughput analysis, Genome-wide analysis,
Large-scale sequencing

1 Introduction

1.1 Background RNA molecules play pivotal roles in diverse cellular functions,
including, but not limited to, mediating the transfer of information
from genes to proteins as well as the regulation of transcriptional
and posttranscriptional processes [1]. Most RNAs are structured
molecules composed of single-stranded and double-stranded
regions. RNA functions are closely linked with their structure
[2]. Specific RNA structures recruit corresponding binding pro-
teins, thereby regulating the function(s) of these proteins. RNA
molecules such as ribozymes exhibit enzymatic activity. In fact,
elucidating RNA structure has become a vital step for understand-
ing RNA functions [3, 4]. Accurate structural models have been
obtained using X-ray crystallography and nuclear magnetic reso-
nance. However, these methods require a high amount of proces-
sing time and manual labor. It is difficult to examine the massive
scale of RNA structures owing to technological limitations.
Computational structural predictions from RNA sequences and
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sequence alignment data have been widely used for elucidating
RNA secondary structures [5]. However, the prediction accuracy
needs to be improved, and the time required for such processing is
still too high for application in genome-wide analysis.

To evaluate the massive scale of RNA structures in a cost-
effective and automated manner, novel high-throughput experi-
mental methods using large-scale sequencing and chemical or enzy-
matic reagents have been developed [6]. In such experiments, local
structural information is collected using structure-sensitive
reagents that modify or cleave RNAs with different reactivities
depending on the presence of base pairing. Chemical reagents
such as dimethyl sulfate (DMS), 2-methylnicotinic acid imidazo-
lide, 2-(azidomethyl)nicotinic acid acyl imidazole, and nucleases
such as RNase S1 and RNase V1 are utilized for sequencing meth-
ods including DMS-seq [7–9], selective 20-hydroxyl acylation and
profiling experiment (SHAPE)-seq [10, 11], in vivo click SHAPE
(icSHAPE) [12], SHAPE and mutational profiling (SHAPE-MaP)
[13], and parallel analysis of RNA structure (PARS) [14]. Despite
the experimental differences, this principle remains the same for all
methods [15]. A common workflow of the high-throughput struc-
tural (HTS) analyses of RNAs is as follows: (1) reaction of the
structure-sensitive reagent with RNA molecules, (2) reverse tran-
scription (RT), (3) library prep and large-scale sequencing, and
(4) mapping and calculation of reactivity. The probing reagents
react with nucleotides depending on the local stereochemistry
that is affected by its base-pairing state. The degree of modification
at each nucleotide is detected by RT. The RT stops at modified
nucleotides or introduces a mutation in the specific buffer condi-
tion. RT stops and mutations are counted for each nucleotide from
high-throughput sequencing reads. To measure the background
noise in RT stops or mutations, a control experiment is performed
in which RNAs are not treated with the reagent. Sequence readouts
from these experiments are analyzed to extract structural para-
meters for each nucleotide in terms of its reactivity with the probing
reagents. Reactivity profiles of all nucleotides are evaluated based
on the counts obtained from the experiment and control assays.

Reactivity estimation is a key step in the determination of the
massive scale of RNA structures. The estimation methods differ
between studies but share a conceptual framework. To calculate raw
reactivity, RT stop or mutation counts are adjusted by variations in
coverage. One core assumption in calculating raw reactivity is that
the modifications introduced by structure-sensitive reagents addi-
tively contribute to RT stops or mutations in control assays. There-
fore, raw reactivities are often calculated by the differences or ratios
of read levels between the experiment and control assays. For
allowing comparison between different reactivity profiles, raw reac-
tivity profiles are normalized, and unusually reactive nucleotides
that are considered outliers are excluded from the raw reactivity
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profiles by methods such as 2–8% normalization [16] and 90%
winsorization [8, 17]. For the determination of a more precise
RNA structure from HTS analysis, pipelines including probabilistic
models such as Spats [18], ProbRNA [19], and PROBer [20], and
those including the information obtained from the replicated HTS
data, such as Mod-seeker [21], BUMHMM [22], and reactIDR
[23], have been developed. In principle, HTS data contains sto-
chastic noise, thereby emphasizing the need for statistical analysis to
identify true signals.

Here, we summarize the characteristic features of recent reac-
tivity estimation pipelines PROBer, BUMHMM, and reactIDR
from a biological perspective and describe the procedure for using
these pipelines to analyze the massive scale of RNA structure. The
reactivity profiles evaluated from the HTS analysis improve with the
use of the appropriate pipeline. However, choosing a method of
analysis may prove difficult for a non-bioinformatician. This chapter
attempts to present the available solutions from the perspective of a
non-bioinformatician for determining precise RNA structure via
HTS analysis.

1.2 Characteristic

Features of PROBer,

BUMHMM, and

reactIDR

In transcriptome-wide HTS analysis, some reads align ambiguously
with multiple transcripts, such as splicing isoforms and paralogous
genes. The multi-mapping problem has an adverse effect on the
estimation of the probability of chemical modification in RNA
molecules. PROBer estimates transcript abundances and modifica-
tion profiles based on a statistically rigorous approach. This
approach achieves the same performance as the conventional
approach for structural estimates by utilizing less amount of data.
This pipeline is especially useful in transcriptome-wide analysis with
numerous multi-mapping reads and is applicable in a wide range of
diverse experiments involving toeprinting assays in high-
throughput sequencing such as iCLIP that explores RNA-protein
interactions [24] and Pseudo-seq that detects RNA pseudouridyla-
tion [25]. It is important to note that PROBer cannot be used for
“-MaP” (SHAPE-MaP [13], DMS-MaPseq [26], and PAIR-MaP
[27]) data because these assays encode chemical marks as mis-
matches rather than RT drop-off. A caveat of using PROBer is
that PROBer does not consider replicate information. Therefore,
the reproducibility of structural analyses needs to be evaluated by
methods such as Pearson correlation coefficient. PROBer outputs
can be used to estimate raw reactivity profiles. Therefore, the
elimination of outliers and the normalization of reactivity are per-
formed separately.

As continuous base-paring is necessary for generating double-
stranded RNA structure, the modification states are assumed to not
switch randomly from the unreactive state to the reactive state and
vice versa. This assumption is implemented in BUMHMM by
hidden Markov model (HMM) algorithm. BUMHMM quantifies
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the variability of the drop-off rate in control conditions by the
computation of null distribution and determines empirical
P-values by comparing each treatment-control drop-off rate with
the null distribution. BUMHMM calculates modification probabil-
ities from these empirical P-values by applying HMM. Depending
on the unique method for calculating probability, BUMHMM
outputs the probabilities of modifications of each nucleotide dis-
playing an almost binary output of 0 (not modified) or 1 (modi-
fied). Due to this characteristic feature, one of the advantages of
BUMHMM is detecting large structured regions such as pseudo-
knot structures. However, this feature leads to the difficulty in the
discussion of structural heterogeneity such as protein binding with
RNAs and multiple configurations of RNAs that form different
secondary structures in vivo.

Most HTS analytical methods do not consider the information
of obtained from replicated experiments. To improve the accuracy
of structural prediction, reactIDR uses the irreproducible discovery
rate (IDR) [28] with the HMM algorithm to discriminate between
true signal and noise generated by replicated HTS experiments.
IDR is a statistical method used for detecting chromatin
immunoprecipitation-seq peak from replicated experiments. reac-
tIDR outputs loop probability at each nucleotide from input data,
which comprises repeatedly measured 50-end read-depths obtained
from icSHAPE, PARS, or other HTS toeprinting assay. Another
feature of reactIDR is that reactIDR can incorporate supervised
learning to estimate the optimal model parameters. Moreover,
reactIDR can be used in various HTS comparisons and achieves
the highest accuracy to estimate human rRNA structure from
icSHAPE and PARS data in comparison with the accuracy of
BUMHMM and PROBer.

2 Materials

2.1 Installation Installations and methods are confirmed with macOS and can be
run with some modifications on Linux.

1. PROBer can be built on Linux andMacOS. CMake and zlib are
required for installation. Zlib is installed by default on the
MacOS, and CMake can be installed on the MacOS by Home-
brew (https://brew.sh/):

2. The source code can be obtained from GitHub. For compiling
the source code, type the following lines:

https://brew.sh/


$ git clone https://github.com/pachterlab/PROBer.git

$ cd PROBer

$ mkdir build

$ cd build

$ cmake ..

$ make

$ make install
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3. BUMHMM is developed using the R software. Installation of
R (https://www.r-project.org/) is a prerequisite, and RStudio
(https://rstudio.com/) is the recommended integrated devel-
opment environment for running R scripts. To install the
BUMHMM package, start R or RStudio and enter:

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("BUMHMM")

4. The BUMHMM package is dependent on the Bioconductor
packages, SummarizedExperiment, Biostrings, and IRanges,
and CRAN package, devtools. To install these packages, enter:

BiocManager::install(c("SummarizedExperiment","Biostring-

s","IRanges"))

install.packages(’devtools’)

5. reactIDR is developed in Python 3. Python 3 can be installed
via Homebrew and pyenv, etc. (see Note 1). To install Python
3 by Homebrew, enter:

$ brew install python

6. Python libraries numpy and scikit-learn are required for reac-
tIDR, and cython is required for installation (see Note 2).
These packages are installed by pip:

$ pip install numpy scikit-learn cython

7. The source code of reactIDR can be obtained fromGitHub. To
install reactIDR, enter:

$ git clone https://github.com/carushi/reactIDR

$ cd reactIDR

$ python setup.py build_ext -b reactIDR

8. Docker image for RT stop counter that converts bam to read
count data is available. Installation of Docker (https://www.
docker.com/) is a prerequisite for using this converter. After
installing and running Docker, the docker image of RT stop
counter is downloaded:

$ docker pull carushi/rt_end_counter

https://www.r-project.org/
https://rstudio.com/
https://www.docker.com/
https://www.docker.com/
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2.2 Input Data Detailed protocols for chemical modification and sequencing
library preparation of genome-wide HTS analysis has been pub-
lished [29–31]. If the experiment is designed to examine genome-
wide RNA structures, sufficient amount and quality of starting
RNA and a high number of sequencing reads are required to
achieve sufficient coverage of the RNA molecules. For each repli-
cate, approximately 200 to 600 million raw reads were obtained in
the genome-wide icSHAPE experiment [12]. Paired-end sequenc-
ing is not necessary for determining reverse transcriptase stop posi-
tions but is recommended to calculate coverages in PROBer. If
possible, PCR duplicates are removed by the barcode sequence in
the adapter, and the adapter sequences are trimmed using tools
such as Trimmomatic [32]. Sequence reads are aligned by align-
ment tools such as Bowtie2 [33] (see Note 3), and the sam files are
converted to bam files by samtools [34]. Samtools can be installed
by Homebrew.

The reference fasta file and aligned bam file (or sequence fastq
file) are necessary for running PROBer and reactIDR. The
dot-bracket format of the predicted RNA secondary structure file
is required as an option for running reactIDR. Before running
BUMHMM, a reference sequence file and three files described as
coverage, drop-off count, and drop-off rate for each nucleotide
need to be created (see Note 4).

3 Methods

3.1 PROBer 1. Create reference files for PROBer by PROBer prepare:

$ PROBer prepare (reference fasta).fa (reference name)

2. After creating reference files, perform estimation of probabil-
ities by PROBer estimate:

$ PROBer estimate (reference name) (sample name) --alignments

(experiment).bam (control).bam --size-selection-min 100 --

size-selection-max 500

--size-selection-min and --size-selection-max set to minimal
and maximal size of the fragments. The sequencing fastq files are
available with --bowtie2 and --reads options instead of --align-
ments. In this case, reference files for bowtie2 need to be created
by PROBer prepare with --bowtie2 option. If the input reads are
paired-end reads, �-paired-end option is added to the proper
estimate. If the primer length is not 6, it is set by --primer-
length < int> option. After running PROBer, three output files,
(sample name).expr, (sample name).beta, and (sample name).
gamma, are created. The .expr file contains transcript id, length,
the amount of the transcript by TPM (transcript per million), and
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FPKM (fragment per kilobase per million reads) information. The .
beta and .gamma files contain the reactivity profiles and transcrip-
tase noise of each nucleotide, respectively. A normalized reactivity
profile can be calculated from .beta file (see Note 5).

The figures below demonstrate an example of the normalized
probability score processed by PROBer. SHAPE-seq data of influ-
enza virus that has eight-segmented viral RNA (vRNA) as a genome
are processed by PROBer, and the probabilities are normalized by
90% winsorization. A pseudoknot structure is predicted in segment
5 vRNA, and the length of segment 5 vRNA is approximately
1500 nt. Therefore, we chose segment 5 vRNA as an example of
HTS analysis. Figure 1a shows the probability of segment 5 vRNA,
and Fig. 1b shows the probability of nucleotide positions 60–160
of segment 5 vRNA that includes a predicted pseudoknot structure
at nucleotide positions 87–130.

3.2 BUMHMM The coverage, drop-off count, and drop-off rate of each nucleotide
are calculated and saved in a tab-separated file.

C1 C2 T1 T2

50258 10914 22580 10548

61362 13558 24949 11371

“C1” and “C2” denote replicate 1 and 2 of control experi-
ments, and “T1” and “T2” denote replicate 1 and 2 of treatment
experiments.

1. Before starting BUMHMM, these data are stored in a Sum-
marizedExperiment object in R. Start RStudio or R and enter:

library(BUMHMM)

library(Biostrings)

library(SummarizedExperiment)

library(IRanges)

counts <- read.delim("(coverage).txt")

counts <- as.matrix(counts)

dropoff <- read.delim("(dropoff).txt")

dropoff <- as.matrix(dropoff)

rate <- read.delim("(dropoff_rate).txt")

rate <- as.matrix(rate)

colData <- DataFrame(replicate=c("control","control","treat-

ment","treatment"), row.names=c("C1","C2","T1","T2"))

se_exp <- SummarizedExperiment (assays=list(coverage=counts,

dropoff_count=dropoff, dropoff_rate=rate), colData=colData)
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Fig. 1 The reactivity score of influenza virus genome segment calculated by PROBer. Probabilities from the
SHAPE-seq of influenza virus virion were calculated by PROBer and normalized by 90% winsorization. (a) The
reactivity score of viral genome segment 5 and (b) reactivity score of nucleotide positions 60–160 that
contains predicted pseudoknot structure. Black line indicates the predicted pseudoknot region. Sequence and
lines indicate predicted base pairs in the pseudoknot structure. (c) Predicted pseudoknot structure at
nucleotide positions 87–130 in segment 5. A pseudoknot structure at nucleotide positions 87–130 predicted
by IPknot (http://rtips.dna.bio.keio.ac.jp/ipknot/) is shown

2. Steps involving the selection of nucleotide pairs to compute the
log-ratios, scaling the drop-off rates across replicates, and com-
puting stretches of nucleotide positions for HMM analysis are
performed. Nc and Nt refer to the numbers of control and
treatment experimental replicates, respectively, and t denotes
coverage threshold:

Nc <- Nt <- 2

t <- 1

nuclSelection <- selectNuclPos(se_exp, Nc, Nt, t)

assay(se_exp, "dropoff_rate") <- scaleDOR(se_exp, nuclSelec-

tion, Nc, Nt)

stretches <- computeStretches(se_exp,t)

3. The correction of coverage bias and sequence bias is
performed:

varStab <- stabiliseVariance(se_exp, nuclSelection, Nc, Nt)

LDR_C <- varStab$LDR_C

LDR_CT <- varStab$LDR_CT

http://rtips.dna.bio.keio.ac.jp/ipknot/


hist(LDR_C, breaks = 30)

nuclNum <- 3

patterns <- nuclPerm(nuclNum)

sequence <- DNAString(scan("(referece sequence).txt",

what=""))

nuclPosition <- findPatternPos(patterns, sequence, ’+’)
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4. In this step, posterior probabilities with HMM are calculated
and output files are saved:

nuclPosition <- list()

nuclPosition[[1]] <- 1:nchar(sequence)

posteriors <- computeProbs(LDR_C, LDR_CT, Nc, Nt, ’+’, nucl-

Position, nuclSelection$analysedC, nuclSelection$analysedCT,

stretches)

head(posteriors)

shifted_posteriors <- matrix(, nrow=dim(posteriors)[1],

ncol=1)

shifted_posteriors[1:(length(shifted_posteriors) - 1)] <-

posteriors[2:dim(posteriors)[1],2]

plot(shifted_posteriors)

write.csv(shifted_posteriors,"(output probability file name).

txt", quote=F, row.names = F)

The output file contains probabilities ranging from 0 to 1. Fig-
ure 2 shows an example of probabilities processed by BUMHMM.
The duplicated SHAPE-seq data of the influenza virus were pro-
cessed, and probabilities of segment 5 vRNA were shown.

3.3 reactIDR 1. RT stops and the coverage of each nucleotide are counted by
rt_end_counter of the docker image. In this example, all bam
files were stored in /bam directory. After running docker,
enter:

$ docker run --name rtecount -it carushi/rt_end_counter -i

$ mkdir bam

$ exit

$ docker start rtecount

$ docker cp (local path of bam files)/. rtecount:/bam/

$ docker exec -it rtecount /bin/bash

$ bash count_and_cov.sh bam/(filename).bam

(convert all bam files to bed)

$ cd bam

$ mkdir bed

$ mv *.bed bed

$ exit

$ docker cp rtecount:/bam/bed (local path to save bed files)

$ docker stop rtecount

$ docker rm rtecount
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Fig. 2 The reactivity score of influenza virus genome segment calculated by BUMHMM. Probabilities from the
SHAPE-seq of influenza virus virion were calculated by BUMHMM. (a) The reactivity score of viral genome
segment 5. (b) The reactivity score of nucleotide positions 60–160. Black line indicates the predicted
pseudoknot region. Sequence and lines indicate predicted base pairs in the pseudoknot structure

All bam files including the duplicated bam files from the treated
sample and from control sample are converted to bed files.

2. The bed files are converted and merged. RT stop count and
coverage files from duplicate treated and control samples are
converted in this step. In this example, all bed files are moved
to the bed directory created in the installed reactIDR directory.
Change directory to the reactIDR/bed directory:

$ python ../script/bed_to_pars_format.py --offset -1 --fasta

(reference fasta file).fa (filename)_l15q0filt_ctss.bed

(convert all ctss bed files)



$ python ../script/bed_to_pars_format.py --offset -0 --fasta

(reference fasta file).fa (filename)_l15q0filt_cov.bed

(convert all cov bed files)

$ python ../reactIDR/score_converter.py --merge --output

(name)_ctss (filename treatment rep1)_l15q0filt_ctss.bed.tab,

(filename treatment rep2)_l15q0filt_ctss.bed.tab (filename

control rep1)_l15q0filt_ctss.bed.tab,(filename control rep2)

_l15q0filt_ctss.bed.tab

$ python ../reactIDR/score_converter.py --merge --output

(name)_cov (filename treatment rep1)_l15q0filt_cov.bed.tab,

(filename treatment rep2)_l15q0filt_cov.bed.tab (filename con-

trol rep1)_l15q0filt_cov.bed.tab,(filename control rep2)

_l15q0filt_cov.bed.tab
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3. This step is optional. In this step, the parameters are evaluated
from the predicted secondary structure. The RNA secondary
structures can be predicted, and the dot-bracket format of
RNA secondary structure file can be obtained using RNA
secondary structure prediction programs such as RNA fold
and CentroidFold. The dot-bracket format file should contain
all of predicted secondary structures in the reference transcript.
The dot-bracket format file is stored in the same directory of
bed files. The following script is entered to perform this step:

$ python ../reactIDR/IDR_hmm.py --train --time 10 --core 4 --

grid --output_param (filename)_train.param.txt --output (fi-

lename).csv --ref (reference predicted secondary structure

file).fa --case (filename)_ctss_case.tab --cont (filename)_-

ctss_cont.tab

4. In this step, the probabilities are calculated. If the trained
parameter file is not created in one step before, �-param and
--ref options are not necessary for calculation.

$ python ../reactIDR/IDR_hmm.py --test --time 10 --core 4 --

param (filename)_train.param.txt --output (filename).csv --ref

(reference predicted secondary structure file).fa --case

(filename)_ctss_case.tab --cont (filename)_ctss_cont.tab

test_(filename).csv is the output file. “IDR-HMM-final (tran-
script name)+case” items represent posterior probabilities after
IDR and HMM. Figure 3 shows an example of probabilities pro-
cessed by reactIDR. Duplicated SHAPE-seq data of the influenza
virus were processed, and probabilities of segment 5 vRNA were
shown.
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Fig. 3 The reactivity score of influenza virus genome segment calculated by reactIDR. Probabilities from the
SHAPE-seq of influenza virus virion were calculated by reactIDR. The figure shows the reactivity score of viral
genome segment 5 from -test option (a), -test option without learning parameters (b), and nucleotide positions
60–160 (c). Blue indicates probabilities from -test option, and green indicates those without learning
parameters. Black line indicates the predicted pseudoknot region. Sequence and lines indicate predicted
base pairs in the pseudoknot structure

5. reactIDR package contains python programs to visualize the
output csv files (seeNote 6). To plot csv files of reactIDR, type:

$ python ../reactIDR/plot_bargraph.py --window 10 --ignore --

output (output file name) (input csv file 1).csv (input csv

file 2).csv

One or two csv files are necessary for plotting. --window option
means window size of moving average. The script outputs PDF files
for each transcript.

4 Notes

1. For non-bioinformatician, python version control is compli-
cated. I simply recommend non-bioinformaticians to use
Homebrew for the installation of Python 3. It is important to
note that Python 2 is installed by default in macOS, so that the
path description in .bash_profile needs to change. Path of
Python 3 (/usr/local/opt/python/libexec/bin) is added to
the first of “export PATH ” place in .bash_profile.

2. If you get an error with scipy, check the version of scipy which is
installed on the system. I did a test run on scipy version 1.2.2.
To install scipy version 1.2.2, enter:

$ pip install scipy==1.2.2
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3. When reads are mapped in the transcriptome-wide analysis, you
need to use different reference sequences depending on the
software you will use. PROBer and reactIDR can calculate
probabilities of each transcript at a run. BUMHMM reads
and outputs one sequence at a run. Thus, when BUMHMM
is used for transcriptome-wide analysis, the reads are mapped to
the chromosome.

4. As mentioned in Methods 3.2, the coverage, drop-off count,
and drop-off rate of each nucleotide need to be counted sepa-
rately for running BUMHMM. The coverage can be counted
by using igvtools. The drop-off count can be counted from sam
file. The rt_end_counter used in reactIDR counts the coverage
and drop-off count, and therefore, the output bed files can be
used for input in BUMHMM after modifications. The drop-off
rate can be calculated from the coverage and drop-off count.

5. R can be used for normalization. When 90% winsorization is
used for normalization, the fifth and 95th percentile are calcu-
lated in R and the probabilities are normalized based on the
values.

6. The Python packages, seaborn and pandas, are necessary for
plotting. These packages can be installed by the following
command:

$ pip install seaborn pandas
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Chapter 14

RNA 3D Modeling with FARFAR2, Online

Andrew M. Watkins and Rhiju Das

Abstract

Understanding the three-dimensional structure of an RNA molecule is often essential to understanding its
function. Sampling algorithms and energy functions for RNA structure prediction are improving, due to
the increasing diversity of structural data available for training statistical potentials and testing structural
data, along with a steady supply of blind challenges through the RNA-Puzzles initiative. The recent
FARFAR2 algorithm enables near-native structure predictions on fairly complex RNA structures, including
automated selection of final candidate models and estimation of model accuracy. Here, we describe the use
of a publicly available webserver for RNA modeling for realistic scenarios using FARFAR2, available at
https://rosie.rosettacommons.org/farfar2. We walk through two cases in some detail: a simple model
pseudoknot from the frameshifting element of beet western yellows virus modeled using the “basic
interface” to the webserver and a replication of RNA-Puzzle 20, a metagenomic twister sister ribozyme,
using the “advanced interface.” We also describe example runs of FARFAR2 modeling including two kinds
of experimental data: a c-di-GMP riboswitch modeled with low-resolution restraints from MOHCA-seq
experiments and a tandem GA motif modeled with 1H NMR chemical shifts.

Key words RNA, 3D structure modeling, Rosetta

1 Introduction

Noncoding RNA molecules exhibit diverse cellular functions, from
catalysis to the detection of small molecules to translation itself [1],
and they execute those functions by adopting intricate three-
dimensional folds. In such well-defined structures, an RNA’s sec-
ondary structure elements are fixed in defined orientations by
junctions and tertiary contacts. To keep pace with the acceleration
in sequencing technology furnishing new RNAmolecules for study,
experimental methods for 3D structure determination are being
successfully supplemented with structure prediction methods, from
physical modeling to knowledge-based techniques [2–5].

Increasingly, new methods for biomolecular modeling are
released as webservers, to ensure scientific reproducibility and to
mitigate challenges in installation or the availability of computa-
tional resources for scientists. This trend includes the ROSIE
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platform [6, 7], which provides a simplified interface for nonexpert
users to access computationally intensive protocols developed in
the Rosetta framework [8]. The ROSIE server for FARFAR2
enables researchers to model their RNA of interest using a Rosetta
algorithm with excellent performance on RNA-Puzzles and other
blind challenges [9]. This chapter provides an overview of the two
interfaces to this webserver and illustrates how to apply each one to
real RNA modeling cases. Because FARFAR2 requires significant
computational expense to sample a modeling problem thoroughly,
this server, available at https://rosie.rosettacommons.org/farfar2,
provides users with a few thousand CPU-hours for their modeling
problem, free of charge.

2 Method

Here, we illustrate how to use the FARFAR2 ROSIE server in
detail for two example problems using the server’s two available
interfaces. The “basic” interface allows users to provide nothing
more than the two most common pieces of data available for RNA
structure prediction tasks: the sequence and dot-bracket secondary
structure. These data are also the standard inputs provided to RNA
3D modeling webservers from SimRNAweb [10] and RNACom-
poser [11] to iFoldRNA v2 [12] and MC-FOLD | MC-SYM
[13]. No files need to be prepared. The “advanced” interface
permits users to specify significantly more options; every parameter
that can affect command-line executions of Rosetta’s FARFAR2
algorithm may be specified through this interface. Users may create
an account to receive higher priority and email notifications, or they
may submit as guests. Whether or not they create an account, users
may make their jobs private if they involve sensitive data. All files
needed to run these examples are available from the Appendix.

2.1 The “Basic”

Interface to the

FARFAR2 ROSIE Server

First, we examine the basic interface (Fig. 1a, b) through interroga-
tion of a pseudoknotted �1 frameshifting element from beet west-
ern yellows virus (BWYV; PDB code: 1L2X) [14].

2.1.1 Sequence

Specification

The user may specify the sequence of the RNA of interest, either as
lowercase or uppercase. Chain boundaries ought to be specified via
commas. Rosetta’s internal representation of RNA sequence uses
lowercase letters, to permit compatibility with uppercase protein
sequences in other applications; user specification of capital
letters A, C, G, and U will be converted to lowercase. For the
BWYV frameshifting element segment crystallized and deposited
as 1L2X, the sequence input is:

gcgcggcaccguccgcggaacaaacgg

https://rosie.rosettacommons.org/farfar2
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Fig. 1 (a) Entering inputs necessary to model the�1 frameshifting element from BWYV to the FARFAR2 ROSIE
server’s “basic interface.” Analysis of 20,000 models resulting from application of FARFAR2 to a viral
pseudoknot from beet western yellows virus. (b) Excerpts from the page on the FARFAR2 ROSIE server
reporting final results. (c) Plotting the all-atom RMSD to the lowest-energy (in Rosetta energy units, or REU)
FARFAR2 structure suggests a scoring function that favors a single conformation and numerous models within
3 Å of this structure. (d) The second-lowest-energy cluster (in pink) has an RMSD of only 3.24 Å to the
experimental structure (in salmon); in contrast, several other clusters in the top 10 are 7–10.5 Å away

2.1.2 Secondary

Structure Specification

The user should provide the RNA secondary structure in
dot-bracket notation. Rosetta uses a common extension to
dot-bracket notation that uses brackets other than parentheses to
specify pseudoknots. Pseudoknots through third order may be
expressed using matching square [], curly {}, and angled <> brack-
ets. For the frameshifting element of 1L2X, the dot-bracket sec-
ondary structure is:
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Pseudoknots of higher orders are rare but are found in a
handful of structures, such as the eight-stranded nanosquare
(PDB code: 3P59) [15]. In these cases, it may be necessary to
specify higher order pseudoknots using matched lowercase letters
from a to z. Critically, because the pairing partners of these letters
are ambiguous, each distinct fourth-order pseudoknot must be
specified with a distinct letter. As above, any chain boundaries
ought to be specified via commas.

2.1.3 Specification of the

Number of Structures

Generated

There is currently no hard and fast rule for how many structures to
generate, but we suggest initial runs start with 1000 models and
increase beyond that if convergence is not achieved (as evaluated in
the next Sect. 2.1.4). The optimal number of models depends on
the size and complexity of the modeling problem at hand, the
computational resources available, and the RMSD accuracy
required for whatever downstream application requires structure
modeling. It is possible that there is no way to achieve confident
5.0 Å RMSD predictions on the user’s modeling problem of inter-
est even using a million CPU-hours, and it is possible that their
modeling problem is simple enough that the entire space of plausi-
ble structures itself barely spans more than 5.0 Å RMSD (e.g., a
simple stem-loop). As a baseline heuristic, we generally see signifi-
cant RMSD convergence over the first 1000 structures generated,
even for structures of some complexity, if pseudoknot interactions
(as in this example) or other information (tertiary contact tem-
plates, experimental data; see below) are available. It is unlikely
that FARFAR2 will sample significantly closer-to-native structures
past that point. That said, problems as small as the viral pseudoknot
RNA in 1L2X are relatively inexpensive in computational cost, so
for the purpose of illustrating this example thoroughly, we elect to
generate 20,000 structures.

2.1.4 Analysis of the

Resulting Structural

Ensemble

The FARFAR2 ROSIE server generates several useful analyses from
the resulting structures. First, it takes the lowest-energy structure
from the ensemble and computes the all-heavy-atom RMSD of
each structure to this model. Plotting the resulting ensemble
(Fig. 1a) helps indicate how cleanly the modeling has converged
on a single answer. If there are energetic minima far from the global
minimum, this undermines confidence in the modeling and sug-
gests two possibilities. First, sampling may be incomplete, and the
true global minimum, yet to be identified, is significantly lower in
energy than any minima so far identified. Second, the true mini-
mum may have been identified, but the energy function does not
adequately distinguish it from the other minimum structures
already identified.

The server also clusters the resulting ensemble and finds the
average RMSD among the top 10 cluster centers by energy. This
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value is known to predict the RMSD to native of the best cluster
center by the equation y¼ 0.81 x + 3.69 Å, where y is the predicted
RMSD to native for the closest cluster and x is the average pairwise
RMSD of the top 10 cluster centers, with an R2 of 0.84 [9]. There
is a similar relation predicting not just the RMSD error but the
uncertainty on this prediction: yerr ¼ 0.91 xerr + 0.09 Å. In this
case, the predicted best RMSD for the BWYV cluster centers is
9.8� 1.85Å. Most of the top 10 clusters indeed have RMSD to the
crystal structure 1L2X of 7–10.5 Å, consistent with the predicted
accuracy. In this favorable case, the second-best energy cluster turns
out to be quite close to the experimental structure, achieving an
actual all-heavy-atom RMSD of 3.24 Å (Fig. 1b).

2.2 The “Advanced”

Interface to the

FARFAR2 ROSIE Server

Next, we illustrate the use of the advanced interface (Fig. 2a, b) on
the twister sister ribozyme structure 5Y87 [16], the experimental
structure corresponding to RNA-Puzzle 20. During our modeling
of this problem for RNA-Puzzles, we made use of a template
structure for a hypothesized tertiary contact (a T-loop/
intercalation interaction), and the advanced interface is necessary
to supply this information.

2.2.1 Sequence

Specification Through a

Specially Formatted FASTA

File

We employ a specially formatted FASTA file designed to encode the
desired sequence numbering as well as the sequence. The benefits
of this FASTA file are significant. First, the specification of custom
numbering and chain codes allows the FARFAR2 code to under-
stand desired residue-residue correspondences between models and
a provided experimental structure, allowing for the direct compu-
tation of native structure RMSD during the simulation. Second,
that same correspondence allows for the specification of template
structures (see Sect. 2.2.6) that give fixed coordinates for particular
nucleotides. The FASTA for the 5Y87 modeling challenge is:

>rna_puzzle_20_t_loop A:1-18

acccgcaaggccgacggc

>rna_puzzle_20_t_loop B:1-50

gccgccgcuggugcaaguccagccacgcuucggcgugggcgcucaugggu

The FASTA specification allows the study of sequences includ-
ing chemically modified nucleotides, which must be indicated using
special Rosetta nomenclature: indicating the one-letter code as X
and specifying a modified base using the PDB three-letter code,
enclosed in brackets. (Thus, the nucleotide dihydrouridine, com-
mon in tRNAs, which is found in the PDB as H2U, is indicated in a
sequence as X[H2U].) The brackets eliminate potential ambiguity
between three-letter codes and one-letter codes. The twister sister
ribozyme includes no chemically modified nucleotides, so this spe-
cific capability is unnecessary.
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2.2.2 Secondary

Structure Specification

Through an Uploaded File

In the advanced interface, we supply the secondary structure
through a file, rather than a secondary structure string. Unlike
when specifying a secondary structure string, the user should not
use commas or other characters to separate chains; the FASTA
already indicates where chains begin and end.

The secondary structure for our twister sister modeling
problem is:

( ( ( ( . . . ( ( ( ( ( ( . ( ( ( ( ) ) ) ) . ) ( ( ( ( ( . . . . . . . ) ) ) ) )

(((((....)))))))).))...))))

2.2.3 Specification of

Noncanonical Pairs

The “ordinary” secondary structure, as specified above, can contain
only Watson-Crick base pairs and G-U wobble pairs. Any base pair
indicated above will be assumed to have that standard geometry,
and base pairs incapable of a canonical Watson-Crick pairing will
prevent job submission. Many noncanonical base pairs nonetheless
exhibit highly stereotyped configurations that engage the Hoogs-
teen or sugar edges of one or both bases or that engage theWatson-
Crick edges in a parallel/trans orientation [17]. For structures
known to contain such base pairs, from local motifs like kink
turns [18] to tertiary contacts like tetraloop/receptors [19–21],
supplementing the secondary structure with this information can
be helpful but is rarely available in de novo modeling scenarios, so it
has not been widely explored with FARFAR2.

Nevertheless, the advanced interface provides two ways to
provide noncanonical pair information. First, the user may provide
a “general” secondary structure file formatted just the same as
above. Any pairs provided in the “general” secondary structure
may be satisfied using any combination of nucleobase edges in
any orientation, drawn from a database of validated base pairing
orientations.

Alternatively, if aspects of the correct noncanonical base pair is
known for sure, they may be specified individually in text, format-
ted like so:

A:18 A:55 W H A A:24 A:72 X S C

The string above stipulates that base 18 of chain A and base
55 of chain A must make an antiparallel pair between the Watson-
Crick edge of A:18 and the Hoogsteen edge of A:55, and A:24
and A:72 must make a cis pair between any edge of A:24 and the
sugar edge of A:72. The permissible base edges are Watson-Crick
(W), Hoogsteen (H), sugar (S), and “any” (X), while orientations
may be specified as parallel (P)/antiparallel (A) orientation of base
normals or through the cis (C)/trans (T) nomenclature of Leontis
and Westhof [17], as well as any (X).
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For the RNA-Puzzle 20 twister sister modeling problem 5Y87,
there was such a hypothesized set of noncanonical interactions
involving a T-loop motif, but this set is actually captured by a
local template structure (see Subheading 2.2.6), and so specification
of noncanonical pairs is unnecessary to reproduce it.

2.2.4 Chain Connections Sometimes there are ambiguities in experimental data intended to
guide structure determination. For example, some datasets
employing cross-linking or long-distance cleavage information
indicate the general proximity of two sets of nucleotides, but no
indication as to what nucleotides those could be. “Chain connec-
tions” allow users to indicate that there should be a base pair of some
type – potentially noncanonical – between two sets of nucleotides,
without making any assumptions about what the nature or identity
of the base pair should be. This is potentially useful for systems with
multiple chains, where the “register” of base pairing or tertiary
contacts between two chains may be ambiguous. For 5Y87, the
secondary structure is known unambiguously, thanks to previously
published analysis of twister sister ribozymes.

2.2.5 Constraints Rosetta’s concept of constraints is equivalent to the idea of ener-
getic restraints in molecular dynamics. It is common to express
certain types of experimental data as energetic restraints that reward
a pair of atoms for being a certain distance apart. The FARFAR2
ROSIE server supports the specification of constraint files using
Rosetta’s documented constraint file syntax. A specific example
related to multiplexed lOH cleavage analysis (MOHCA) experi-
ments is provided in Sect. 2.3.1.

The server also accepts two additional parameters governing
how constraints are applied. First, users may specify the weight
applied to constraints, which permits constraints to influence or
outright dominate the energy function. Second, users may alter the
way that constraints are applied throughout the course of the
low-resolution phase of FARFAR2. Choosing “staged constraints”
ensures that constraints between residues that are close to each
other in primary sequence are applied earlier in the simulation.
Prioritizing local interactions in this way appears to help FARFAR2
discover more solutions that satisfy the constraints.

2.2.6 Input Template

PDB Files

Taking advantage of any known homology of the RNA modeling
problem to previously known structural templates accelerates the
process significantly and permits a smaller computational expendi-
ture to deliver superior results [22]. The homology does not have
to extend over the entire modeled RNA to aid modeling – homol-
ogy arising from the “modularity” of many RNA motifs, many of
which fold to highly similar structures in different contexts [23], is
also valuable and illustrated below. FARFAR2 permits the
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specification of template structures, whose coordinates are kept
absolutely fixed during fragment assembly andmoved only through
energy minimization if desired.

While there can be significant benefits to supplying a template
for any junction of an RNA, there are two cases that are especially
worth highlighting and have recurred in RNA-puzzles and real-
world problems in our lab. First, it can be difficult to model small
molecule binding sites with algorithms like FARFAR2 and scoring
functions not specialized to that task. But binding sites are often
well conserved between RNAs of the same or similar families, and
so the junction surrounding, e.g., the S-adenosylmethionine bind-
ing site of the SAM-I riboswitch, may guide modeling of SAM-IV
[9]. Second, tertiary contacts often require precise orientations to
form correctly, and during the low-resolution fragment assembly
stage, the energetic minima are not particularly deep, so even if a
tertiary contact is sampled during fragment assembly, only a frac-
tion of models will retain the contact at the end. Thus, local
templates of tertiary contacts can enormously focus sampling.

The RNA-Puzzle 20 twister sister modeling problem includes a
local template for the intercalated T-loop formed by an adenosine
from the catalytic two-way junction and an apical loop distant in the
secondary structure. We were able to infer this interaction by a
simple analogy to a previously studied twister sister ribozyme,
RNA-Puzzle 19, deposited under PDB code 5T5A [24].

We have made additional webservers available for tasks that are
useful for manipulating local templates, such as threading on a new
sequence (frequently a perfectly valid template will have differences
in helix sequence, e.g., that do not affect its quality) and renumber-
ing to match the modeling problem at hand. These webservers may
be found at https://rosie.rosettacommons.org/rna_thread and
https://rosie.rosettacommons.org/renumber_pdb.

To thread a new RNA sequence onto a PDB (Fig. 2a), supply
the starting PDB and the new desired sequence as “acgu” to the
server. The resulting PDB file will have its numbering “reset”
to A:1-N, where N is the total number of nucleotides in your
PDB structure. For the twister sister modeling problem, no thread-
ing was needed as the sequences were identical in the intercalated
T-loop between the template structure 5T5A and the new twister
sister RNA.

To update the chains and numbers in a PDB (Fig. 2b), supply
the starting PDB and the new numbering in the same sort of format
used in FASTA files above. That is, chain and residue numbering is
described as “A:1” or “B:5” – while multiple consecutive residues
with the same chain may be summarized as “A:1–20” or equivalent.
We do renumber the T-loop from 5T5A, as it represents an inter-
action between adenosine residue A:8 and a T-loop
comprising A:22–26 in its original context, while in the new twister

https://rosie.rosettacommons.org/rna_thread
https://rosie.rosettacommons.org/renumber_pdb
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Fig. 2 (a) Interface for the rna_thread server. (b) Interface for the renumber_pdb server, prepared to renumber
the starting template as needed

sister ribozyme that we seek to model, the interaction is
between A:7 and B:12–16, so our input numbering is:

The T-loop from 5T5A, renumbered to match the 5Y87 struc-
tural context, may be found in https://github.com/DasLab/
FARFAR2_modeling_examples. This template turned out to have
0.36 Å RMSD from the experimental structure.

2.2.7 Alignment PDB

Structure

There are many situations where the user might have multiple input
template structures and an approximate understanding of where
they might sit in space. To encode this expectation, the user can
supply one “alignment PDB” encoding that understanding. FAR-
FAR2 will impose energetic restraints on each atom in generated
models corresponding to an atom in the alignment PDB, penaliz-
ing conformations where they stray more than 4.0Å away from this
ideal location. Thus, models will reliably have the desired orienta-
tion, but small deviations necessary to accommodate sequence
context changes from the template may be permitted.

https://github.com/DasLab/FARFAR2_modeling_examples
https://github.com/DasLab/FARFAR2_modeling_examples
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This feature is also useful for understanding the best possible
models achievable by FARFAR2 that are close to a target structure
like an experimental structure. Comparison of energies of such
near-native models with unrestrained de novo modeling has been
useful in understanding limitations in the FARFAR2 energy
function [9].

2.2.8 Native PDB

Structure

The sequence and numbering of any specified native structure must
correspond exactly to the provided FASTA file. This structure will
of course be unavailable for actual blind challenges approached
using the webserver, but for benchmarking cases like the twister
sister ribozyme, it is available (5Y87) and we use it here in this
example. This file is also supplied in the DasLab/FARFAR2_mo-
deling_examples repository (https://github.com/DasLab/
FARFAR2_modeling_examples).

2.2.9 High-Resolution

Minimization Settings

Following fragment assembly, FARFAR2 refines structures
through continuous minimization of torsion angles in an all-atom
scoring function. This is not strictly mandatory, but structures that
have not been optimized in this way will possess nonphysical chain
breaks and clashes. If minimization is desired (it is active by
default), then users may select one of three high-resolution energy
functions. The default is the best-performing setting and the stan-
dard for FARFAR2.

By default, residues drawn from template structures are not
minimized. Users may additionally specify residues from input
template structure that may move during minimization. The
input format indicates each residue by residue number and chain,
like “A:1”; a series of residues may be specified as “A:1‐3A:5” and
so on. This option is especially useful when the new modeling
context for a template is somewhat different from its original
context. Because we used an existing twister sister ribozyme struc-
ture for the intercalated T-loop template in this modeling, we did
not use this option, but if we had used a different structure with a
T-loop – say, a tRNA – it may have been helpful.

2.2.10 Low-Resolution

Fragment Assembly

Settings

The initial low-resolution fragment assembly stage also has several
manipulable parameters. The user can raise or lower the simulation
temperature, which affects how likely a fragment move is to be
accepted. They may select the current, updated fragment database;
the previous Rosetta default in effect from 2010 to 2019; or the
original fragments that only used one structure of an E. coli 23S
rRNA. They may enrich the existing fragment database by adding
in torsional combinations drawn from a Gaussian centered at the
torsions of each experimental fragment. Additionally, they may
enforce an approximate symmetry condition: For example, if the
user is interested in modeling a duplex, then they may wish to

https://github.com/DasLab/FARFAR2_modeling_examples
https://github.com/DasLab/FARFAR2_modeling_examples
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ensure that any fragment move is applied concurrently to each
strand. These non-default options have not been explored widely.

The final condition that modifies the low-resolution phase can
be important for rigorous benchmarking: an option originally
added to Rosetta when the Das lab needed a standard for compari-
son in stepwise Monte Carlo benchmarking [25]. The user may
choose to exclude homologous fragments from the fragment library
that resemble the native structure too closely. Using a structure of a
twister sister ribozyme like 5Y87 as a benchmark case for testing
FARFAR2 would be unfair if fragments from that same ribozyme
were present in the library. The fragment exclusion algorithm looks
at every 6-mer sequence in the native PDB and removes any frag-
ments that match those 6-mers in sequence and whose substitution
would result in a conformation closer than the provided RMSD
radius to the native conformation. The sequence match for what
might get removed defaults to matching purine/pyrimidine iden-
tity but could either ignore sequence entirely or require an exact
sequence match. For RNA-Puzzle 20, PDB 5Y87, we supply an
RMSD radius of 1.2 Å, following the FARFAR2 study [9].

2.2.11 Experimental

Data

The user may have external experimental data to guide the model-
ing process. NMR chemical shifts may be specified using a variant
on the STAR 2.1 format. Details of the full CS-ROSETTA-RNA
protocol [26] are extensively documented in Rosetta demos avail-
able at https://www.rosettacommons.org/demos/latest/public/
cs_rosetta_rna/README and application documentation at
https://www.rosettacommons.org/docs/latest/application_docu
mentation/rna/CS-Rosetta-RNA, but augmenting FARFAR2
modeling with chemical shift scoring requires only the specification
of a STAR 2.1 format chemical shifts file as described here. Sub-
heading 2.3 gives an example.

2.2.12 Number of

Structures to Generate

The number of structures needed for a whole RNA structure varies
considerably with its size and complexity. The presence of the
intercalated T-loop tertiary contact aids the modeling, as that ter-
tiary contact is sufficient to give the whole RNA a globular fold and
restricts the possible low-energy structures. In our original blind
challenge effort, and in our subsequent simulated benchmark, we
were able to generate structures closer than 4.0 Å RMSD to the
crystal structure with only a few thousand models. For the
RNA-Puzzle 20 twister sister ribozyme 5Y87, we generate
20,000 models, simply to provide a thorough exploration of the
modeling problem for this work.

2.2.13 Analyze the

Results

The FARFAR2 ROSIE server (Fig. 3a) provides a set of data for
this twister sister problem similar to the first pseudoknot bench-
mark case, albeit with some small differences. Because we provided
a native PDB structure in this example, the server does not rescore

https://www.rosettacommons.org/demos/latest/public/cs_rosetta_rna/README
https://www.rosettacommons.org/demos/latest/public/cs_rosetta_rna/README
https://www.rosettacommons.org/docs/latest/application_documentation/rna/CS-Rosetta-RNA
https://www.rosettacommons.org/docs/latest/application_documentation/rna/CS-Rosetta-RNA
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Fig. 3 (a) The job submission page that appears upon submitting the suggested inputs to simulate RNA-Puzzle
20. (b) A close-up comparison of the excellent template T-loop structure from 5T5A, as compared to the
experimental coordinates for the target ribozyme 5Y87. (c) Analysis of the ensemble of FARFAR2 structures
generated. Plotting the all-atom RMSD to the lowest-energy structure suggests good sampling and a scoring
function that favors a single conformation. (d) While each cluster center is each fairly close to the experimental
conformation (in marine), one of them (in pink) is especially near, with an RMSD of 3.91 Å

the ensemble to the lowest-energy model. Instead, it plots the score
against RMSD to the provided native structure. In part, we can
attribute the method’s success on a modeling problem of this
complexity to the high similarity in T-loop conformation between
the template and target structure (Fig. ). The resulting ensemble
(Fig. ) may be interpreted similarly to the simpler pseudoknot3c

3b
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modeling problem above (Fig. 1), albeit with the certainty that the
lowest RMSD structures are the most native-like due to the specifi-
cation of the native structure as a reference here. So energetic
minima far from the native structure must indicate scoring function
issues. In this case, the resulting top 10 cluster centers automatically
generated by the webserver have average inter-model RMSD of
7.6 Å, indicating 9.9� 1.9 Åminimum cluster RMSD to native. In
fact, the clusters are each quite similar to the experimental structure
and range from 5.3 to 9.3 Å, and the best cluster has a significantly
superior RMSD, at only 3.91ÅRMSD (Fig. 3d). This suggests that
the use of such an accurate template significantly helped structure
prediction exceed typical expectations.

2.3 Additional

Illustrations of

Advanced Interface:

Experimental Data

Experimental data can dramatically improve convergence and accu-
racy of RNA modeling. The FARFAR2 ROSIE server is well-
equipped to handle two kinds of experimental data, MOHCA and
NMR 1H chemical shift data, briefly discussed here. (The recent
Ribosolve pipeline integrates Rosetta RNA de novo modeling with
cryo-EM; a separate ROSIE server is under development for that
application and is not described here.)

2.3.1 MOHCA-Seq with

FARFAR2

MOHCA [27] and MOHCA-seq [28] experiments use tethered
hydroxyl radical sources and sequencing readouts to discover
“strong” and “weak” signals of nucleotide-nucleotide proximity.
These signals can be used to guide FARFAR2modeling; each signal
results in a restraint expressed as the sum of two functions, whose
weights are given by the strength of the constraint. A “strong”
restraint between chain A nucleotides 2 and 38 at their O2’ and C4’
atoms would be specified via:

AtomPair O2’ 2A C4’ 38A FADE 0 30 15 -4.00 4.00

AtomPair O2’ 2A C4’ 38A FADE -99 60 30 -36.00 36.00

Omission of the chain letter leads Rosetta to interpret the
sequence position as an absolute number within the PDB (i.e.,
sequentially starting from 1), which may not match the numbering
of the user’s PDB. The parameters for the FADE constraint are
described in https://www.rosettacommons.org/docs/latest/
rosetta_basics/file_types/constraint-file. The specification above
gives a penalty smoothly ramping up to 4 Rosetta energy units as
the inter-atom distance shifts away from 15 Å down to 0 Å and up
to 30 Å and an additional penalty of up to 36.0 Rosetta units if the
inter-atom distance exceeds 30 Å. A “weak” restraint would be:

AtomPair O2’ 2A C4’ 38A FADE 0 30 15 -0.80 0.80

AtomPair O2’ 2A C4’ 38A FADE -99 60 30 -7.20 7.20

that is, one-fifth the strength of the “strong” restraint.

https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file
https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file


246 Andrew M. Watkins and Rhiju Das

Fig. 4 A comparison of FARFAR2 simulation results run with and without MOHCA-seq constraints on a
V. cholerae c-di-GMP riboswitch. (a) The simulation run without the benefit of MOHCA-seq constraints is
unable to recover the key tertiary contact that defines the global fold of this riboswitch (left), while a simulation
with MOHCA-seq constraints finds that tertiary contact naturally (right). (b) Looking at the ensemble of
generated models as a whole, a large proportion of the models from the constrained simulation are closer to
the experimental model than even the best models generated in the unconstrained simulation

We show the results of the FARFAR2 ROSIE server simula-
tions conducted with and without MOHCA-seq constraints on a
Vibrio cholerae c-di-GMP riboswitch (PDB code: 3IRW)
[29]. Unlike the original protocol using FARFAR [28], FARFAR2
does not require pre-generation of helix ensembles, manual selec-
tion of models to minimize, or manual selection of a fraction of
models to cluster. The constrained simulations approach much
closer to the crystal conformation: Its second-lowest-energy cluster
is at 5.52 Å RMSD, while the closest cluster among the top 10 for
the unconstrained simulation is 8.91 Å RMSD (Fig. 4a). This
advantage is far from chance; more than half of the models pro-
duced in the constrained simulation have RMSD less than 8.0 Å,
versus less than 1% for the constrained simulation (Fig. 4b).
FASTA, secondary structure, and constraint files necessary to
reproduce this simulation are included in the GitHub repository
(see Appendix).

2.3.2 Chemical Shift-

Guided FARFAR2 (CS-

Rosetta-RNA)

1H chemical shifts alone can provide powerful information for
constraining RNA folds, in many cases enabling atomic accuracy
without requiring additional NMR experiments [26] . Due to
improvements in the FARFAR2 protocol at baseline, the difference
in performance on benchmark cases from the original CS-Rosetta-
RNA study [26] is not as stark as for the earlier sampling protocol
and scoring function (FARFAR rather than FARFAR2). Nonethe-
less, improvements from 1H chemical shifts remain apparent, as
illustrated by the tandem GAmismatch case 1MIS [30]. A compar-
ison of two 500-structure ensembles shows that modeling guided
by chemical shifts generates a much harsher score penalty for
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Fig. 5 A comparison of FARFAR2 simulations run with and without chemical
shifts on a duplex RNA containing tandem GA pairs. FARFAR2 can find the
correct structure even without chemical shift data, but the energy function
favors correct conformations by a larger margin. We show the energy gap
differentiating the lowest-energy correct structure (at most 1.0 Å RMSD)
versus the lowest-energy incorrect structure (at least 2.0 Å RMSD)

models>2.0 Å of an experimental structure (an energy gap of 16.0
rather than 9.8 Rosetta energy units) (Fig. 5).

3 Conclusions

The ROSIE server for FARFAR2 provides a web interface to
Rosetta’s application for de novo modeling of complex RNA
folds, targeted to users at diverse levels of expertise. Important
stages of modeling, such as reducing a modeled ensemble to a
handful of representative structures, are automated, enabling the
user to come away with both full modeling output and also the
most important models and their expected accuracy. Although the
computational demands of RNAmolecules remain high and atomic
accuracy for intricate interactions remains difficult to achieve, the
ROSIE interface ensures that nonexpert can access Rosetta RNA
modeling code in a state that keeps pace with ongoing
developments.
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Appendix

All inputs to reproduce the modeling described here, as well as
sample output data, are released freely at https://github.com/
DasLab/FARFAR2_modeling_examples.
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Chapter 15

Automated 3D Design and Evaluation of RNA
Nanostructures with RNAMake

Chris P. Jurich and Joseph D. Yesselman

Abstract

Despite growing interest in applying RNA’s unique structural characteristics to solve diverse biotechnology
and nanotechnology problems, there are few computational tools for targeted tertiary design. As a result,
RNA 3D design is traditionally slow, resource-consuming, and dependent on expert modeling. In this
chapter, we discuss our recently developed software package: RNAMake, a set of applications capable of
designing RNA tertiary structures to solve various relevant nanotechnology problems and provide basic
thermodynamic calculations for the generated designs. We provide in-depth examples and instructions for
designing example RNA nanostructures such as minimal RNA sequences containing a single tertiary
contact, generating RNAs that stabilize small-molecule ligands, and building tethers that link ribosomal
subunits together. We also highlight the addition of a new Monte Carlo design algorithm and the ability to
estimate the thermodynamic contribution of helical elements in RNA 3D structures.

Key words RNA tertiary structure, RNA design, Computer-guided design

1 Introduction

The emerging field of RNA
nanotechnology seeks to generate nanoscale machines for biomed-
icine that harness RNAs’ unique structural properties [1]. Unlike
other biomolecules, the tertiary structure of RNA is composed of
discrete and reoccurring substructures called tertiary “motifs.”
Many of these tertiary motifs adopt similar three-dimensional
(3D) conformations despite appearing in a diverse set of structural
contexts [2–7]. Exploiting symmetry, motif repetition, and expert
modeling, these motifs have been assembled into rationally
designed structures, including polygons, cubes, and sheets [8–
13]. While significant advances have been made, there are two
outstanding problems faced in the rational design of RNA 3D
nanostructures: (1) Rationally designed RNAs lack the complexity
observed in natural RNA machines that contain a larger repertoire
of distinct interacting motifs giving rise to the functionality
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observed in the biological RNA world [14–16]. (2) Tertiary motifs
and while some can be approximated as rigid blocks, they are
thermodynamic entities that are best represented by an ensemble
of structures. There are known motifs that can radically change
conformation in response to small-molecule binders [17]. To ulti-
mately build RNA devices that can respond to the cellular environ-
ment requires a detailed description of each motif’s conformational
thermodynamics. This chapter will present our recently developed
toolkit RNAMake, which seeks to address these challenges with
examples on how to run each algorithm.

1.1 RNAMake

Software Can

Automate the Design

of RNA 3D Structures

RNAMake is the first software package that automates the assembly
of RNA motifs into compact nanostructures. RNAMake contains
(1) an extensive motif dictionary including the nearly 1000 motifs
available from high-resolution crystallographic structures and
(2) provides enumerative “pathfinding” algorithms to iteratively
build up the necessary motifs to solve 3D design problems
(Fig. 1a). In our initial study, we challenged RNAMake with three
design challenges [18]. First, we revisited a 20-year-old problem of
designing an RNA that aligns the two parts of the tetraloop/tetra-
loop receptor (TTR) within a single compact RNA chain. In total,
we generated 16 solutions to this “miniTTR” problem, and
through a combination of chemical mapping, Mg2+ titrations, and
native gel electrophoresis, we observed strong evidence that 11 of
the 16 constructs folded as designed, with 1 case confirming atomic
accuracy over nearly the entire fold through crystallography. Sec-
ond, we generated single stranded ribosomes by building a tether
between the 23S and 16S rRNAs of the ribosome into a single RNA
strand that supports E. coli. Growth [19–22]. This 3D design
challenge requires solving the RNA motif pathfinding problem
over >100 Å distances and avoiding steric collisions with the ribo-
some’s RNA and protein components. Lastly, we demonstrated
that RNAMake could improve the binding properties of two artifi-
cially selected RNA aptamers. We accomplished this by utilizing
RNAMake to add of peripheral tertiary contacts that ‘lock’ these
artificial aptamers into their bound conformation even in the
absence of ligand. Such locking contacts could selectively increase
the unbound state’s free energy and thereby improve the free
energy difference to the bound state, leading to better affinity to
small-molecule targets.

1.2 RNAMake-ΔΔG:
A Predictive Model for

Helical RNA 3D

Thermodynamics

RNAMake’s other feature is its conformational thermodynamic
description of helices and some simple motifs. Helices are decom-
posed into base pair steps (i.e., two sequential base pairs) which
allows for modeling of arbitrary helix sequences with minimal set of
structure states. Base pair step conformational ensembles were
determined by compiling all instances of that base pair step in
structured RNAs from the RNA crystal structure database. This
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Fig. 1 RNAMake can build RNA 3D scaffolds from a library of motifs. (a) The start and end base pair that
defines the constraints for RNAMake to build a 3D RNA segment. (b) Demonstration of RNAMake scaffold
design algorithm, which builds an RNA path via the successive addition of motifs (orange) and helices (gray)
from a starting base pair to the ending base pair. (c) Defining a solution topology with a specific number of
helices and two-way junctions using the Monte Carlo search. (d) Incorporating user supplied RNA segments
into RNAMake’s generated design solution

quantitative 3Dmodel of RNA tertiary assemblies blindly predicted
the stabilities of thousands of RNA complexes (< 0.5 kcal/mol
accuracy, 5 kcal/mol range). Using RNAMake-ΔΔG, we were also
able to develop low-resolution conformational thermodynamic
descriptions for ~400 motifs that have known crystallographic
structures [23].

In the following sections, we provide detailed example use cases
for RNAMake, including input files, rendered outputs, and the
exact command line arguments used. These examples cover both
the generation of RNA nanostructures and predictions of their 3D
thermodynamic stability.

2 Materials

RNAMake is written in C++11 and can be built with g++ and clang
compilers. RNAMake is available for free for academic use at
https://simtk.org/frs/?group_id¼1749. Each application in
RNAMake is built as a separate executable for ease of use. All

https://simtk.org/frs/?group_id=1749
https://simtk.org/frs/?group_id=1749
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examples and files discussed in this book chapter are distributed
with RNAMake and are contained in the subfolder “tests.”

3 Methods

3.1 Automatic

Design of RNA

Nanostructures

The RNAMake application design_rna_scaffold provides a
central hub for the building of RNA 3D segments composed of
the iterative buildup of RNA motifs and helices. There is a wide
array of potential options; please see Table 1 for all commonly used
options. The application requires three command line arguments:
--pdb which specifies the path to the protein databank (PDB) file
that contains the starting RNA structure and --start_bp and --
end_bp which define the start and end of Watson and Crick base
pairs to build between. Both must be specified as “[CHAIN ID]
[NUM]-[CHAIN ID][NUM].” For an example, the pairing
between residues 100 and 112 on chain A would be
“A100-A112.” Note that although the format of this option is
checked before the algorithm runs, the validity of the supplied
base pair is not checked until the 3D structure is loaded. The
other common arguments are --designs to specify the number
of solutions and --dump_pdbs which outputs a PDB file for each
solution. See command line example below:

design_rna_scaffold --pdb inputs/min_tetraloop_receptor.pdb

--start_bp “A220-A253” --end_bp “A144-A159”

This first example defines the “miniTTR” problem. Building an
RNA segment that generates a single continuous RNA strand that
contains both the tetraloop and receptor of the tetraloop/tetra-
loop-receptor tertiary contact (Fig. 1). By default, design_r-
na_scaffold will utilize its classic pathfinding algorithm which
balances the length of helical regions with the relative distance to
the end base pair (Fig. 1b). This pathfinding search finds the
optimal number of motifs and helices to use based on this criterion.

design_rna_scaffold outputs two files by default:
“default.out” and “default.scores.” The out file stores all informa-
tion required to regenerate each designed RNA segment. These can
be supplied to other RNAMake applications for additional analysis.
The score file is a comma delimited summary of all information
about each design. A breakdown of what each column represents is
summarized in Table 2.

RNAMake now contains a new Monte Carlo-based search that
allows the user to specify the exact composition of the designed 3D
RNA segment. A user can specify the use of the Monte Carlo-based
search by setting --search_type to “MC” and supplying a motif
path. This motif path informs RNAMake what set of motifs should
be used at each position in the constructed RNA segment. Table 3



(continued)

Table 1
List of commonly used flags and options in design_rna_scaffold application

Argument Required? Description Allowed values

-h,--help No Provides information on options
from within the command line.
Will list a description of all
commands listed here

--

Core inputs

--pdb Yes Path to a PDB file containing the
starting RNA strand(s). Note
that both the starting and
ending base pairs within must be
Watson-crick

Directory string, /path/
to/file.Pdb

--start_bp Yes The Watson-crick base pair from
which the RNA design will be
built. Format is “[CHAIN ID]
[NUM]-[CHAIN ID]
[NUM].” for an example, the
pairing between residues
100 and 112 on chain A would
be “A100-A112.” note that
although the format of this
option is checked before the
algorithm runs, the validity of
the supplied base pair is not
checked until the 3D structure is
loaded

Text, must adhere to format
“[CHAIN ID][NUM]-
[CHAIN ID][NUM]”
(no spaces)

--end_bp Yes The Watson-crick base pair to
which the RNA design will be
built. Format is identical to that
of --start_bp. See description
above for more detail

Text, must adhere to format
“[CHAIN ID][NUM]-
[CHAIN ID][NUM]”
(no spaces)

--designs No The number of designs that
design_rna_scaffold attempts to
generate. Default value is 1

Integer, greater than 0

--extra_pdbs No Allows supplying extra RNA
segments in PDB files to be
included in the motif_path

List of PDB files that is
comma delimited

--log_level No Sets the global log level for
design_rna_scaffold. Logging
will be shown for events at and
above the select log level.
Default is “info”

In ascending order:
Verbose, debug, info,
warning, error, fatal

I/O options

--dump_pdbs No Outputs a PDB file for each
RNAMake solution

--

--out_file No Name of the output file where the
program’s results will be stored

String input to a valid
location. Ex:

/valid/path/my_output.
Out
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(continued)

Argument Required? Description Allowed values

--score_file No Name of the file where the scoring
information for generated
designs are stored

String input to a valid
location. Ex:

/valid/path/my_output.
Scores

Search parameters

--max_helix_length No The maximum number of base
pairs a helix can be; default 99

Positive integer greater
than –min_helix_length

--min_helix_length No The minimum number of base
pairs a helix can be; default 4

Integer greater than 1 and
less
than –min_helix_length

--motif_path No The motif libraries to use in the
generation of solutions. See
Table 3 for available libraries

A list of motif libraries
separated by commas

--no_sterics No Flag that turns off steric checks
against the supplied RNA
structure

--

--only_tether_opt No Flag that enables application to
ignore supplied structures other
than sterics

--

--search_cutoff No The largest score that will be
accepted for an allowable
solution; default 5.0

Positive floating point
number

--search_max_motifs No For the pathfinding search, the
maximum number of motifs that
can be used; default 999

Positive integer

--search_max_size No The maximum number of
nucleotides that can be used in a
solution; default 999,999

Positive integer

--search_type No The type of search to use;
default “path_finding”

Either “path_finding,”
“mc,” or “exhaustive”

Sequence optimization parameters

--skip_
sequence_optimization

No Flag that disables sequence
optimization for all designs

--

--sequences_per_design No The number of sequences to try
per motif design. Default is 1

Positive integer

Thermo fluc parameters

--thermo_fluc No Flag to run a thermo fluctuation
simulation of the designed
segment after sequence
optimization

--
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Table 2
Description of columns found in design_rna_scaffold score file

Output value Description

design_num The design number, ascending from 0

design_score The design score, how well the solution reached the target base pair

design_sequence The full sequence of the supplied PDB and the constructed RNA segment.
“N”s will appear for nucleotides in helical areas that can be set to any
nucleotide in a base pair

design_structure The full secondary structure in dot bracket notation

motif_uses Which motifs from the RNAMake motif library were used

opt_num The sequence optimization number if sequence optimization was performed

opt_sequence The full sequence with the helix sequence optimized to match the desired
secondary structure

opt_score How well does the solution with the optimized sequence reach the target base
pair

thermo_fluc_best_score If thermo fluctuation simulation is performed, what was the best possible
conformation that reached the target base pair

hit_count How many times out of 100,000 trials did the solution reach the target base
pair

Table 3
All motif libraries that are currently available to use in the Monte Carlo motif path declaration

Motif library
name

ideal_helices Idealized helices between size of 2 base pairs to 20 base pairs

Twoway All two-way junctions

Tcontact All tertiary contacts

Hairpin All hairpins

Nway All junctions that have three or more base pair ends

flex_helices Helices that were generated by RNAMake-ΔΔG are slightly distorted away from
idealized geometry

unique_twoway Clustered two-way junctions to reduce the total number of possibilities

bp_steps All helical base pair steps
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lists the current available motif libraries that can be included. In the
command below, a motif path of “flex_helices,twoway,
flex_helices” has been specified.

design_rna_scaffold --pdb inputs/min_tetraloop_receptor.pdb

--start_bp “A220-A253” --end_bp “A144-A159” --search_type mc

--motif_path “flex_helices,twoway,flex_helices”

This constrains RNAMake to find solutions that contain only a
single two-way junction flanked by two nonideal helices. This path
can be as long as the user desires: “flex_helices,twoway,
flex_helices,twoway,flex_helices” corresponds to solu-
tions with two distinct two-way junctions and three nonideal heli-
ces, and “flex_helices,twoway,flex_helices,twoway,
flex_helices,twoway,flex_helices,twoway,flex_he-
lices” has four two-way junctions and five nonideal helices.
Examples of solutions to each of these constraints are highlighted
in Fig. 1c.

RNAMake’s Monte Carlo search further permits users to sup-
ply their own RNA structures to be included in the motif path.
These segments can be ranged from small-molecule binding apta-
mers to large segments of existing RNA structures. The below
command illustrates how to supply a custom RNA segment into
the motif path:

design_rna_scaffold --pdb inputs/min_tetraloop_receptor.pdb

--start_bp A220-A253 --end_bp A144-A159 --search_type mc --

motif_path “flex_helices,twoway,flex_helices,atp_aptamer,

flex_helices,twoway,flex_helices,twoway,flex_helices” --ex-

tra_pdbs inputs/atp_aptamer.pdb

Supplying the --extra_pdbs option with additional PDB
files will permit RNAMake to incorporate user-supplied RNA struc-
tures into the motif path. In the case above, the user supplied the
ATP aptamer which coupled with the motif path: “flex_he-
lices,twoway,flex_helices,atp_aptamer,flex_he-
lices,twoway,flex_helices,twoway,flex_helices” will
be included in the fourth position in addition to three other
two-way junctions and five helices. An example solution to these
constraints is displayed in Fig. 1d.

RNAMake also supports the design of new RNA segments in
large natural RNA systems such as the E. coli ribosome.

design_rna_scaffold --pdb inputs/ribosome.pdb --start_bp

B1449-B1454 --end_bp C1447-C1464 --only_tether_opt

In the command above, the input PDB contains the entire
ribosome with the hairpin loop of the h44 on the 30S subunit
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Fig. 2 RNAMake-generated ribosome tether designs. 50S subunit shown in light blue, 30S in dark gray, and
RNAMake-generated tether in red. (a) Tether between helix h44 on the 30S subunit and helix H101 on the 50S
subunit. (b) Tether between helix 44 and helix H78. (c) Tether between helix 44 and helix H10

Fig. 3 3D thermodynamic conformational simulations. (a) The tectoRNA system composed of two tetraloop/
tetraloop receptors. The GAAA tetraloop/receptor is in light blue and light gray, respectively. The GGAA
tetraloop/receptor is in light green and yellow, respectively. RNAMake samples the 3D conformation of each
base pair step finding a multitude of allowable conformations. (b) The miniTTR system, helix conformations
are sampled from RNAMake’s base pair step ensembles

andH101 on the 50S subunit removed. In this case, RNAMake will
build an RNA segment between the two subunits creating a teth-
ered ribosome (Fig. 2a). For large RNAs supplying the --only_-
tether_opt flag is recommended, which ignores the existing
RNA structure for primary sequence optimization. RNAMake
automatically builds a steric representation of all other RNA
nucleotides and proteins found in the PDB file. RNAMake can
build long tethers that avoid steric collisions to distal parts of the
ribosome (Fig. 2b, c).

3.2 Performing 3D

Thermodynamic

Stability Predictions

The other major feature of RNAMake is its ability to estimate 3D
thermodynamic stability though its ensemble representation of
base pair steps. Originally these simulations were constrained to
the tectoRNA system, a model heterodimer composed of two
tetraloop/tetraloop receptor tertiary contacts (Fig. 3a)
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[23, 24]. The calculations can still be performed using the
ddg_tecto application. An example command line call is shown
below:

ddg_tecto -fseq CUAGGAAUCUGGAAGUACCGAGGAAACUCGGUACUUCCUGUGUC

CUAG -fss "((((((....((((((((((((....))))))))))))....))))))"

-cseq CUAGGAUAUGGAAGAUCCUCGGGAACGAGGAUCUUCCUAAGUCCUAG -css

"(((((((..((((((((((((....))))))))))))...)))))))"

where -fseq and -fss define the sequence and secondary struc-
ture of the first strand of the tecto system and -cseq and -css
define the sequence and secondary structure of the second strand.

Recently, these thermal fluctuation calculations were added to
the design_rna_scaffold application by supplying the --
thermo_fluc flag as shown below:

design_rna_scaffold --pdb inputs/min_tetraloop_receptor.pdb

--start_bp A220-A253 --end_bp A144-A159 --thermo_fluc

The thermal fluctuation will sample the helical base pair steps
through a Monte Carlo simulation reporting the likelihood the
solution will reach the defined base pair. These simulations only
take into account the base pair steps of the helices; if there are
significant number of non-helical motifs in a solution, these calcu-
lations will not report the true stability of the entire system.
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Chapter 16

RNA 3D Structure Comparison Using RNA-Puzzles Toolkit

Marcin Magnus and Zhichao Miao

Abstract

Computational modeling of RNA three-dimensional (3D) structure may help in unrevealing the molecular
mechanisms of RNA molecules and in designing molecules with novel functions. An unbiased blind
assessment to benchmark the computational modeling is required to understand the achievements and
bottlenecks of the prediction, while a standard structure comparison protocol is necessary. RNA-Puzzles is a
community-wide effort on the assessment of blind prediction of RNA tertiary structures. And
RNA-Puzzles toolkit is a computational resource derived from RNA-Puzzles, which includes (i) decoy
sets generated by different RNA 3D structure prediction methods; (ii) 3D structure normalization, analysis,
manipulation, and visualization tools; and (iii) 3D structure comparison metric tools. In this chapter, we
illustrate a standard RNA 3D structure prediction assessment protocol using the selected tools from
RNA-Puzzles toolkit: rna-tools and RNA_assessment.

Key words Structure comparison, RNA 3D structure prediction, Base pair, RNA-Puzzles

1 Introduction

Ribonucleic acid or RNA is a central type of molecule in a great
variety of biological processes throughout the central dogma [1–3],
including transcription regulation [4], RNA splicing [5, 6], and
protein translation [7]. The functional diversity of RNA is attrib-
uted to its ability to form specific 3D structures that can carry out
biological functions [8–10]. Thus, the accurate and rapid modeling
of RNA 3D structure is an important step in understanding the
molecular function as well as its interaction with other macromo-
lecules and ligands. Historically, the first manual prediction of
tRNA tertiary structure marked the emergence of
bioinformatics [11].

During the last decade, a good number of RNA 3D structure
prediction algorithms have been actively developed and improved.
These prediction methods cover approaches similar to protein
structure prediction, including comparative modeling (e.g., Mod-
eRNA [12]), fragment assembly (e.g., RNAComposer [13],
3dRNA [14], and VfoldLA [15]), and de novo modeling (e.g.,

Risa Karakida Kawaguchi and Junichi Iwakiri (eds.), RNA Structure Prediction, Methods in Molecular Biology, vol. 2586,
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NAST [16], iFoldRNA [17, 18], and SimRNA [19]). To blind
compare these prediction methods and understand the bottlenecks
in the field, RNA-Puzzles, which is a community effort in assessing
RNA 3D structure prediction, was initiated 10 years ago. To
understand the performance and limitation of the existing pro-
grams, an unbiased assessment workflow is necessary, while some
RNA-specific metrics have been developed and tested [20].

As one of the most widely used metrics in 3D structure com-
parison [21], root-mean-square deviation (RMSD) measures
the root mean square deviation of the Euclidean distances of the
aligned atoms after superimposition. However, it generalizes the
errors over the whole structure. And the errors in linker regions
may result in topological change, thus leading to high values in
RMSD even if other parts of the structure are similar to the regions
in the reference structure. Considering the number of degrees of
freedom in RNA structure, RNA is more likely to be influenced by
such local errors than protein structure. Besides, RMSD cannot
take into account the base pair feature of RNA.

Consequently, some RNA-specific metrics have been con-
ceived: Interaction network fidelity (INF) was designed to evaluate
the accuracy of interaction prediction, while deformation profile
[20] was introduced to complement single value evaluation
metrics, and P-value [22] was used to balance the effect of sequence
length in RMSD. The INF, defined as the Matthews correlation
coefficient (MCC) between the interactions of the reference struc-
ture and that of the predicted structure, indicates the consistency
between the prediction and the reference structure in terms of
interactions. And the evaluated interaction types have been cate-
gorized into Watson-Crick interaction, non-Watson-Crick interac-
tion, and base stacking. Deformation profile (DP) uses a 2D
distance matrix, which can be visualized by a heatmap, to represent
the average distance between a prediction and the reference struc-
ture. The color in the heatmap correlates to the local similarity
between the structures. There are also other novel metrics being
developed in recent years, including the mean of circular quantities
(MCQ) [23] and the Longest Continuous Segments in Torsion
Angle space (LCS-TA) [24], which measure the structural similarity
in the torsion angle space. These RNA structure comparison
metrics together with RNA structure decoy sets and RNA structure
normalization, analysis, manipulation, and visualization tools are
available in RNA-Puzzles toolkit as a computational resource [25].

In this chapter, we use some tools in the RNA-Puzzles toolkit
to show a standard RNA 3D structure comparison protocol. This
workflow mimics the RNA 3D structure prediction scenario in
RNA-Puzzles: Both predicted RNA structures (as the predicted
structures) and experimentally determined reference RNA struc-
tures (as the reference structures) are available in the comparison.
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We show steps in (1) reformatting RNA structures, (2) calculating
the comparison metrics, and (3) visualizing the results.

2 Materials

Please note that the programs described in this chapter are run in
the standard Python 3 environment.

2.1 Input Data In an RNA 3D structure prediction evaluation, we have a list of
predicted structures and at least one reference structure available. If
more than one reference structure of the same sequence has been
experimentally determined or multiple chains of the same sequence
exist in an asymmetric biological unit, all of these structures of the
same sequence are used as reference structures. And the one with
the lowest RMSD to a given predicted structure is deemed as the
reference structure for that prediction. The Brookhaven PDB [26]
format is used for input protein files. However, the predicted
structures are generated from different RNA structure prediction
programs, some of which are output from molecular dynamics
optimization, thus demonstrating a good diversity in the format.
In this chapter, we will use structures submitted to RNA-Puzzles as
examples. All these examples can be found at GitHub: https://
github.com/RNA-Puzzles/standardized_dataset.

2.2 Programs in

RNA-Puzzles Toolkit

The computational tools in RNA-Puzzles toolkit include rna-tools,
RNA-assessment, and other related programs. In this chapter, we
focus on the usage of rna-tools and RNA-assessment.

rna-tools is a set of RNA structure tools, which constitute the
main tools of RNA-Puzzles toolkit. It provides a unique interface
for (i) RNA sequence alignment and database search, (ii) RNA 3D
structure prediction and refinement, (iii) RNA structure analysis
and clustering, and (iv) RNA structure formatting, manipulation,
and visualization. rna-tools provides a Python Package Index (pip)
installation:

$ pip install rna-tools

Advanced installation and configuration can be found at
https://rna-tools.readthedocs.io/en/latest/install.html.

RNA_normalizer and deformation profile are programs used
for RNA structure prediction evaluation in RNA-Puzzles. RNA_-
normalizer can be used to standardize the structure file format as
well as to measure the assessment metrics, including RMSD, INF,
deformation index, and P-value. Deformation profile is provided as
an independent package to measure the deformation profile and
create the heatmap results. RNA_normalizer can be installed
through the GitHub repository:

https://github.com/RNA-Puzzles/standardized_dataset
https://github.com/RNA-Puzzles/standardized_dataset
https://rna-tools.readthedocs.io/en/latest/install.html
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$ pip install -e \

git+https://github.com/RNA-Puzzles/RNA_assessment.git#egg=r-

na-normalizer

Deformation profile does not require an installation but needs
to be downloaded from GitHub:

$ git clone https://github.com/RNA-Puzzles/Deformation_Pro-

file.git

The dependencies, including Biopython [27] and numpy [28],
need to be installed.

2.3 Website All the datasets and computational tools in RNA-Puzzles toolkit are
available at GitHub: https://github.com/RNA-Puzzles/RNA-
Puzzles-toolkit-overview.

3 Methods

In this section, we illustrate the structure prediction evaluation
workflow in RNA-Puzzles, which includes three steps when com-
paring the predicted structures with the reference structure:
(i) Normalize the structure format; (ii) calculate the structure
comparison metrics; and (iii) visualize the results. Here, we use
cases in RNA-Puzzles as showcases.

3.1 Standardize the

Structure Format

Example datasets, which contain all the raw submitted prediction
and standardized structures from RNA-Puzzles, can be down-
loaded from RNA-Puzzles toolkit GitHub https://github.com/
RNA-Puzzles/standardized_dataset

rna-tools provides a command for the download:

$ rna_pdb_toolsx.py --fetch rp

Git can also be used for download:

$ git clone https://github.com/RNA-Puzzles/standardized_data-

set.git

However, the raw submitted predictions, as well as the experi-
mentally determined reference structures, may use different
nomenclature for the atoms and residues, while a variety of addi-
tional ligands and atoms, e.g., metal ions, water, sulfates, and
crystallization specific heteroatoms, are often included in these
structures. Therefore, both the predicted and reference structures
need to be standardized before comparison.

https://github.com/RNA-Puzzles/RNA-Puzzles-toolkit-overview
https://github.com/RNA-Puzzles/RNA-Puzzles-toolkit-overview
https://github.com/RNA-Puzzles/standardized_dataset
https://github.com/RNA-Puzzles/standardized_dataset
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3.1.1 Nomenclature

Standardization

To align the atoms in the predicted structure to the ones in the
reference structure, the atom and residue names need to be the
same in both structures. Thus, the structure files are standardized
before measuring the comparison metrics. Rna-tools provides an
interface to standardize all the atom and residue names:

$ rna_pdb_toolsx.py --get-rnapuzzle-ready --inplace --suffix

rpr *.pdb

where “--get-rnapuzzle-ready” specifies the operation, “--inplace”
indicates that the standardized results are saved in new files with an
“rpr” suffix, and “*.pdb” indicates that all PDB files in the direc-
tory should be processed.

RNA_normalizer also provides an alternative to standardize the
structure files. The “parse” function in the program parses the
structure file and standardizes the given atom name and residue
name directories. The operation can be performed in a Jupyter
notebook (shown in the example of RNA_normalizer:

https://github.com/RNA-Puzzles/RNA_assessment/blob/
master/example.ipynb)

The python functions are as follows:

handle = RNA_normalizer.PDBNormalizer( RESIDUES_LIST, ATOMS_-

LIST )

ok = handle.parse( in_file, out_file )

where “RESIDUES_LIST” and “ATOMS_LIST” are the dictio-
nary files for the residue name and atom name. “in_file” and “out_-
file” are the structure files before and after the standardization.

However, these automated procedures may not deal with miss-
ing atoms, sequence mismatch between the predicted and reference
structures, and the chain numbering problem. In RNA-Puzzles,
RNA_normalizer skips the mismatches in the sequences and the
missing atoms. The RNA_normalizer example notebook demon-
strates a full example to perform the structure standardization and
to measure the structure comparison metrics. To complement
RNA_normalizer and fix the RNA structures, rna-tools provides a
set of more rigorous tools, which are elaborated below.

3.1.2 Missing Atoms The “--get-rnapuzzle-ready” option in rna-tools provides a fix for
the missing atoms and is able to process all the known cases in
RNA-Puzzles. If many atoms are missing, pdbfixer (https://github.
com/openmm/pdbfixer) is recommended to fix the missing
atoms. For the rna-tools fixed structures, the added missing
atoms are listed at the top of the output file as “REMARK,” for
example:

https://github.com/RNA-Puzzles/RNA_assessment/blob/master/example.ipynb
https://github.com/RNA-Puzzles/RNA_assessment/blob/master/example.ipynb
https://github.com/openmm/pdbfixer
https://github.com/openmm/pdbfixer
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$ rna_pdb_toolsx.py --get-rnapuzzle-ready 17_solution_0.pdb

REMARK 250 Model edited with rna-tools

REMARK 250 ver 3.4.8+2.g508b05e.dirty

REMARK 250 https://github.com/mmagnus/rna-tools

REMARK 250 Mon Jun 29 11:21:27 2020

REMARK 250 Fixed atoms/residues:

REMARK 250 - add O2’ in chain: B <Residue G het= resseq=53

icode= > residue # 6

ATOM 1 P C A 1 -29.720 -19.750 3.190 1.00183.16

P

ATOM 2 OP1 C A 1 -28.490 -20.280 2.531 1.00180.35

O

ATOM 3 OP2 C A 1 -29.638 -18.728 4.275 1.00185.39

O

The output shows that an O20 atom is missing in the reference
(solution) structure for RNA-Puzzle PZ17 (PDB ID: 5K7C). And
a user needs to decide if the added missing atoms should be
considered when calculating the all-atom RMSD.

Further, rna-tools provides a novel tool, diffpdb.py, to investi-
gate the difference between two structure files. It facilitates the
identification of the missing and mismatching atoms/residues by
running the command line (in “rp17/misc” folder):

$ diffpdb.py --names 17_0_solution_5K7C_MissAtom_rpr.pdb

17_Bujnicki_1_rpr_del.pdb

The results from diffpdb.py can be visualized by DiffMerge
(https://sourcegear.com/diffmerge/), which highlights the differ-
ences between the files (Fig. 1).

3.1.3 Missing Fragments In some structures, fragments can be missing. For example, some
dynamic regions of the experimental structures are not determined.
In such a situation, it is suggested to skip these regions in the
comparison. We provide two options from RNA_normalizer and
from rna-tools, respectively. RNA_normalizer specifies the struc-
ture regions to be compared by giving a “.index” file when loading
the structure in python:

handle = RNA_normalizer.PDBStruct()

handle.load( struct_file, index_file )

seq = handle.raw_sequence()

where struct_file is the input structure file and the index_file is the
“.index” file to specify the region. For example, “A:1:45, B:57:15”
means the structure includes two fragments. The first fragment
starts from residue 1 of chain A and the length is 45 nucleotides,
while the second starts from residue 57 of chain B and the length is

https://sourcegear.com/diffmerge/
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Fig. 1 Sample visualization of structure file comparison. Diffpdb.py (a) identifies one atom difference and (b)
format variation between two structure files

15 nucleotides. And the “.raw_sequence()” function returns the
sequence of the specified region.

Alternatively, if the aligned region is unknown, rna-tools can be
used to identify the aligned regions and delete the missing
fragments:

$ rna_pdb_toolsx.py --get-seq --fasta *.pdb

>13_solution_4XW7_rpr.pdb A:1-45 57-71

GGGUCGUGACUGGCGAACAGGUGGGAAACCACCGGGGAGCGACCCGCCGCCCGCCUGGGC
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>13_Adamiak_1_rpr.pdb A:1-71

GGGUCGUGACUGGCGAACAGGUGGGAAACCACCGGGGAGCGACCCCGGCAUC-

GAUAGCCGCCCGCCUGGGC

(..)

According to the difference in the sequences, the fragment of
nucleotides 46–56 is missing in the reference structure (PDB
4XW7). But the predicted structures cover the full target sequence
(Fig. 2). Therefore, only the regions which can be aligned to the
reference structure (A:1–45 and A:57–71) should be considered in
structure comparison.

rna-tools can be used to delete the unaligned regions (A:46–56
in the example):

$ rna_pdb_toolsx.py --delete A:46-56 --inplace *_rpr.pdb

where “--delete” specifies the operation, “--inplace” indicates to
save the output in new files, and “*_rpr.pdb” suggests to process all
the files ending with “_rpr.pdb” in the directory.

To check if the results have the same sequence, the “--get-seq”
operation can be used again:

$ rna_pdb_toolsx.py --get-seq --fasta *.pdb

>13_0_solution_4XW7_rpr.pdb A:1-45 57-71

GGGUCGUGACUGGCGAACAGGUGGGAAACCACCGGGGAGCGACCCGCCGCCCGCCUGGGC

>13_Adamiak_1_rpr_del46-56.pdb A:1-45 57-71

GGGUCGUGACUGGCGAACAGGUGGGAAACCACCGGGGAGCGACCCGCCGCCCGCCUGGGC

Fig. 2 Reference and predicted structures. The reference structure (“13_0_solution_4XW7_rpr”), shown as
green, is missing the fragment of nucleotides 46 to 56. The predicted structure (“13_Das_7_1_rpr“) is aligned
to the reference structure, while the missing fragment is shown as orange in the predicted structure
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3.1.4 Sequence

Mismatches

In some cases, the sequence of the predicted structures can be
slightly different from the sequence in the reference structure.
Similar to the missing atoms, these mismatched nucleotides can
be either omitted or rebuilt in the comparison. To omit the mis-
matched nucleotides, the same approaches (use RNA_normalizer
to specify the aligned region or use rna-tools to delete the
unaligned region) as dealing with the missing fragments can be
used. Rna-tools also provides an interface to ModeRNA [12] t
rebuild the mismatched nucleotides in the predicted structures to
match the sequence of the reference structure. Here, we use PZ3 in
RNA-Puzzles as an example; the pairwise sequence alignment is as
follows:

> 3_solution_0_rpr A:1-84

CUCUGGAGAGAACCGUUUAAUCGGUCGCCGAAGGAGCAAGCUCUGCGGAAACGCAGAGU-

GAAACUCUCAGGCAAAAGGACAGAG

|||||||||||||||||||||||||||||||||||||||||||||||.|.|.||||||||-

||||||||||||||||||||||||

CUCUGGAGAGAACCGUUUAAUCGGUCGCCGAAGGAGCAAGCUCUGCGCAUAUGCAGAGU-

GAAACUCUCAGGCAAAAGGACAGAG

> target sequence (3_bujnicki_1_rpr A:1-84)

Nucleotides 48, 50, and 52 in the predicted structures need to
be mutated to G, A, and C:

$ rna_pdb_toolsx.py --mutate ’A:48G+50A+52C’ \

--inplace --suffix mut \

--ignore-files 3_solution \

*.pdb

In the command, “--mutate” specifies the operation to mutate
the three nucleotides [48, 50, 52] in chain “A” to G, A, and C,
respectively. “--inplace --suffix mut” indicates to save changes to
new files and a suffix “mut” will be added, while “*.pdb” specifies
to process all PDB files in the directory. However, “3_solu-
tion_0_rpr.pdb” is the reference structure and should not be pro-
cessed. Therefore, the “--ignore-files 3_solution” option skips the
processing of all files that start with “3_solution.”

Again, the “--get-seq” option can be used to check if the
mutations have been correctly rebuilt (the result is shown in
Fig. 3a):

$ rna_pdb_toolsx.py --get-seq \

--oneline 3_bujnicki_1_rpr* \

--color-seq --compact
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Fig. 3 Example of RNA sequence comparison by rna-tools. The “--get-seq” operation in rna-tools can be used
to (a) compare the mutated sequences to the wild-type sequence and (b) show the sequences and the chain
names of all structure files in a folder (e.g., the “rp19/raw” data folder)

3.1.5 Chain Identifiers Some predicted structures may have different chain names than
others, or multiple chains can be ordered in a different way. Dealing
with such cases, RNA_normalizer uses the index file to specify the
aligned region, and the nucleotides are ordered according to the
order specified in the index file. Thus, the chain names are not
affecting the comparison. Rna-tools can rename the chains to stan-
dardize the files. We use PZ19 in RNA-Puzzles, for example, and
start by checking the sequences using the “--get-seq” operation of
rna-tools (results are shown in Fig. 3b):

$ rna_pdb_toolsx.py --get-seq --oneline --color-seq --compact

*.pdb

The predicted structures named the chains in two
different ways: as one chain (A:1–62) and as two chains
(A:1–40, B:1–22). rna-tools can reformat the one chain files into
two chains, by changing the nucleotides A:41–62 to B:1–22:

$ rna_pdb_toolsx.py --edit ’A:41-62>B:1-22’ --inplace {*RW3D*,

*solution*}.pdb

where “--edit” is the operation to use “A:41–62 > B:1–22” spe-
cifies that nucleotides 41–62 of chain A are renamed to nucleotides
1–22 of chain B. And “{*RW3D*,*solution*}.pdb” indicates that
only PDB files with the phrases “RW3D” and “solution” are pro-
cessed, since these structure are named as one chain.
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Then, “--get-seq” operation is used to validate the correction:

$ rna_pdb_toolsx.py --get-seq --oneline --color-seq \

--compact {*RW3D*.pdb,*solution*.pdb}

GGCGGGGGGCGGGGCCCGGUCCCGGUGGCGGCCGGGGGGCCGGCCCC # A:1-40 GGGG

GGGGCGGCGGGGCGGCUCUUCCUGGC # B:1-22 # 19_RW3D_1

(...)

GGCGGGGGGCGGGGCCCGGUCCCGGUGGCGGCCGGGGGGCCGGCCCC # A:1-40

GGGGGGGGCGGCGGGGCGGCUCUUCCUGGC # B:1-22 # 19_solution_0

3.2 Calculate

Structure Comparison

Metrics

After structure standardization, the predicted structures and the
reference structure(s) are compared by a number of metrics. Here,
we introduce the calculation of RMSD, P-value, INF, and DP using
RNA-Puzzles toolkit.

RNA_normalizer includes a class “PDBComparer” to measure
all these metrics. And the python function below returns all the
comparison metrics:

def calc_all_metrics(ref_file, ref_index, pred_file, pred_in-

dex):

ref_struct = RNA_normalizer.PDBStruct()

ref_struct.load( ref_file, ref_index )

ref_seq = ref_struct.raw_sequence()

pred_struct = RNA_normalizer.PDBStruct()

pred_struct.load( pred_file, pred_index )

pred_seq = pred_struct.raw_sequence()

comparer = RNA_normalizer.PDBComparer()

rmsd = comparer.rmsd( pred_struct, ref_struct )

pvalue = comparer.pvalue( rmsd, len(pred_seq), "-" )

INF_ALL = comparer.INF( pred_struct, ref_struct,

type="ALL" )

DI_ALL = rmsd / INF_ALL

INF_WC = comparer.INF( pred_struct, ref_struct,

type="PAIR_2D" )

INF_NWC = comparer.INF( pred_struct, ref_struct,

type="PAIR_3D" )

INF_STACK = comparer.INF( pred_struct, ref_struct,

type="STACK" )

return (rmsd, pvalue, DI_ALL, INF_ALL, INF_WC, INF_NWC,

INF_STACK)

The ref_file and ref_index are the structure file and index file for
the reference structure, while pred_file and pred_index are the
structure file and index file for the predicted structure, respectively.
This function returns metrics of all-atom RMSD, P-value, defor-
mation index for the whole structure, INF for all interactions, as
well as INF for Watson-Crick interactions, for non-Watson-Crick
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interactions, and for base stackings. For the interactions, RNA_-
normalizer uses MC-annotate [29] to extract all the different types
of interactions. Details can be found from the GitHub example of
RNA_normalizer. Besides RNA_normalizer, we also show the
application of rna-tools as below.

3.2.1 Root-Mean-Square

Deviation (RMSD)

The “rna_calc_rmsd.py” tool in rna-tools measures the RMSD for
multiple predicted structures against one reference structure:

$ rna_calc_rmsd.py --target-fn 19_0_solution_5T5A_rpr.pdb \

--sort-results \

--print-results \

*.pdb

# method: all-atom-built-in

# of models: 55

# of atoms used: 1325

fn rmsd_all

0 19_0_solution_5T5A_rpr.pdb 0.00

11 19_Chen_Human_1_rpr.pdb 5.53

12 19_Chen_Human_2_rpr.pdb 7.41

34 19_RNAComposer_3_rpr.pdb 9.64

41 19_RNAComposer_Human_5_rpr.pdb 9.86

14 19_Chen_Human_4_rpr.pdb 9.92

17 19_Das_Human_2_rpr.pdb 10.15

7 19_Bujnicki_Human_2_rpr.pdb 10.23

33 19_RNAComposer_2_rpr.pdb 10.82

20 19_Das_Human_5_rpr.pdb 10.89

(...)

25 19_Ding_Human_5_rpr.pdb 20.13

15 19_Chen_Human_5_rpr.pdb 22.72

csv was created! rmsds.csv

where “--target-fn” points to the reference structure file and “--
sort-results” specifies that the output RMSD result is sorted. By
default, the result is saved in a CSV file, and the “--print-results”
option also prints the result on the screen. “*.pdb” indicates that all
the PDB files in the directory are processed.

To specify the fragments to be compared, the “--target-selec-
tion” and “--model-selection” options can be used, while the “--
model-ignore-selection” skips unwanted atoms or residues in the
predicted structure. We use PZ17 in RNA-Puzzles as an example:

$ rna_calc_rmsd.py -t 17_0_solution_5K7C_MissAtomResi53_rpr.

pdb \

--target-selection A:1-47+52-62 \

--model-selection A:1-47+52-62 \

--model-ignore-selection A/57/O2\’

--print-results --sort-results \



--ignore-files ’solution’ \

*.pdb

# method: all-atom-built-in

# of models: 107

# of atoms used: 1237

fn rmsd_all

88 17_SimRNAAS2_1_rpr.pdb 5.18

29 17_Das_4_rpr.pdb 7.17

94 17_SimRNAAS2_7_rpr.pdb 7.67

26 17_Das_1_rpr.pdb 8.66

33 17_Das_8_rpr.pdb 8.71

34 17_Das_9_rpr.pdb 8.80

17 17_Chen_5_rpr.pdb 9.46

(...)
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This command uses fragments 1–45 and 52–62 of chain A in
both reference structure (target) and predicted structure (model)
for comparison but ignores the O20 atom of nucleotide 57 of chain
A in the predicted structure.

In some cases, more than one reference structures are available.
Rna-tools provides the rna_calc_rmsd_multi_targets.py tool to deal
with this situation:

$ rna_calc_rmsd_multi_targets.py --models *.pdb \

--targets solutions/*.pdb \

--target-selection A:1-27+29-41

\

--model-selection A:1-27+29-41

An example result is shown in Table 1.

3.2.2 Interaction

Network Fidelity (INF) and

Deformation Index (DI)

INF better evaluates the accuracy of interaction than RMSD, while
the interaction types can be categorized into Watson-Crick inter-
actions, non-Watson-Crick interactions, and base stackings. AndDI
measures the ratio between RMSD and INF. The rna_calc_inf.py
tool in rna-tools, which measures all the INF scores based on
contacts detected with ClaRNA [30], can be used in a similar
manner as rna_calc_rmsd.py:

$ rna_calc_inf.py --target-fn 17_0_solution_5K7C_rpr.pdb \

--target-selection A:1-47+52-62 \

--model-selection A:1-47+52-62 \

--print-results --sort-results

*.pdb

t a r g e t

fn inf_all inf_stack inf_WC inf_nWC sns_WC ppv_WC

sns_nWC ppv_nWC
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2 17_0_solution_5K7C_rpr_sel.pdb 17_0_solution_5K7C_MissA-

tomResi53_rpr_sel.pdb 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00

5 17_0_solution_5K7C_rpr_sel.pdb 17_0_so-

lution_5K7C_rpr_sel.pdb 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

2 7 1 7 _ 0 _ s o l u t i o n _ 5 K 7 C _ r p r _ s e l . p d b

17_Das_1_rpr_sel.pdb 0.81 0.83 0.92 0.41

0.94 0.90 0.33 0.50

2 3 1 7 _ 0 _ s o l u t i o n _ 5 K 7 C _ r p r _ s e l . p d b

17_Chen_2_rpr_sel.pdb 0.77 0.79 0.84 0.38

0.89 0.80 0.22 0.67

The results are saved in the “inf.csv” file, while “--print-results”
option allows the print on screen. The fragment selection (-
�-target-selection and --model-selection) and skipping
(�-model-ignore-selection) options are the same as used in rna_-
calc_rmsd.py.

3.2.3 Deformation

Profile (DP)

DP measures the structure similarity as a 2D distance matrix repre-
senting the average distance between a prediction and the reference
structure (Fig. 4a). Deformation profile is implemented as a pro-
gram in RNA-Puzzles toolkit independent of RNA_normalizer or
rna-tools.

Fig. 4 Comparison between Bujnicki model 1 in PZ1 of RNA-Puzzles and the reference structure. (a) The
default output from deformation profile. (b) The output with “-c” option, which specifies the helical regions in
the structure
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DP (dp.py) can be applied to the standardized predicted and
reference structures:

$ python dp.py path_to_file/ref.pdb path_to_file/pred.pdb

“ref.pdb” and “pred.pdb” are the structure files to be com-
pared. By default, the DP produces two output files: an SVG image,
which is a heatmap representation of the DP Matrix, and a “.dat”
file that contains the values of the DP matrix. The -c option in DP
allows specifying all the parameters in a configuration file and
plotting the secondary structure in the output heatmap. We show
an example of the configuration file as follows (PZ3 in
RNA-Puzzles):

ref_model = [("ref.pdb", 0)]

cmp_model = [("pred.pdb", 0)]

helices = [("H1", 0, 5, 73, 5),

("H2", 9, 6, 21, 5),

("H3", 26, 3, 63, 3),

("H4", 32, 4, 56, 5),

("H5", 39, 7, 46, 7)]

loops = [("L1", 5, 4), ("L2", 15, 6), ("L3", 36, 3), ("L4",

53, 4), ("L5", 66, 7)]

draw = ["H1", "H2", "H3", "H4", "H5", "L1", "L2", "L3", "L4",

"L5", "H1xH2:H1-H2", "H1xH3:H1-H3"]

The “ref_model” and “cmp_model” specify the input PDB
files, while the number “0” following the “ref.pdb” and “pred.
pdb” indicates that the first model in the PDB file is used. To use
the second model, the number needs to be changed to “1.” The
“helices” parameter labels a list of the helical regions in the struc-
ture, while each helix is marked as a label name followed by four
numbers. The first and third numbers are the start positions for the
first and the second chain of the helix, and the second and fourth
numbers are the length of the helix in the first and the second
strands. The “loops” parameter marks the loop regions as a list.
Each element in the list is a loop region, which is annotated as a
label name, the start position of the loop and the length of the loop.
The “draw” parameter assigns the regions and labels to be anno-
tated on the output heatmap.

To run the DP with this configuration file, we can use the
following command:

$ python dp.py -c ex1.cfg

where ex1.cfg is the name of the configuration file. An example
result is shown in Fig. 4b.
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3.2.4 Other Metrics The clash score, which indicates the geometrical feasibility, can be
calculated by Molprobity [31]. There are two steps in the
processing:

(i) Reformat the files using reduce-build:

$ reduce-build dir-to-standardized-files output-dir

(ii) Analyze the structures with oneline-analysis:

$ oneline-analysis -nocbeta -norota -norama output-dir > out-

putfile.txt

The reformatted files are saved at the directory “output-dir,”
and the Molprobity analyzed results are saved in the outputfile.
txt file.

For the usage of other evaluation metrics, such as MCQ and
LCS-TA, please refer to the tools at GitHub (https://github.com/
RNA-Puzzles).

3.3 Visualize the

Comparison Results

We suggest to use PyMOL for structure visualization, while the
“align_all” function from the PyMOL4RNA plugin of rna-tools
enables structural alignment of all objects to the first object in a
PyMOL session:

$ PyMOL> align_all

3.3.1 PyMOL

Visualization

In PyMOL, the models can be moved up and down using the
right mouse button. The function also returns RMSD values
against the first object in the PyMOL command shell (Fig. 5).

3.3.2 Structure

Clustering

When no reference structure is available, clustering the predicted
structures may facilitate the identification of consensus in the pre-
diction. The Clanstix tool in rna-tools converts the all-against-all
RMSD distance matrix into a format readable by CLANS [32],
which is a program to visualize the pairwise similarity between
structures using the Fruchterman-Reingold graph layout algo-
rithm. Using PZ17 in RNA-Puzzles as an example, we first calcu-
late the all-vs-all RMSD distance matrix:

$ rna_calc_rmsd_all_vs_all.py -i struc -o rp17_rmsd.csv

Then, Clanstix (rna_clanstix.py) converts the CSV result file
into a CLANS readable format:

https://github.com/RNA-Puzzles
https://github.com/RNA-Puzzles
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Fig. 5 An example of the “align_all” tool of PyMOL4RNA plugin. All predicted structures of PZ17 in
RNA-Puzzles are superimposed to the reference structure (17_0_solution_5K7C)

$ rna_clanstix.py --groups 1:native+3:Adamiak+10:Bujnicki+10:

Chen+3:DasExp+10:Das+10:Ding+3:Dohkolyan+10:Major+10:

RNAComposerAS1+10:RNAComposerAS2+9:SimRNAwebAS1+9:

SimRNAwebAS2+10:Xiao \

rp17_rmsd.csv

where “--groups” specifies the number of models that belong to
the given group (“1:native” means that the first model in the input
file is the reference structure and should be labeled in the same way
in the CLANS session, as shown in Fig. 6). In the CLANS visuali-
zation, there are three main structural clusters: (i) a cluster in the
center, which includes the reference structure, Fig. 6a; (ii) a cluster
of automated prediction methods – the pseudoknot was not recov-
ered in these structures (the pseudoknot region is shown as violet in
the figure), Fig. 6c; and (iii) a cluster of a different topology,
Fig. 6b.

3.3.3 Contacts Analysis The ClaRNA tool in rna-tools enables the analysis of base pair
contacts in PyMOL. Using PZ17 in RNA-Puzzles (rp17/del) as
an example, we first open PyMOL, load models, and select the
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Fig. 6 The structure clustering result of PZ17 in RNA-Puzzles using the Clanstix/CLANS

nucleotides involved in the catalysis of the pistol ribozyme: nucleo-
tides 29, 42, 57, and 58 of PDB 5K7C. Then, we run the “clarna”
command in PyMOL command shell:

$ PyMOL> clarna

1 7 _ 0 _ s o l u t i o n _ 5 K 7 C _ M i s s A t o m R e s i 5 3 _ r p r

---------------------------------

chains: A 29 58

A 29 A 58 bp U U WW_cis 0.8238

A 42 A 57 bp G G HS_tran 0.7572

1 7 _ B u j n i c k i _ 1 _ r p r

---------------------------------------------------–

chains: A 29 58

A 57 A 58 bp G U >> 0.9879

According to the results, the reference structure (PDB ID:
5K7C) includes two base pair interactions: a cis-Watson-Watson
interaction between nucleotides 29 and 58 and a trans-Hoogs-
teen-Sugar interaction between nucleotides 42 and 57. But the
predicted structure (Bujnicki model 1) only predicts a stacking
between 57 and 58, as shown in Fig. 7.
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Fig. 7 The comparison of base pair contacts in PZ17 of RNA-Puzzles using “ClaRNA.” The example compares
the nucleotides 29, 42, 57, 58 interactions in the reference structure (left) and the predicted structure (right,
Bujnicki model 1)

3.3.4 Generate Preview

Thumbnails

To have a quick inspection of hundreds of structure models,
rna-tools provides a tool (pymol_preview_generator.py) to gener-
ate preview thumbnails for all PDB files in a folder. The following
command generates the preview thumbnails in the structure folder:

$ pymol_preview_generator.py *.pdb

Multiple files can be selected in the file manager and overlaid
together, as shown in Fig. 8. This program may help to pick the
right model in the folder.

4 Notes

1. As only a limited number of chains and atoms can be deposited
in PDB format, mmCIF format provides an alternative to save
structures. As the predicted RNA structures are normally
within the capability of PDB format, RNA-Puzzles toolkit
uses PDB format for most of the tools. Rna-tools provides a
script to convert mmCIF format to PDB format:

a_pdb_toolsx.py –cif2pdb <file.cif>

or from PDB format to mmCIF format:

$ rna_pdb_toolsx.py –pdb2cif <file.cif>
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Fig. 8 The overlay of the selected PDB files in the file manager. The structures of PZ2 of RNA-Puzzles selected
in Finder (the file manager in macOS) are shown as the results of “PyMOL Preview Generator” (pymol_pre-
view_generator.py)

2. It is possible that new atom names and residue names may exist
in a structure file, e.g., a new ligand is found in the reference
structure. The existing atom name and residue name diction-
aries in the program may not be able to deal with such a
situation. The new names need to be added to the dictionaries,
which are in the files “atom.list” and “residue.list” in the
“data” folder of the RNA_normalizer program (and specified
as RESIDUES_LIST and ATOMS_LIST in the python func-
tion). The first column in the file contains the atom or residue
names before normalization, while the second column is the
standardized names. We use “-“for the standardized name if
the atom or residue need to be ignored.

3. Sometimes, the sequence for the predicted structure can be
slightly different from the reference structure. In this case,
there are two possible treatments: (1) Skip the different nucleo-
tides in structure comparison; (2) mutate the nucleotide(s) in
the predicted structure to the same ones as in the reference
structure. In RNA-Puzzles evaluation, we use the first treat-
ment and RNA_normalizer reads in an index file, which con-
tains all the aligned nucleotides but skipping the unaligned
ones. Nevertheless, if one needs to use the predicted structures
as decoys in developing a force field, it is suggested to use the
second option. Rna-tools provides functionality to help with
the structural mutagenesis (the “—mutate” operation in
rna_pdb_toolsx.py).

4. The functions to measure INF are the same for both RNA_-
normalizer and rna-tools. But the way to extract base pair
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interactions is different for these programs. RNA_normalizer
uses MC-annotate to identify the base pair interactions, while
rna-tools uses ClaRNA for the same job. Therefore, the results
can be slightly different.
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