
MAXFORCE: Max-Violation Perceptron and Forced Decoding for Scalable MT Training
First Successful Effort of Large-Scale Discriminative Training for MT

Heng Yu
Institute of Computing Tech., CAS

Liang Huang
City University of New York (CUNY)

Haitao Mi
T.J. Watson Research Center, IBM

Kai Zhao
City University of New York (CUNY)

BACKGROUND

training set (>100k sentences) dev set
(~1k sents)

test set
(~1k sents)

standard perceptron (Liang et al '06)

our violation-fixing perceptron
with truly sparse features

MERT (2003)

MIRA (2007-12)
PRO (2011)

HOLS (2013)
...

. Why standard perceptron fails

• b/c it assumes exact search

• but search errors abound in MT

• how to adapt perceptron to MT?

. Small-scale tuning on dev is weak

• Can’t use truly sparse features:
only ∼10k for MIRA/PRO

• Tends to overfit on dev set

Our Method
1. use “violation-fixing” perceptron (Huang+ ’12) tailored for inexact search

• fix search errors in the middle of the search

• “partial updates” instead of “full updates”

2. use forced decoding lattice as the target to update to (latent variables)

3. use parallelized minibatch to speed up learning

4. result: scaled to a large portion of the training data for the first time

• 20M+ sparse features => +2.0 BLEU over MERT/PRO

Force Decoding: compute gold-standard (reference-producing) derivations

0 1 2 3 4 5 6

Bush held

held talks

talks with

with Sharon

Sharon

• many unreachable sentence pairs due to distortion and phrase limits
– we add reachable prefix pairs

Li
án

hé
gu

ó
pà

iqi
ǎn

50 gu
ān

ch
áiy

uá
n

jiā
nd

ū
Bōlı̀

wéiy
à

hu
ı̄fù

mı́nz
hǔ

zh
èn

gz
hı̀

yı̌l
ái

sh
ǒu

cı̀
qu

án
gú

o
dà

xu
ǎn

P

U.N.

 P

sent

 P

50

 P

observers

to

 P

monitor

 P

the

 P

1st

 PP

election

 P

since

 P

Bolivia

 P

restored

 PP

democracy

5

3
3

4

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 10 20 30 40 50 60 70

R
a
ti
o
 o

f
c
o
m

p
le

te
 c

o
v
e
ra

g
e

Sentence length

Ch-En

dist-unlimited
dist-6
dist-4
dist-2
dist-0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 10 20 30 40 50 60 70

R
a
ti
o
 o

f
c
o
m

p
le

te
 c

o
v
e
ra

g
e

Sentence length

Sp-En

dist-6
dist-4
dist-2
dist-0

VIOLATION FIXING PERCEPTRON
. Violation-Fixing Perceptron (Huang+ 2012) is tailored for inexact search

1. Violation: incorrect prefix scores higher than gold-standard prefix

2. Guaranteed to converge if each update is valid (i.e., on a violation)

3. Examples: early update (Collins+Roark ’04) and max-violation (Huang+ ’12)

4. Standard update does not converge with many invalid updates

ea
rly

m
ax

-
vi

ol
at

io
n

best in the beam

worst in the beam

d�i

d+
i

d+
i⇤

d�i⇤
d+

|x|

dy
|x|

st
d

lo
ca

l

standard update
is invalid

m
od

el
w

d�|x|

. Extend violation-fixing perceptron to handle latent variables (derivations):

1. Early update: update when no correct derivations survive

2. Max-violation: update at the bin where the violation is maximum

3. Standard update ("bold" update in Liang et al ’06): invalid update!

4. Local update (also from Liang et al): update towards the derivation with
highest sentence-level BLEU in the n-best list

Liang et al attribute their failure to gold derivations from “bad” rules. But we
give a theoretically sound explanation: search errors cause invalid updates.

FEATURE DESIGN
1. Dense features: 11 standard phrase-based features from Moses

2. Sparse Features

• rule-identification features (unique id for each rule)

• word-edges: lexicalized local translation context within a rule

• non-local features : dependency between consecutive rules

3. Feature Backoff: Brown clusters, POS tags, Chinese chars/types, etc.

<s> </s>

<s> held a few talksBush

Bùshí yǔ Shālóng jǔxíng le huìtán

r1 r2

word-edges
non-local

100010 = Shālóng | held
010001 = jǔxíng | talks
rule-bigram = r1 | r2
rule+w−2w−1 = r2 | <s> | Bush

KEY REFERENCES
L. Huang, S. Fayong, and Y. Guo. Structured Perceptron with Inexact Search. In NAACL 2012.
K. Zhao and L. Huang. Minibatch and Parallelization for Online Large-Margin Structured Learn-
ing. In NAACL 2013.

EXPERIMENTAL RESULTS

Scale Lang. Training Data Reachability ∆BLEU
Pair # sent. # words sent. +prefix words +prefix feats refs dev/test

small Ch-En 30K 0.8/1.0M 21.4% 61.3% 8.8% 24.6% 7M 4 +2.2/2.0
large 230K 6.9/8.9M 32.1% 67.3% 12.7% 32.8% 23M +2.3/2.0
large Sp-En 174K 4.9/4.3M 55.0% 43.9% 21M 1 +1.3/1.1

Overview of all experiments. The ∆BLEU column shows the absolute im-
provements of our method MaxForce on dev/test sets over MERT. The
Chinese datasets also use prefix-pairs in training.

. Comparison of Update Methods

17

18

19

20

21

22

23

24

25

26

 2 4 6 8 10 12 14 16 18 20

B
L
E

U

Number of iteration

MaxForce

MERT
early

local

standard

. Invalid Update % in Standard

50%

60%

70%

80%

90%

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
a
ti
o

beam size

This is why std perceptron fail

+non-local features
standard perceptron

. Feature performance breakdown

18

19

20

21

22

23

24

25

26

 2 4 6 8 10 12 14 16

B
L
E

U

Number of iteration

MERT

+non-local
+word-edges

+ruleid
dense

. Feature Counts & Contributions

type count % Bleu
dense 11 - 22.3

+ruleid +9,264 +0.1% +0.8
+WordEdges +7,046,238 +99.5% +2.0
+non-local +22,536 +0.3% +0.7

all 7,074,049 100% 25.8

Interestingly, the 0.3% non-local fea-
tures contribute +0.7 BLEU.

. Minibatch Parallelization

 22

 23

 24

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
L
E

U

Time

7x on 24 cores
(1000 sentences)

minibatch-24 (24-core)
minibatch-24 (6-core)
minibatch-24 (1-core)
pure online baseline

. Comparison with MERT/PRO

10

12

14

16

18

20

22

24

26

 2 4 6 8 10 12 14 16

B
L
E

U

Number of iteration

MaxForce
MERT

PRO-dense
PRO-medium

PRO-large

. Results on Large CH-EN (FBIS)

system algorithm # feat. dev test
Moses MERT 11 25.5 22.5

Cubit

MERT 11 25.4 22.5

PRO
11 25.6 22.6
3K 26.3 23.0
36K 17.7 14.3

MAXFORCE 23M 27.8 24.5

MAXFORCE is 2.3/2.0 over MERT;
35 hours on 24 cores. MERT: 1 hour.

. Results on SP-EN (with 1-ref)

system algorithm # feat. dev test
Moses MERT 11 27.4 24.4
Cubit MaxForce 21M 28.7 25.5

MAXFORCE is 1.3/1.1 over MERT
with 1-ref (δ in 1-ref ∼ 2δ in 4-ref).

Cubit 2.0 will be released at
http://acl.cs.qc.edu/.

