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. Why standard perceptron fails

• b/c it assumes exact search

• but search errors abound in MT

• how to adapt perceptron to MT?

. Small-scale tuning on dev is weak

• Can’t use truly sparse features:
only ∼10k for MIRA/PRO

• Tends to overfit on dev set

Our Method
1. use “violation-fixing” perceptron (Huang+ ’12) tailored for inexact search

• fix search errors in the middle of the search

• “partial updates” instead of “full updates”

2. use forced decoding lattice as the target to update to (latent variables)

3. use parallelized minibatch to speed up learning

4. result: scaled to a large portion of the training data for the first time

• 20M+ sparse features => +2.0 BLEU over MERT/PRO

Force Decoding: compute gold-standard (reference-producing) derivations
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• many unreachable sentence pairs due to distortion and phrase limits
– we add reachable prefix pairs
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áiy

uá
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ǎn

P            

U.N.

 P           

sent

  P          

50

   P         

observers

             

to

    P        

monitor

          P  

the

          P  

1st

           PP

election

         P   

since

     P       

Bolivia

      P      

restored

       PP    

democracy

5

3
3

4

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 10  20  30  40  50  60  70

R
a
ti
o
 o

f 
c
o
m

p
le

te
 c

o
v
e
ra

g
e

Sentence length

Ch-En

dist-unlimited
dist-6
dist-4
dist-2
dist-0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 10  20  30  40  50  60  70

R
a
ti
o
 o

f 
c
o
m

p
le

te
 c

o
v
e
ra

g
e

Sentence length

Sp-En

dist-6
dist-4
dist-2
dist-0

VIOLATION FIXING PERCEPTRON
. Violation-Fixing Perceptron (Huang+ 2012) is tailored for inexact search

1. Violation: incorrect prefix scores higher than gold-standard prefix

2. Guaranteed to converge if each update is valid (i.e., on a violation)

3. Examples: early update (Collins+Roark ’04) and max-violation (Huang+ ’12)

4. Standard update does not converge with many invalid updates
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. Extend violation-fixing perceptron to handle latent variables (derivations):

1. Early update: update when no correct derivations survive

2. Max-violation: update at the bin where the violation is maximum

3. Standard update ("bold" update in Liang et al ’06): invalid update!

4. Local update (also from Liang et al): update towards the derivation with
highest sentence-level BLEU in the n-best list

Liang et al attribute their failure to gold derivations from “bad” rules. But we
give a theoretically sound explanation: search errors cause invalid updates.

FEATURE DESIGN
1. Dense features: 11 standard phrase-based features from Moses

2. Sparse Features

• rule-identification features (unique id for each rule)

• word-edges: lexicalized local translation context within a rule

• non-local features : dependency between consecutive rules

3. Feature Backoff: Brown clusters, POS tags, Chinese chars/types, etc.

<s> </s>

<s> held a few talksBush

Bùshí yǔ Shālóng jǔxíng  le  huìtán

r1 r2

word-edges
non-local

100010 = Shālóng | held
010001 = jǔxíng | talks
rule-bigram = r1 | r2
rule+w−2w−1 = r2 | <s> | Bush
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EXPERIMENTAL RESULTS

Scale Lang. Training Data Reachability ∆BLEU
Pair # sent. # words sent. +prefix words +prefix feats refs dev/test

small Ch-En 30K 0.8/1.0M 21.4% 61.3% 8.8% 24.6% 7M 4 +2.2/2.0
large 230K 6.9/8.9M 32.1% 67.3% 12.7% 32.8% 23M +2.3/2.0
large Sp-En 174K 4.9/4.3M 55.0% 43.9% 21M 1 +1.3/1.1

Overview of all experiments. The ∆BLEU column shows the absolute im-
provements of our method MaxForce on dev/test sets over MERT. The
Chinese datasets also use prefix-pairs in training.

. Comparison of Update Methods
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This is why std perceptron fail

+non-local features
standard perceptron

. Feature performance breakdown
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. Feature Counts & Contributions

type count % Bleu
dense 11 - 22.3

+ruleid +9,264 +0.1% +0.8
+WordEdges +7,046,238 +99.5% +2.0
+non-local +22,536 +0.3% +0.7

all 7,074,049 100% 25.8

Interestingly, the 0.3% non-local fea-
tures contribute +0.7 BLEU.

. Minibatch Parallelization
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. Comparison with MERT/PRO
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. Results on Large CH-EN (FBIS)

system algorithm # feat. dev test
Moses MERT 11 25.5 22.5

Cubit

MERT 11 25.4 22.5

PRO
11 25.6 22.6
3K 26.3 23.0
36K 17.7 14.3

MAXFORCE 23M 27.8 24.5

MAXFORCE is 2.3/2.0 over MERT;
35 hours on 24 cores. MERT: 1 hour.

. Results on SP-EN (with 1-ref)

system algorithm # feat. dev test
Moses MERT 11 27.4 24.4
Cubit MaxForce 21M 28.7 25.5

MAXFORCE is 1.3/1.1 over MERT
with 1-ref (δ in 1-ref ∼ 2δ in 4-ref).

Cubit 2.0 will be released at
http://acl.cs.qc.edu/.


