Programming Languages Fall 2014

Lecture 4: Lambda-Calculus I
Prof. Liang Huang
huang@qc.cs.cuny.edu

The Lambda Calculus

Alonzo Church

The lambda-calculus

- If our previous language of arithmetic expressions was the simplest nontrivial programming language, then the lambda-calculus is the simplest interesting programming language...
- Turing complete
- higher order (functions as data)
- main new feature: variable binding and lexical scope
- The e. coli of programming language research
- The foundation of many real-world programming language designs (including ML, Haskell, Scheme, Lisp, ...)

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ $(\operatorname{succ}(\operatorname{succ} x))$."

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ $x)$).

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ (succ $(\operatorname{succ} x)$)."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

$$
\text { plus3 }=\lambda x \cdot \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

This function exists independent of the name plus3.

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ $(\operatorname{succ}(\operatorname{succ} x))$."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

$$
\text { plus3 }=\lambda x \cdot \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

This function exists independent of the name plus3.
On this view, plus3 (succ 0) is just a convenient shorthand for "the function that, given x, yields succ ($\operatorname{succ}(\operatorname{succ} x)$), applied to succ 0 ."

$$
\text { plus3 }(\operatorname{succ} 0)=(\lambda x \cdot \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))(\operatorname{succ} 0)
$$

Essentials

We have introduced two primitive syntactic forms:

- abstraction of a term t on some subterm x :
$\lambda \mathrm{x}$. t
"The function that, when applied to a value v , yields t with v in place of x."
- application of a function to an argument: $\mathrm{t}_{1} \mathrm{t}_{2}$
"the function t_{1} applied to the argument t_{2} "

Recall that we wrote anonymous functions "fun $x \rightarrow t$ " in OCaml.

Abstractions over Functions

Consider the λ-abstraction

$$
g=\lambda f . f(f(\operatorname{succ} 0))
$$

Note that the parameter variable f is used in the function position in the body of g . Terms like g are called higher-order functions.

If we apply g to an argument like plus3, the "substitution rule" yields a nontrivial computation:

```
g plus3 = (\lambdaf. f (f (succ 0))) ( \lambdax. succ (succ (succ x)))
    i.e. ( }\lambda\textrm{x}.\operatorname{succ}(\operatorname{succ}(\operatorname{succ}x))
    ((\lambdax. succ (succ (succ x))) (succ 0))
    i.e. ( }\lambda\textrm{x}.\operatorname{succ}(\operatorname{succ}(\operatorname{succ}x))
        (succ (succ (succ (succ 0))))
    i.e. succ (succ (succ (succ (succ (succ (succ 0))))))
```


Abstractions Returning Functions

Consider the following variant of g :

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

l.e., double is the function that, when applied to a function f, yields a function that, when applied to an argument y, yields f ($f y$).

```
Prelude> let g = \f -> \y -> f (f y)
Prelude> g (+ 2) 3
7
```


Example

$$
\begin{aligned}
& \text { double plus3 } 0 \\
& =\quad(\lambda f . \lambda y . f(f y)) \\
& \text { (} \lambda \mathrm{x} . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} \mathrm{x})) \text {) } \\
& 0 \\
& \text { i.e. }(\lambda y .(\lambda x \cdot \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))) \\
& ((\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))) y)) \\
& 0 \\
& \text { i.e. }(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))) \\
& \text { (}(\lambda \mathrm{x} . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} \mathrm{x}))) 0) \\
& \text { i.e. }(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))) \\
& \text { (succ (succ (succ 0))) } \\
& \text { i.e. succ }(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ} 0))))
\end{aligned}
$$

The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and application, we can throw away all the other language primitives and still have left a rich and powerful programming language.

In this language - the "pure lambda-calculus"- everything is a function.

- Variables always denote functions
- Functions always take other functions as parameters
- The result of a function is always a function

Formalities

Syntax

```
t :}
X
\lambdax.t
t t
```

terms
variable
abstraction
application

Terminology:

- terms in the pure λ-calculus are often called λ-terms
- terms of the form $\lambda \mathrm{x} . \mathrm{t}$ are called λ-abstractions or just abstractions

Scope

The λ-abstraction term λx.t binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.

$$
\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x} \mathrm{y} \mathrm{z}
$$

Scope

The λ-abstraction term $\lambda x . t$ binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.

$$
\begin{gathered}
\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{xyz} \\
\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{z} \mathrm{y}) \mathrm{y}
\end{gathered}
$$

Values

$$
\mathrm{v} \quad \because=
$$

$$
\lambda \mathrm{x} . \mathrm{t}
$$

$$
\mathrm{t} \quad \because=
$$

$$
\mathrm{x}
$$

$$
\lambda \mathrm{x} . \mathrm{t}
$$

$$
\mathrm{t} \mathrm{t}
$$

values
abstraction value
terms
variable
abstraction
application

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

Notation: $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

Notation: $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

Congruence rules: call-by-value:

$$
\begin{aligned}
& \frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\mathrm{t}_{1} \mathrm{t}_{2} \longrightarrow \mathrm{t}_{1}^{\prime} \mathrm{t}_{2}} \\
& \frac{\mathrm{t}_{2} \longrightarrow \mathrm{t}_{2}^{\prime}}{\mathrm{v}_{1} \mathrm{t}_{2} \longrightarrow \mathrm{v}_{1} \mathrm{t}_{2}^{\prime}}
\end{aligned}
$$

(E-App2)

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

Notation: $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

Congruence rules: call-by-name:

$$
\begin{align*}
& \frac{t_{1}}{t_{1} t_{2}} \rightarrow t_{1}^{\prime} \tag{E-App1}\\
&\left(\lambda x \cdot t_{12}^{\prime} t_{2}\right. t_{2} \\
& \rightarrow\left[x \mapsto t_{2}\right] t_{12}
\end{align*}
$$

big-step semantics
(E-App2)

\[

\]

Terminology

A term of the form ($\lambda \mathrm{x} . \mathrm{t}$) v - that is, a λ-abstraction applied to a value - is called a redex (short for "reducible expression").

Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure, call-by-value lambda-calculus.

The evaluation strategy we have chosen - call by value - reflects standard conventions found in most mainstream languages.

Some other common ones:

- Call by name (cf. Haskell)
- Normal order (leftmost/outermost)
- Full (non-deterministic) beta-reduction

Multiple arguments

Above, we wrote a function double that returns a function as an argument.

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

This idiom - a λ-abstraction that does nothing but immediately yield another abstraction - is very common in the λ-calculus.

In general, $\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{t}$ is a function that, given a value v for x , yields a function that, given a value u for y, yields t with v in place of x and u in place of y.

That is, $\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{t}$ is a two-argument function.
(Recall the discussion of currying in OCaml.)

Syntactic conventions

Since λ-calculus provides only one-argument functions, all multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to read and write:

- Application associates to the left
E.g., $t u v$ means ($t u$) v, not $t(u v)$
- Bodies of λ - abstractions extend as far to the right as possible E.g., $\lambda \mathrm{x} . \lambda_{\mathrm{y}} \mathrm{f} \mathrm{x}$ y means $\lambda \mathrm{x}$. ($\lambda \mathrm{y} . \mathrm{x} \mathrm{y}$), not $\lambda \mathrm{x}$. ($\lambda \mathrm{y} . \mathrm{x}$) y

The "Church Booleans"

```
tru = \lambdat. \lambdaf. t
fls = \lambdat. \lambdaf. f
```


fls v W
$=(\lambda t . \lambda f . f) \mathrm{v} w$ by definition
$\longrightarrow \quad(\lambda f . f) \mathrm{W} \quad$ reducing the underlined redex
\longrightarrow W reducing the underlined redex

Functions on Booleans

$$
\text { not }=\lambda \mathrm{b} . \mathrm{b} \text { fls tru }
$$

That is, not is a function that, given a boolean value v, returns $f 1 s$ if v is tru and tru if v is fls.

Functions on Booleans

$$
\text { and }=\lambda b . \lambda c \cdot b c f l s
$$

That is, and is a function that, given two boolean values v and w , returns w if v is tru and fls if v is fls (short-circuit?)
Thus and v w yields tru if both v and w are tru and fls if either v or w is fls.

what about or?

Pairs

```
pair = \lambdaf.\lambdas.\lambdab. b f s
fst = \lambdap. p tru
snd = \lambdap. p fls
```

That is, pair v w is a function that, when applied to a boolean value b , applies b to v and w.

By the definition of booleans, this application yields v if b is tru and w if b is fls, so the first and second projection functions fst and snd can be implemented simply by supplying the appropriate boolean.

```
    fst (pairvw)
= fst((\lambdaf. \lambdas.\lambdab.bfs)vw) by definition
fst((\lambdas.\lambdab.b\vees)w) reducing the underlined redex
fst (\lambdab.b\veew) reducing the underlined redex
= (\lambdap.ptru)(\lambdab.bvw) by definition
(\lambdab.b\veew) tru reducing the underlined redex
\rightarrow \text { truvw reducing the underlined redex}
->* as before.
```


Example

```
    fst (pair v w)
= fst ((\lambdaf. \lambdas. \lambdab. b f s) v w) by definition
| fst((\lambdas. \lambdab. b v s) w)
|st (\lambdab. b v w)
    = (\lambdap. p tru) ( \lambdab. b v w)
\longrightarrow(\lambdab. b v w) tru
ltru v w
\longrightarrow * ~ V ~
                                reducing the underlined redex
                                reducing the underlined redex
by definition
reducing the underlined redex
reducing the underlined redex
as before.
```


Church numerals

Idea: represent the number n by a function that "repeats some action n times."

```
co = \lambdas. \lambdaz. z
c
c}\mp@subsup{c}{2}{\prime}=\lambdas.\lambdaz. s (s z
c}3\mp@code{= \lambdas. \lambdaz. s (s (s z))
```

That is, each number n is represented by a term c_{n} that takes two arguments, s and z (for "successor" and "zero"), and applies s, n times, to z .

Functions on Church Numerals

Successor:

Functions on Church Numerals

Successor:
$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} z)$
another solution?

```
scc2 = \lambdan. \lambdas. \lambdaz. n s (s z);
```

$c_{0}=\lambda s . \lambda z \cdot z$
$\mathrm{c}_{1}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s} \mathrm{z}$
$\mathrm{c}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s} \mathrm{z})$
$\mathrm{c}_{3}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s}(\mathrm{s} z))$

Functions on Church Numerals

Successor:

```
    scc = \lambdan. \lambdas. \lambdaz. s (n s z)
    scc2 = \lambdan. \lambdas. \lambdaz. n s (s z);
```

Addiluui.

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{c}_{3}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

Functions on Church Numerals

Successor:

$$
\operatorname{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{~s} z)
$$

$\operatorname{scc} 2=\lambda n . \lambda s . \lambda z . n s(s z) ;$
Addilioi.

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{c}_{3}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

Functions on Church Numerals

Successor:

$$
\operatorname{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{~s} z)
$$

$$
\operatorname{scc} 2=\lambda n . \lambda s . \lambda z . n s(s z) ;
$$

Addiluvi.

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{c}_{3}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

Multiplication:

Functions on Church Numerals

Successor:

$$
\operatorname{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{~s} z)
$$

$$
\operatorname{scc} 2=\lambda n . \lambda s . \lambda z . n s(s z) ;
$$

Addiluvi.

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{c}_{3}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

Multiplication:

$$
\text { times }=\lambda m \cdot \lambda n \cdot m(p l u s n) c_{0}
$$

Functions on Church Numerals

Successor:

$$
\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{~s} z)
$$

$$
\operatorname{scc} 2=\lambda n . \lambda s . \lambda z . n s(s z) ;
$$

Addiluvi.

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{c}_{3}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

Multiplication:

```
times = \lambdam. \lambdan. m (plus n) co
```

Zero test:

Functions on Church Numerals

Successor:

$$
\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{~s} z)
$$

$$
\operatorname{scc} 2=\lambda n . \lambda s . \lambda z . n s(s z) ;
$$

Addiluil.
plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
Multiplication:

```
times = \lambdam. \lambdan. m (plus n) co
```

Zero test:

```
iszro = \lambdam. m (\lambdax. fls) tru
```

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{c}_{3}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

Functions on Church Numerals

Successor:

```
    scc = \lambdan. \lambdas. \lambdaz. s (n s z)
    scc2 = \lambdan. \lambdas. \lambdaz. n s (s z);
```

Addiluil.

$$
\text { plus }=\lambda m \cdot \lambda n \cdot \lambda s . \lambda z \cdot m s(n s z)
$$

Multiplication:

```
    times = \lambdam. \lambdan. m (plus n) co
```

Zero test:

```
iszro = \lambdam. m (\lambdax. fls) tru
```

$$
\begin{aligned}
& \mathrm{c}_{0}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z} \\
& \mathrm{c}_{1}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s} \mathrm{z} \\
& \mathrm{c}_{2}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s} \mathrm{z}) \\
& \mathrm{c}_{3}=\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{~s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

$$
\text { times2 }=\lambda m . \lambda n . \lambda s . \lambda z . m(n s) z ;
$$

Or, more compactly:

$$
\text { times3 }=\lambda m . \lambda n . \lambda s . m(n s)
$$

```
power1 = \lambdam. \lambdan. m (times n) ci;
power2 = \lambdam. \lambdan. m n;
```

What about predecessor?

Predecessor

```
zz = pair co co
ss = \lambdap. pair (snd p) (scc (snd p))
```


Predecessor

```
zz = pair co co
ss = \lambdap. pair (snd p) (scc (snd p))
prd = \lambdam. fst (m ss zz)
```


Questions:

I. what's the complexity of prd?
2. how to define equal?
3. how to define subtract?

Normal forms

Recall:

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?
Prove it.

Normal forms

Recall:

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?
Prove it.
Does every term evaluate to a normal form?
Prove it.

Divergence

$$
\text { omega }=(\lambda x \cdot x \mathrm{x})(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})
$$

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Divergence

$$
\text { omega }=(\lambda x \cdot x \mathrm{x})(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})
$$

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very useful in itself. However, there are variants of omega that are very useful...

Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

$$
Y_{f}=(\lambda x \cdot f(x \quad x))(\lambda x \cdot f(x \quad x))
$$

Iterated Application
Suppose f is some λ-abstraction, and consider the following term:

$$
Y_{f}=(\lambda x \cdot f(x \quad x))(\lambda x \cdot f(x \quad x))
$$

Now the "pattern of divergence" becomes more interesting:

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{f}} \\
& = \\
& (\lambda x . f(x \quad x))(\lambda x . f(x f)) \\
& \longrightarrow \\
& f(\underline{(\lambda . f(x ~ x))(\lambda x . f(x \quad x)))} \\
& f(f((\lambda x . f(x \quad x))(\lambda x . f(x \quad x)))) \\
& f(f(f(\underline{x} . f(x \quad x))(\lambda x . f(x \quad x)))))
\end{aligned}
$$

Y_{f} is still not very useful, since (like omega), all it does is diverge. Is there any way we could "slow it down"?

Delaying Divergence

$$
\text { poisonpill }=\lambda y . \text { omega }
$$

Note that poisonpill is a value - it it will only diverge when we actually apply it to an argument. This means that we can safely pass it as an argument to other functions, return it as a result from functions, etc.

```
(\lambdap. fst (pair p fls) tru) poisonpill
    \longrightarrow
    fst (pair poisonpill fls) tru
        \longrightarrow
        poisonpill tru
        omega
        \longrightarrow
        ...
```

Cf. thunks in OCaml.

