15.3-2 Because there is no overlapping subproblems, and the value of each node
of the recursion tree is only determined by one calculation.

15.3-3 Yes, similar to the minimization case.

15.3.4 Consider the case of n = 3, pg = 4,p1 = 3,p2 = 2,p3 = 1. The greedy
algorithm will select k = 2, which yields total number scalar multiplication of
32, but if £ = 1, the total number scalar multiplication is 24.

15-1

Let plv;] = {s,vo,v1,--,v;} be the set of vertex in the longest weighed path
from s to v;, and wlv;] be the total weight of that path, then we have the
recurrence

wlv;] = maz (wv] +uv,v;)),w[s] =0
(’U,Uri)eE
Suppose v* = argmaz(w[v*] + u(v*,v;)), then we update the path
(v*v,)EE
plvi] = p[v] + {vi}

15-3

Firstly, we identify the unique leftmost and rightmost point v; and v,. Let
prlvi] = {vo,v1,- - ,v;}(1 < i < n) be the set of vertex in the longest weighed
path from vy to v;, and wg[v] be the total weight of that path. Similarly, we
define pr(v;) = {vp,v1,- -+ ,v;}(1 < i < n) be the set of vertex in the longest

weighed path from v, to v;, and wg[v] be the total weight of that path. For the
left-to-right procedure, the recurrence can be written as follows:

wrlvi] = maz (wrlv] +d(v,v:)), wrlve] =0

Suppose v* = argmaz(wg[v*] + d(v*,v;)), then we update the path

v*.x<v;.T
prlvi| = prlv+] + {vi}, pr[v0] = Vo

For the right-to-left part, it’s similar, but we also need to check whether a point
has been visited in the left-to-right part. Formally,

wifpl = mag (o] + (o), wife,] =0

Suppose v* = argmax (wr[v*] + d(v*,v;)), then we update the path

V*.2>0;.2,0* €pRr([vn]
prlvi] = prlvx] + {vi}, prlva] = {}

The final result is pr[v,] + pr[vo]
15-5

a. Let c[i][j] be the minimal cost when we are at z[i] and y[j], then we have

cli — 1][j — 1] + cost(copy)
i — 1][j — 1] + cost(replace)

1

c

i — 1][j] + cost(delete)
1

)

clilly] = min i][J — 1] + cost(insert)
i — 2][j — 2] + cost(twiddle)
cli — 1][j] + cost(kill)

c[0][0] = 0,
cm+1n+1] = miin(c[m + 1)[n + 1], ¢[i][n + 1] + cost(kill))

)

c

[
[
[
[
[
[

b. Simply use copy, twiddle and insert (only space), and find the maximal
score. So c[m + 1][n + 1] is the edit distance, and the operational sequence can
be recorded accordingly. Both the space and time complexity are O(n?).

15-7

a. simply do a BFS from wvg, move from v;_1 to v;(1 < i < k) if and only
if 0;(vi—1,v;) € E. If no vg found, then return NO-SUCH-PATH; otherwise,
return {vg, v1, - , Uk}

b. Let prefix s; = (01,09, -+ ,0;), and define subproblem w[i][v] be the proba-
bility of the most probable path from vy to v that has the label s;. We have the
following recurrence

wlille] = max wfi - 1)u] - p(u.v),

w[0][vo] = 1,
w[0][v] =0 (v # vo),

(initialize the whole w array to 0 except for w[0][vo].)
Let v* = argmax,w[k][v]. You can use a backpointer to reconstruct the optimal
path corresponding to w[k][v*]. Complexity: O(k(|V|+ |E])).

Liang’s note: This “Viterbi algorithm” is a specific instance of the general
“Viterbi algorithm” we taught in class. Here the graph G’ of subproblems
wli][v] can be viewed as “k copies of the original graph G”, where each edge in
G’ is of the form ((i — 1, u), (¢,v)), and thus G’ must be acyclic (even if G itself
is cyclic). As discussed in class, the general Viterbi algorithm simply follow a
topological sort on G’ and update the solutions to subproblems.

