
15.3-2 Because there is no overlapping subproblems, and the value of each node
of the recursion tree is only determined by one calculation.
15.3-3 Yes, similar to the minimization case.
15.3.4 Consider the case of n = 3, p0 = 4, p1 = 3, p2 = 2, p3 = 1. The greedy
algorithm will select k = 2, which yields total number scalar multiplication of
32, but if k = 1, the total number scalar multiplication is 24.
15-1
Let p[vi] = {s, v0, v1, · · · , vi} be the set of vertex in the longest weighed path
from s to vi, and w[vi] be the total weight of that path, then we have the
recurrence

w[vi] = max
(v,vi)∈E

(w[v] + u(v, vi)), w[s] = 0

Suppose v∗ = argmax
(v∗,vi)∈E

(w[v∗] + u(v∗, vi)), then we update the path

p[vi] = p[v∗] + {vi}

15-3
Firstly, we identify the unique leftmost and rightmost point v1 and vn. Let
pR[vi] = {v0, v1, · · · , vi}(1 ≤ i ≤ n) be the set of vertex in the longest weighed
path from v0 to vi, and wR[v] be the total weight of that path. Similarly, we
define pL(vi) = {vn, v1, · · · , vi}(1 ≤ i ≤ n) be the set of vertex in the longest
weighed path from vn to vi, and wL[v] be the total weight of that path. For the
left-to-right procedure, the recurrence can be written as follows:

wR[vi] = max
v.x<vi.x

(wR[v] + d(v, vi)), wR[v0] = 0

Suppose v∗ = argmax
v∗.x<vi.x

(wR[v∗] + d(v∗, vi)), then we update the path

pR[vi] = pR[v∗] + {vi}, pR[v0] = v0

For the right-to-left part, it’s similar, but we also need to check whether a point
has been visited in the left-to-right part. Formally,

wL[vi] = max
v.x>vi.x,v/∈pR[vn]

(wL[v] + d(v, vi)), wL[vn] = 0

Suppose v∗ = argmax
v∗.x>vi.x,v∗ /∈pR[vn]

(wL[v∗] + d(v∗, vi)), then we update the path

pL[vi] = pL[v∗] + {vi}, pL[vn] = {}

The final result is pR[vn] + pL[v0]
15-5

1



a. Let c[i][j] be the minimal cost when we are at x[i] and y[j], then we have

c[i][j] = min



c[i− 1][j − 1] + cost(copy)

c[i− 1][j − 1] + cost(replace)

c[i− 1][j] + cost(delete)

c[i][j − 1] + cost(insert)

c[i− 2][j − 2] + cost(twiddle)

c[i− 1][j] + cost(kill)

c[0][0] = 0,

c[m+ 1][n+ 1] = min
i

(c[m+ 1][n+ 1], c[i][n+ 1] + cost(kill))

b. Simply use copy, twiddle and insert (only space), and find the maximal
score. So c[m+ 1][n+ 1] is the edit distance, and the operational sequence can
be recorded accordingly. Both the space and time complexity are O(n2).
15-7
a. simply do a BFS from v0, move from vi−1 to vi(1 ≤ i ≤ k) if and only
if σi(vi−1, vi) ∈ E. If no vk found, then return NO-SUCH-PATH; otherwise,
return {v0, v1, · · · , vk}
b. Let prefix si = 〈σ1, σ2, · · · , σi〉, and define subproblem w[i][v] be the proba-
bility of the most probable path from v0 to v that has the label si. We have the
following recurrence

w[i][v] = max
σi(u,v)∈E

w[i− 1][u] · p(u, v),

w[0][v0] = 1,

w[0][v] = 0 (v 6= v0),

(initialize the whole w array to 0 except for w[0][v0].)
Let v∗ = argmaxvw[k][v]. You can use a backpointer to reconstruct the optimal
path corresponding to w[k][v∗]. Complexity: O(k(|V |+ |E|)).

Liang’s note: This “Viterbi algorithm” is a specific instance of the general
“Viterbi algorithm” we taught in class. Here the graph G′ of subproblems
w[i][v] can be viewed as “k copies of the original graph G”, where each edge in
G′ is of the form ((i− 1, u), (i, v)), and thus G′ must be acyclic (even if G itself
is cyclic). As discussed in class, the general Viterbi algorithm simply follow a
topological sort on G′ and update the solutions to subproblems.

2


