Machine Learning A Geometric Approach

CUNY Graduate Center, Spring 2013

Lectures 2-4 Online Learning: Perceptron and its Extensions

(including voted/avg perc, (aggressive) MIRA, multiclass, and feature preprocessing) Professor Liang Huang

huang@cs.qc.cuny.edu

Alex Smola (CMU) slides Liang Huang (CUNY) slides

http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

Outline

- Perceptron
 - Classification in Augmented Space
 - Perceptron Algorithm
 - Convergence Proof
- Extensions of Perceptron
 - Voted/Averaged, MIRA, passive-aggressive, p-aggressive MIRA
 - Multiclass Perceptron
- Features and preprocessing
 - Nonlinear separation
 - Perceptron in feature space
- Kernels
 - Kernel trick
 - Kernelized Perceptron in Dual (Kai)
 - Properties

MAGIC Etch A Sketch SCREEN

Perceptron

Frank Rosenblatt

latensenter fuiel 121 Berthald of Test."

emase diroang véringo mendorala daala de meerido atoan Hrad heins bodi

early theories of the brain

Biology and Learning

- Basic Idea
 - Good behavior should be rewarded, bad behavior punished (or not rewarded). This improves system fitness.
 - Killing a sabertooth tiger should be rewarded ...
 - Correlated events should be combined.
 - Pavlov's salivating dog.
- Training mechanisms
 - Behavioral modification of individuals (learning)
 Successful behavior is rewarded (e.g. food).
 - Hard-coded behavior in the genes (instinct)
 The wrongly coded animal does not reproduce.

Neurons

- Soma (CPU)
 Cell body combines signals
- Dendrite (input bus)
 Combines the inputs from several other nerve cells

- Synapse (interface)
 ^T Dendrite
 Interface and parameter store between neurons
- Axon (output cable)
 May be up to 1m long and will transport the activation signal to neurons at different locations

Neurons

Frank Rosenblatt's Perceptron

Multilayer Perceptron (Neural Net)

Perceptron w/ bias

- Weighted linear combination
- Nonlinear decision function
- Linear offset (bias)

- Linear separating hyperplanes
 (spam/ham, novel/typical, click/no click)
- Learning: w and b

Perceptron w/o bias

- Weighted linear combination
- Nonlinear decision function
- No Linear offset (bias): hyperplane through the origin
- Linear separa ^{x₁} (spam/ham, n
- Learning: w

output

 $\sum_{i=1}^{n} w_i x_i$

 $f(x) = \sigma\left(\langle w, x \rangle + b\right)$

Augmented Space

can separate in 3D from the origin

can't separate in 2D

from the origin

The Perceptron w/o bias

- initialize w = 0 and b = 0
- repeat
- $\begin{array}{l} \text{if } y_i \left[\langle w, x_i \rangle + b \right] \leq 0 \text{ then} \\ w \leftarrow w + y_i x_i \text{ and } b \leftarrow b + y_i \\ \text{end if} \\ \text{until all classified correctly} \end{array}$
- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum y_i x_i$

 $i \in I$

• Classifier is linear combination of inner products $f(x) = \sum_{i \in I} y_i \langle x_i, x \rangle + b$

The Perceptron w/ bias

initialize w = 0 and b = 0repeat

if $y_i [\langle w, x_i \rangle + b] \leq 0$ then $w \leftarrow w + y_i x_i$ and $b \leftarrow b + y_i$ end if until all classified correctly

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum y_i x_i$

 $i \in I$

• Classifier is linear combination of inner products $f(x) = \sum_{i \in I} y_i \langle x_i, x \rangle + b$

Convergence Theorem

- If there exists some oracle unit vector u : ||u|| = 1 y_i(u · x_i) ≥ δ for all i then the perceptron converges to a linear separator after a number of steps bounded by R²/δ² where R = max||x_i||
- Dimensionality independent
- Order independent (i.e. also worst case)
- Scales with 'difficulty' of problem

Geometry of the Proof

• part 1: progress (alignment) on oracle projection

assume w_i is the weight vector **before** the *i*th update (on $\langle x_i, y_i \rangle$) and assume initial $w_0 = 0$

$$w_{i+1} = w_i + y_i x_i$$

$$u \cdot w_{i+1} = u \cdot w_i + y_i (u \cdot x_i) \qquad y_i (u \cdot x_i) \ge \delta \text{ for all}$$

$$u \cdot w_{i+1} \ge u \cdot w_i + \delta$$

$$u \cdot w_{i+1} \ge i\delta$$
projection on u increases!
$$(\text{more agreement w/ oracle})$$

$$||w_{i+1}|| = ||u|| ||w_{i+1}|| \ge u \cdot w_{i+1} \ge i\delta$$

Geometry of the Proof

• part 2: bound the norm of the weight vector

$$w_{i+1} = w_i + y_i x_i$$

$$||w_{i+1}||^2 = ||w_i + y_i x_i||^2$$

$$= ||w_i||^2 + ||x_i||^2 + 2y_i(w_i x_i)$$

$$\leq ||w_i||^2 + R^2 \quad "mistake \text{ on } x_i"$$

$$\leq iR^2 \quad (radius) \quad \delta \delta$$

$$Ombine \text{ with part 1}$$

$$||w_{i+1}|| = ||u|| ||w_{i+1}|| \geq u \cdot w_{i+1} \geq i\delta$$

$$i \leq R^2/\delta^2$$

$$\Theta \quad v_i \oplus u : ||u|| = 1$$

Convergence Bound R^2/δ^2

- is independent of:
 - dimensionality
 - number of examples
 - starting weight vector
 - order of examples
 - constant learning rate
- and is dependent of:
 - separation difficulty
 - feature scale

- but test accuracy is dependent of:
 - order of examples (shuffling helps)
 - variable learning rate (1/total#error helps)
 - can you still prove convergence?

Hardness margin vs. size

Consequences

- Only need to store errors.
 This gives a compression bound for perceptron.
- Stochastic gradient descent on hinge loss

 $l(x_i, y_i, w, b) = \max(0, 1 - y_i [\langle w, x_i \rangle + b])$

Fails with noisy data

do NOT train your avatar with perceptrons

• XOR - not linearly separable

 $P \neq NP$

- Nonlinear separation is trivial
- Caveat from "Perceptrons" (Minsky & Papert, 1969)
 Finding the minimum error linear separator
 is NP hard (this killed Neural Networks in the 70s).

Brief History of Perceptron

Extensions of Perceptron

- Problems with Perceptron
 - doesn't converge with inseparable data
 - update might often be too "bold"
 - doesn't optimize margin
 - is sensitive to the order of examples
- Ways to alleviate these problems
 - voted perceptron and average perceptron
 - MIRA (margin-infused relaxation algorithm)
 - passive-aggressive

Voted/Avged Perceptron

- motivation: updates on later examples taking over!
- voted perceptron (Freund and Schapire, 1999)
 - record the weight vector after each example
 - (not just after each update)
 - and vote on a new example
 - shown to have better generalization power
- averaged perceptron (from the same paper)
 - an approximation of voted perceptron
 - just use the average of all weight vectors
 - can be implemented efficiently

Voted/Avged Perceptron

d = 1 (low dim - less separable)

Voted/Avged Perceptron

d = 6(high dim - more separable)

MIRA

- perceptron often makes too bold updates
 - but hard to tune learning rate
- the smallest update to correct the mistake?

$$w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i$$

easy to show:

$$y_{i}(w_{i+1} \cdot x_{i}) = y_{i} (w_{i} + \frac{y_{i} - w_{i} \cdot x_{i}}{\|x_{i}\|^{2}} x_{i}) \cdot x_{i} = 1$$

$$x_{i} \oplus$$

$$y_{i} \oplus$$

$$y_{i} \oplus$$

$$w_{i} \oplus$$

Aggressive MIRA (AMIRA)

- aggressive version of MIRA
 - also update if correct but margin not big enough
- functional margin: $y_i(\mathbf{w} \cdot x_i)$
- geometric margin: $\frac{y_i(\mathbf{w} \cdot x_i)}{\|\mathbf{w}\|}$ what if we replace functional here
- update if functional margin is <=p (0<=p<1)
 - update rule is same as MIRA
 - called AMIRAp or p-aggressive MIRA. (MIRA: p=0)
- larger p leads to a larger geometric margin
 - but slower convergence

Aggressive MIRA (AMIRA)

Table 3. Error rates on MNIST dataset. Both ROMMA and Aggressive ROMMA use a scale of 1100. The numbers in parentheses denote the aggressive parameters for AMIRA.

Epoch	1	2	3	4
Perceptron	2.98%	2.32%	1.94%	1.88%
Perceptron(avg.)	2.16%	1.85%	1.73%	1.69%
ROMMA	2.48%	1.96%	1.79%	1.77%
aggr-ROMMA	2.14%	1.82%	1.71%	1.67%
MIRA	2.56%	2.03%	1.74%	1.70%
bin AMIRA(0.1)	2.20%	1.78%	1.67%	1.64%

• perceptron vs. 0.2-aggressive vs. 0.9-aggressive

- perceptron vs. 0.2-aggressive vs. 0.9-aggressive
- why does this dataset so slow to converge?
 - perceptron: 22, p=0.2: 87, p=0.9: 2,518 epochs

- perceptron vs. 0.2-aggressive vs. 0.9-aggressive
- why does this dataset so fast to converge?
 - perceptron: 3, p=0.2: 1, p=0.9: 5 epochs

answer: margin shrinks in augmented space!

Multiclass Classification

- one weight vector ("prototype") for each class: $\mathbf{w} = (\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(M)}),$
- multiclass decision rule: $\hat{y} = \operatorname*{argmax}_{z \in 1...M} w^{(z)} \cdot x$ (best agreement w/ prototype)

2

- Q1: what about 2-class?
 - Q2: do we still need augmented space?

0123456789

Multiclass Perceptron

 on an error, penalize the weight for the wrong class, and reward the weight for the true class

Convergence of Multiclass

0/28456789

$$\mathbf{w} = (\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(M)}),$$

where $\mathbf{w}^{(i)}$ is used to calculate the functional margin for training example with label *i*;

for a given training example x and a label y, we define feature map function Φ as

$$\Phi(\mathbf{x}, y) = (\mathbf{0}^{(1)}, \dots, \mathbf{0}^{(y-1)}, \mathbf{x}, \mathbf{0}^{(y+1)}, \dots, \mathbf{0}^{(M)}).$$

such that $\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x}, y) = \mathbf{w}^{(y)} \cdot \mathbf{x}$.

We also define that, with a given training example x, the difference between two feature vectors for labels y and z as $\Delta \Phi$:

 $\Delta \Phi(\mathbf{x}, y, z) = \Phi(\mathbf{x}, y) - \Phi(\mathbf{x}, z).$

update rule:

 $\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{\Phi}(\mathbf{x}, y, z)$

$$\exists \mathbf{u}, \text{ s.t. } \forall (\mathbf{x}, y) \in D, z \neq y$$
$$\mathbf{u} \cdot \Delta \mathbf{\Phi}(\mathbf{x}, y, z) \ge \delta$$

Useful Engineering Tips: shuffling, variable learning rate, fixing feature scale

- shuffling at each epoch helps a lot
- variable learning rate often helps (constant: useless)
 - 1/(total#updates) or 1/(total#examples) helps
 - any requirement in order to converge?
 - how to prove convergence now?
- centering of each feature dim helps
 - why? => R smaller, margin bigger
- unit variance also helps (why?)
 - 0-mean, 1-var => each feature ≈ a unit Gaussian

Useful Engineering Tips:

feature bucketing (binning/quantization), categorical=>binary

- HW1 Adult income dataset: <=50K, or >50K?
 - age: older means more \$\$\$?
 - **bin:** Young (0-25), Middle-aged (26-45), Senior (46-65) and Old (66+).
 - educational level: 1 to 9 (i think higher is better)
 - hours-per-week: more hours means more \$\$\$?
 - **bin:** Part-time (0-25), Full-time (25-40), Over-time (40-60) and Too-much (60+).
 - native-country: split into X binaries for X countries
 - gender: binary; no need to split into two binaries!
 - type-of-work or position: split into many binaries

[•]

Brief History of Perceptron

