
Nonlinearity &
Preprocessing

• Concatenated (combined) features
• XOR: x = (x1, x2, x1x2)
• income: add “degree + major”

• Perceptron
• Map data into feature space
• Solution in span of

Nonlinear Features

x ! �(x)

�(xi)

x1: +1

x2: -1

x4: -1

x3: +1

Quadratic Features

• Separating surfaces are
Circles, hyperbolae, parabolae

Constructing Features
(very naive OCR system)

Constructing Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 35

Idea
Construct features manually. E.g. for OCR we could use

Feature Engineering
for Spam Filtering

• bag of words
• pairs of words
• date & time
• recipient path
• IP number
• sender
• encoding
• links
• combinations of above

Delivered-To: alex.smola@gmail.com
Received: by 10.216.47.73 with SMTP id s51cs361171web;
 Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725;
 Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Return-Path: <alex+caf_=alex.smola=gmail.com@smola.org>
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
 by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51
 (version=TLSv1/SSLv3 cipher=OTHER);
 Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best
guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) client-
ip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither
permitted nor denied by best guess record for domain of alex
+caf_=alex.smola=gmail.com@smola.org) smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org;
dkim=pass (test mode) header.i=@googlemail.com
Received: by eaal1 with SMTP id l1so15092746eaa.6
 for <alex.smola@gmail.com>; Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
 Tue, 03 Jan 2012 14:17:51 -0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204.65.198 with SMTP id k6cs206093bki;
 Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
 Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Return-Path: <althoff.tim@googlemail.com>
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
 by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
 (version=TLSv1/SSLv3 cipher=OTHER);
 Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates
209.85.220.179 as permitted sender) client-ip=209.85.220.179;
Received: by vcbf13 with SMTP id f13so11295098vcb.10
 for <alex@smola.org>; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
 d=googlemail.com; s=gamma;
 h=mime-version:sender:date:x-google-sender-auth:message-id:subject
 :from:to:content-type;
 bh=WCbdZ5sXac25dpH02XcRyDOdts993hKwsAVXpGrFh0w=;
 b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjyOQsIHeAP9Yssxp6O
 7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxSOCx5ZRgY+7qX
 uIbbdna4lUDXj6UFe16SpLDCkptd8OZ3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
 Tue, 03 Jan 2012 14:17:47 -0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST)
Date: Tue, 3 Jan 2012 14:17:47 -0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: <CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com>
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff <althoff@eecs.berkeley.edu>
To: alex@smola.org
Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a

--f46d043c7af4b07e8d04b5a7113a
Content-Type: text/plain; charset=ISO-8859-1

mailto:alex.smola@gmail.com
mailto:alex.smola@gmail.com
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:gmail.com@smola.org
mailto:alex.smola@gmail.com
mailto:alex.smola@gmail.com
mailto:alex.smola@gmail.com
mailto:alex.smola@gmail.com
mailto:alex@smola.org
mailto:alex@smola.org
mailto:alex.smola@gmail.com
mailto:alex.smola@gmail.com
mailto:alex@smola.org
mailto:alex@smola.org
mailto:althoff.tim@googlemail.com
mailto:althoff.tim@googlemail.com
mailto:althoff.tim@googlemail.com
mailto:althoff.tim@googlemail.com
mailto:alex@smola.org
mailto:alex@smola.org
mailto:althoff.tim@googlemail.com
mailto:althoff.tim@googlemail.com
mailto:CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com
mailto:CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com
mailto:althoff@eecs.berkeley.edu
mailto:althoff@eecs.berkeley.edu
mailto:alex@smola.org
mailto:alex@smola.org

The Perceptron on features

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is (implicitly) a linear combination of

inner products

Perceptron on Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 37

argument: X := {x1, . . . , xm

} ⇢ X (data)
Y := {y1, . . . , ym

} ⇢ {±1} (labels)
function (w, b) = Perceptron(X, Y, ⌘)

initialize w, b = 0

repeat
Pick (x

i

, y

i

) from data
if y

i

(w · �(x

i

) + b) 0 then
w

0
= w + y

i

�(x

i

)

b

0
= b + y

i

until y

i

(w · �(x

i

) + b) > 0 for all i

end

Important detail
w =

X

j

y

j

�(x

j

) and hence f (x) =

P
j

y

j

(�(x

j

) · �(x)) + b

w =
X

i2I

↵i�(xi)

f(x) =
X

i2I

↵i h�(xi),�(x)i

Problems
• Problems

• Need domain expert (e.g. Chinese OCR)
• Often expensive to compute
• Difficult to transfer engineering knowledge

• Shotgun Solution
• Compute many features
• Hope that this contains good ones
• How to do this efficiently?

Kernels

Solving XOR

• XOR not linearly separable
• Mapping into 3 dimensions makes it easily solvable

(x1, x2) (x1, x2, x1x2)

Kernels as dot productsKernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 40

Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X ⇥ X ! R is a symmetric function
in its arguments for which the following property holds

k(x, x

0
) = h�(x), �(x

0
)i for some feature map �.

If k(x, x

0
) is much cheaper to compute than �(x) . . .

5 · 105

Quadratic KernelPolynomial Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

Quadratic Features in R2

�(x) :=

⇣
x

2
1,
p

2x1x2, x
2
2

⌘

Dot Product
h�(x), �(x

0
)i =

D⇣
x

2
1,
p

2x1x2, x
2
2

⌘
,

⇣
x

0
1
2
,

p
2x

0
1x

0
2, x

0
2
2
⌘E

= hx, x

0i2.
Insight
Trick works for any polynomials of order d via hx, x

0id.

Kernelized Perceptron

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of inner products

Kernel Perceptron

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 42

argument: X := {x1, . . . , xm

} ⇢ X (data)
Y := {y1, . . . , ym

} ⇢ {±1} (labels)
function f = Perceptron(X, Y, ⌘)

initialize f = 0

repeat
Pick (x

i

, y

i

) from data
if y

i

f (x

i

) 0 then
f (·) f (·) + y

i

k(x

i

, ·) + y

i

until y

i

f (x

i

) > 0 for all i

end

Important detail
w =

X

j

y

j

�(x

j

) and hence f (x) =

P
j

y

j

k(x

j

, x) + b.

f(x) =
X

i2I

↵i h�(xi),�(x)i =
X

i2I

↵ik(xi, x)

w =
X

i2I

↵i�(xi)

Functional Form

Kernelized Perceptron

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of inner products

Dual Form
update linear coefficients

 implicitly equivalent to:

Primal Form
update weights

classify
w w + yi�(xi)

f(k) = w · �(x)

↵i ↵i + yi

w =
X

i2I

↵i�(xi)

w =
X

i2I

↵i�(xi)

f(x) =
X

i2I

↵i h�(xi),�(x)i =
X

i2I

↵ik(xi, x)

Kernelized Perceptron
Dual Form
update linear coefficients

 implicitly equivalent to:

Primal Form
update weights

classify
w w + yi�(xi)

classify

f(k) = w · �(x) w =
X

i2I

↵i�(xi)

↵i ↵i + yi

f(x) = w · �(x) = [
X

i2I

↵i�(xi)]�(x)

=
X

i2I

↵ih�(xi),�(x)i

=
X

i2I

↵ik(xi, x)easy!

hard!

Kernelized Perceptron
initialize for all
repeat
 Pick from data
 if then

until for all

↵i = 0

(xi, yi)
yif(xi) 0

↵i ↵i + yi
yif(xi) > 0

i

i

Dual Form
update linear coefficients

 implicitly

classify

↵i ↵i + yi

w =
X

i2I

↵i�(xi)

f(x) = w · �(x) = [
X

i2I

↵i�(xi)]�(x)

=
X

i2I

↵ih�(xi),�(x)i

=
X

i2I

↵ik(xi, x)easy!

hard!
if #features > #examples,

dual is easier;
otherwise primal is easier

Kernelized Perceptron
Dual Perceptron
update linear coefficients

 implicitly

Primal Perceptron
update weights

classify
w w + yi�(xi)

f(k) = w · �(x)

↵i ↵i + yi

w =
X

i2I

↵i�(xi)

if #features >> #examples,
dual is easier;

otherwise primal is easier

Q: when is #features >> #examples?

A: higher-order polynomial kernels
or exponential kernels (inf. dim.)

Kernelized Perceptron
Dual Perceptron
update linear coefficients

 implicitly

classify

Pros/Cons of Kernel in Dual
• pros:

• no need to store long feature
and weight vectors (memory)

• cons:
• sum over all misclassified

training examples for test
(time)

• need to store all misclassified
training examples (memory)

• called “support vector set”
• SVM will minimize this set!

↵i ↵i + yi

w =
X

i2I

↵i�(xi)

f(x) = w · �(x) = [
X

i2I

↵i�(xi)]�(x)

=
X

i2I

↵ih�(xi),�(x)i

=
X

i2I

↵ik(xi, x) easy!

hard!

Kernelized Perceptron
Dual PerceptronPrimal Perceptron

update on new param.
x1: -1 w = (0, -1)
x2: +1 w = (2, 0)
x3: +1 w = (2, -1)

update on new param. w (implicit)

x1: -1 ! = (-1, 0, 0) -x1
x2: +1 ! = (-1, 1, 0) -x1 + x2
x3: +1 ! = (-1, 1, 1) -x1 + x2 + x3

linear kernel (identity map)
final implicit w = (2, -1)

x2(2, 1) : +1

x3(0,�1) : +1

x1(0, 1) : �1

geometric interpretation
of dual classification:

sum of dot-products with x2 & x3
bigger than dot-product with x1

(agreement w/ positive > w/ negative)

XOR Example
Dual Perceptron

update on new param. w (implicit)

x1: +1 ! = (+1, 0, 0, 0) φ(x1)

x2: -1 ! = (+1, -1, 0, 0) φ(x1) - φ(x2)

x1: +1

x2: -1

x4: -1

x3: +1

classification rule in dual/geom:
(x · x1)

2
> (x · x2)

2

) cos

2
✓1 > cos

2
✓2

) | cos ✓1| > | cos ✓2|

x1: +1

x2: -1

in dual/algebra:

(x · x1)
2
> (x · x2)

2

) (x1 + x2)
2
> (x1 � x2)

2

) x1x2 > 0

also verify in primal

k(x, x0) = (x · x0)2 , �(x) = (x2
1, x

2
2,
p
2x1x2) w = (0, 0, 2

p
2)

Circle Example??
Dual Perceptron

update on new param. w (implicit)

x1: +1 ! = (+1, 0, 0, 0) φ(x1)

x2: -1 ! = (+1, -1, 0, 0) φ(x1) - φ(x2)
k(x, x0) = (x · x0)2 , �(x) = (x2

1, x
2
2,
p
2x1x2)

Polynomial KernelsPolynomial Kernels in Rn

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 41

Idea
We want to extend k(x, x

0
) = hx, x

0i2 to

k(x, x

0
) = (hx, x

0i + c)

d where c > 0 and d 2 N.

Prove that such a kernel corresponds to a dot product.
Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, i.e.

k(x, x

0
) = (hx, x

0i + c)

d

=

mX

i=0

✓
d

i

◆
(hx, x

0i)i cd�i

Individual terms (hx, x

0i)i are dot products for some �

i

(x).

+c is just augmenting space.
simpler proof: set x0 = sqrt(c)

Circle Example
Dual Perceptron

y
+1
+1
-1

update on new param. w (implicit)

x1: +1 ! = (+1, 0, 0, 0, 0) φ(x1)

x2: -1 ! = (+1, -1, 0, 0, 0) φ(x1) - φ(x2)

x3: -1 ! = (+1, -1, -1, 0, 0)

k(x, x0) = (x · x0)2 , �(x) = (x2
1, x

2
2,
p
2x1x2)

k(x, x0) = (x · x0 + 1)2 , �(x) =?

x1

x2

x3

x4

x5

Gaussian Kernels

• distorts distance instead of angle (RBF kernels)
• agreement with examples is now b/w 0 and 1

• geometric intuition in original space:
• place a gaussian bump on each example

• geometric intuition in feature space (primal):
• implicit mapping is N dimensional (N examples)
• kernel matrix is full rank => independent bases

K(~x,~z) = exp

⇢
kx� zk2

2�

2

�

Gaussian Kernels

• geometric intuition in feature space:
• implicit mapping is N

dimensional (N examples)
• kernel matrix is full rank

=> independent bases
• k(x,x) = 1 => all examples

on unit hypersphere

K(~x,~z) = exp

⇢
kx� zk2

2�

2

�

Kernel Conditions
Are all k(x, x

0
) good Kernels?

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 43

Computability
We have to be able to compute k(x, x

0
) efficiently (much

cheaper than dot products themselves).
“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x, x

0
) = k(x

0
, x) due to the symmetry of the

dot product h�(x), �(x

0
)i = h�(x

0
), �(x)i.

Dot Product in Feature Space
Is there always a � such that k really is a dot product?

Mercer’s Theorem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 44

The Theorem
For any symmetric function k : X ⇥ X ! R which is
square integrable in X⇥ X and which satisfies

Z

X⇥X

k(x, x

0
)f (x)f (x

0
)dxdx

0 � 0 for all f 2 L2(X)

there exist �
i

: X ! R and numbers �

i

� 0 where
k(x, x

0
) =

X

i

�

i

�

i

(x)�

i

(x

0
) for all x, x

0 2 X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we haveX

i

X

j

k(x

i

, x

j

)↵

i

↵

j

� 0

Mercer’s Theorem

PropertiesProperties of the Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 45

Distance in Feature Space
Distance between points in feature space via

d(x, x

0
)

2
:=k�(x) � �(x

0
)k2

=h�(x), �(x)i � 2h�(x), �(x

0
)i + h�(x

0
), �(x

0
)i

=k(x, x) + k(x

0
, x

0
) � 2k(x, x)

Kernel Matrix
To compare observations we compute dot products, so
we study the matrix K given by

K

ij

= h�(x

i

), �(x

j

)i = k(x

i

, x

j

)

where x

i

are the training patterns.
Similarity Measure
The entries K

ij

tell us the overlap between �(x

i

) and
�(x

j

), so k(x

i

, x

j

) is a similarity measure.

PropertiesProperties of the Kernel Matrix

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 46

K is Positive Semidefinite
Claim: ↵

>
K↵ � 0 for all ↵ 2 Rm and all kernel matrices

K 2 Rm⇥m. Proof:
mX

i,j

↵

i

↵

j

K

ij

=

mX

i,j

↵

i

↵

j

h�(x

i

), �(x

j

)i

=

*
mX

i

↵

i

�(x

i

),

mX

j

↵

j

�(x

j

)

+
=

�����

mX

i=1

↵

i

�(x

i

)

�����

2

Kernel Expansion
If w is given by a linear combination of �(x

i

) we get

hw, �(x)i =

*
mX

i=1

↵

i

�(x

i

), �(x)

+
=

mX

i=1

↵

i

k(x

i

, x).

A CounterexampleA Counterexample

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 47

A Candidate for a Kernel

k(x, x

0
) =

⇢
1 if kx� x

0k 1

0 otherwise
This is symmetric and gives us some information about
the proximity of points, yet it is not a proper kernel . . .

Kernel Matrix
We use three points, x1 = 1, x2 = 2, x3 = 3 and compute
the resulting “kernelmatrix” K. This yields

K =

2

4
1 1 0

1 1 1

0 1 1

3

5 and eigenvalues (

p
2�1)

�1
, 1 and (1�

p
2).

as eigensystem. Hence k is not a kernel.

Examples
Some Good Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 48

Examples of kernels k(x, x

0
)

Linear hx, x

0i
Laplacian RBF exp (��kx � x

0k)
Gaussian RBF exp

�
��kx � x

0k2
�

Polynomial (hx, x

0i + ci)d , c � 0, d 2 N
B-Spline B2n+1(x � x

0
)

Cond. Expectation E

c

[p(x|c)p(x

0|c)]
Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.

you only need to know polynomial and gaussian.

distorts distance

distorts angle

Linear KernelLinear Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 49

Polynomial of order 3Polynomial (Order 3)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 52

Gaussian KernelGaussian Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 51

• Perceptron
• Hebbian learning & biology
• Algorithm
• Convergence analysis

• Features and preprocessing
• Nonlinear separation
• Perceptron in feature space

• Kernels
• Kernel trick
• Properties
• Examples

Summary

