magr Etcha Sketch screen

Support Vector Machines

Linear Separator

Linear Separator

Large Margin Classifier

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle
\end{aligned}
$$

Why large margins?

- Maximum
robustness relative to uncertainty
- Symmetry breaking
- Independent of correctly classified instances
- Easy to find for easy problems

Large Margin Classifier

$$
\frac{\left\langle x_{+}-x_{-}, w\right\rangle}{2\|w\|}=\frac{1}{2\|w\|}\left[\left[\left\langle x_{+}, w\right\rangle \quad\right]-\left[\left\langle x_{-}, w\right\rangle \quad\right]\right]=\frac{1}{\|w\|}
$$

Large Margin Classifier

$\underset{w}{\operatorname{maximize}} \frac{1}{\|w\|}$ subject to $y_{i}\left[\left\langle x_{i}, w\right\rangle \quad\right] \geq 1$

Large Margin Classifier

$\underset{w}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left\langle x_{i}, w\right\rangle \quad \geq 1$

Lagrangian

- Primal optimization problem
$\underset{w}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left\langle x_{i}, w\right\rangle \quad \geq 1$
- Lagrange function

$$
L(w, \quad \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left\langle x_{i}, w\right\rangle \quad-1\right]
$$

Derivatives in w need to vanish

$$
\begin{aligned}
\partial_{w} L(w, \quad a) & =w-\sum_{i} \alpha_{i} y_{i} x_{i}=0 \\
w & =\sum_{i} y_{i} \alpha_{i} x_{i}
\end{aligned}
$$

Geometry of Lagrangian

Constrained Optimization

 constraint$\underset{w}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left\langle x_{i}, w\right\rangle \geq 1$

- Quadratic Programming
- Quadratic Objective
- Linear Constraints

KKT condition: optimal point is achieved at active constraints where $a_{i}>0$ ($a_{i}=0=>$ inactive)

$$
\alpha_{i}\left[y_{i}\left\langle w, x_{i}\right\rangle \quad-1\right]=0
$$

Geometry of KKT

KKT => Support Vectors

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left\langle x_{i}, w\right\rangle \quad \geq 1
$$

Karush Kuhn Tucker (KKT)

$$
\begin{aligned}
& \alpha_{i}=0 \\
& \alpha_{i}>0 \Longrightarrow y_{i}\left\langle w, x_{i}\right\rangle \quad=1
\end{aligned}
$$

$$
\alpha_{i}\left[y_{i}\left\langle w, x_{i}\right\rangle\right.
$$

$$
-1]=0
$$

Properties

$$
w=\sum_{i} y_{i} \alpha_{i} x_{i}
$$

Example

Example

Number of Support Vectors: 3 (-ve: 2, +ve: 1) Total number of points: 15

Alternative: Dual Problem

- Lagrange function

$$
L(w, \quad \alpha)=\frac{1}{2}\|w\|^{2}-\sum \alpha_{i}\left[y_{i}\left\langle x_{i}, w\right\rangle \quad-1\right]
$$

- Derivatives in \mathbf{w} need to vanish

$$
\begin{aligned}
\partial_{w} L(w, \quad a) & =w-\sum_{i} \alpha_{i} y_{i} x_{i}=0 \\
w & =\sum_{i} y_{i} \alpha_{i} x_{i}
\end{aligned}
$$

- Plugging w back into L yields

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

subject to Lagrangian $\quad \alpha_{i} \geq 0$

Primal vs. Dual

Primal $\underset{w}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left\langle x_{i}, w\right\rangle \quad \geq 1$

subject to Lagrangian $\quad \alpha_{i} \geq 0$

Solving the optimization problem

- Dual problem

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

subject to Lagrangian $\alpha_{i} \geq 0$

- If problem is small enough (1000s of variables) we can use off-he-shelf solver (CVXOPT, CPLEX, OOQP, LOQO)
- For larger problem use fact that only SVs matter and solve in blocks (active set method).

Quadratic Program in Primal

- Primal

$$
\min _{w}\left\{\frac{1}{2} w^{T} Q w+c^{T} w\right\} \text { subject to }\left\{\begin{array}{l}
A w \leq b \\
E w=d
\end{array}\right.
$$

where $Q \in \mathbb{R}^{n \times n}$ and is symmetric, $w, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, $E \in \mathbb{R}^{p \times n}$, and $d \in \mathbb{R}^{p}$,

Q: what's the Q in SVM primal?
how about Q in SVM dual?

Quadratic - Dual problem

$\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \alpha^{T} Q \alpha-\alpha^{T} b$
subject to $\alpha \geq 0$
Q: what's the Q in SVM primal? how about Q in SVM dual?

- Quadratic Programming
- Objective: Quadratic function
- Q is positive semidefinite
- Constraints: Linear functions
- Methods
- Gradient Descent
- Coordinate Descent
- aka., Hildreth Algorithm
- Sequential Minimal Optimization (SMO)

Convex QP

- if Q is positive (semi)definite, i.e., $x^{\top} Q x>=0$, then convex $Q P=>$ local min/max is global min/max
- if $Q=0$, it reduces to linear programming
- general QP is NP-hard; convex QP is polynomial

Indefinite

Positive definite

Hildreth Algorithm

- idea 1:
- update one coordinate while fixing all other coordinates
- e.g., update coordinate i is to solve:

$$
\begin{aligned}
& \qquad \underset{\alpha_{i}}{\operatorname{argmax}}-\frac{1}{2} \alpha^{T} Q \alpha-\alpha^{T} b \\
& \text { subject to } \alpha \geq 0
\end{aligned}
$$

Quadratic function with only one variable Maximum => first-order derivative is 0

Hildreth

- idea 2 :
- choose another coordinate and repeat until meet stopping criterion
- reach maximum or
- increase between 2 consecutive iterations is very small or
- after some \# of iterations
- how to choose coordinate: sweep patter
- Sequential:
- 1, 2, ..., n, 1, 2, ..., n, ...
- $1,2, \ldots, n, n-1, n-2, \ldots, 1,2, \ldots$
- Random: permutation of $1,2, \ldots, n$
- Maximal Descent
- choose i with maximal descent in objecti

Hildrełh Algorithm

initialize $\alpha_{i}=0$ for all i repeat
pick i following sweep pattern
solve

$$
\alpha_{i} \leftarrow \underset{\alpha_{i}}{\operatorname{argmax}}-\frac{1}{2} \alpha^{T} Q \alpha-\alpha^{T} b
$$

$$
\text { subject to } \alpha \geq 0
$$

until meet stopping criterion

Hildreth Algorithm

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \alpha^{T}\left(\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right) \alpha-\alpha^{T}\binom{-6}{-4}
$$

subject to $\alpha \geq 0$

- choose coordinates
- 1, 2, 1, 2, ...

Hildreth Algorithm

- pros:
- extremely simple
- no gradient calculation
- easy to implement
- cons:
- converges slow, compared to other methods

Carnegie Mellon University

Large Margin Classifier

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle
\end{aligned}
$$

linear separator is impossible

Large Margin Classifier

minimum error separator
Theorem (Minsky \& Papert) is impossible
Finding the minimum error separating hyperplane is NP hard

Adding slack variables

minimize amount
Convex optimization problem of slack

Adding slack variables

- Hard margin problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left\langle w, x_{i}\right\rangle \quad \geq 1
$$

- With slack variables

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

subject to $y_{i}\left\langle w, x_{i}\right\rangle \quad \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$
Problem is always feasible. Proof:
$w=0 \quad$ and $\xi_{i}=1$ (also yields upper bound)

Intermezzo

Convex Programs for Dummies

- Primal optimization problem $\underset{x}{\operatorname{minimize}} f(x)$ subject to $c_{i}(x) \leq 0$

$$
x
$$

- Lagrange function

$$
L(x, \alpha)=f(x)+\sum_{i} \alpha_{i} c_{i}(x)
$$

- First order optimality conditions in \mathbf{x}

$$
\partial_{x} L(x, \alpha)=\partial_{x} f(x)+\sum_{i} \alpha_{i} \partial_{x} c_{i}(x)=0
$$

- Solve for \mathbf{x} and plug it back into \mathbf{L}

$$
\underset{\alpha}{\operatorname{maximize}} L(x(\alpha), \alpha)
$$

(keep explicit constraints)

- Primal optimization problem

$$
\begin{array}{ll}
\underset{w}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left\langle w, x_{i}\right\rangle \quad \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

- Lagrange function
$L(w, \quad \alpha)=\frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left[y_{i}\left\langle x_{i}, w\right\rangle \quad+\xi_{i}-1\right]-\sum_{i} \eta_{i} \xi_{i}$
Optimality in w, ξ is at saddle point with α, η
- Derivatives in w, ξ need to vanish

Dual
 Problem

- Lagrange function

$$
L(w, \quad \alpha)=\frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left[y_{i}\left\langle x_{i}, w\right\rangle \quad+\xi_{i}-1\right]-\sum_{i} \eta_{i} \xi_{i}
$$

- Derivatives in \mathbf{w} need to vanish

$$
\partial_{w} L(w, \quad \xi, \alpha, \eta)=w-\sum_{i} \alpha_{i} y_{i} x_{i}=0
$$

$$
\partial_{\xi_{i}} L(w, \quad \xi, \alpha, \eta)=C-\alpha_{i}-\eta_{i}=0
$$

- Plugging terms back into L yields

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

Karush Kuhn Tucker Conditions

$L(w, \quad \alpha)=\frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left[y_{i}\left\langle x_{i}, w\right\rangle \quad+\xi_{i}-1\right]-\sum_{i} \eta_{i} \xi_{i}$ $\partial_{w} L(w, \quad \xi, \alpha, \eta)=w-\sum_{i} \alpha_{i} y_{i} x_{i}=0$

$$
w=\sum_{i} y_{i} \alpha_{i} x_{i}
$$

$$
\begin{aligned}
\alpha_{i}\left[y_{i}\left\langle w, x_{i}\right\rangle+\xi_{i}-1\right] & =0 \\
\eta_{i} \xi_{i} & =0 \\
0 \leq \alpha_{i}=C-\eta_{i} & \leq C
\end{aligned}
$$

Solving the optimization problem

- Dual problem

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

subject to Lagrangian $\alpha_{i} \in[0, C]$

- If problem is small enough (1000s of variables) we can use off-the-shelf solver (CVXOPT, CPLEX, OOQP, LOQO) or Hildreth
- For larger problem use fact that only SVs matter and solve in blocks (active set method).
magic Etcha Sketch screen

Nonlinear Separalion

Carnegie Mellon University

The Kernel Trick

- Linear soft margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

subject to $y_{i}\left[\left\langle w, x_{i}\right\rangle \quad\right] \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$

- Dual problem

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

subject to Lagrangian $\quad \alpha_{i} \in[0, C]$

- Support vector expansion

$$
f(x)=\sum_{i} \alpha_{i} y_{i}\left\langle x_{i}, x\right\rangle
$$

The Kernel Trick

- Linear soft margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

subject to $y_{i}\left[\left\langle w, \phi\left(x_{i}\right)\right\rangle \quad\right] \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$

- Dual problem

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)+\sum_{i} \alpha_{i}
$$

subject to Lagrangian $\quad \alpha_{i} \in[0, C]$

- Support vector expansion

$$
f(x)=\sum_{i} \alpha_{i} y_{i} k\left(x_{i}, x\right)
$$

And now with a narrower kernel

And now with a very wide kernel

Nonlinear separation

- Increasing C allows for more nonlinearities
- Decreases number of errors
- SV boundary need not be contiguous
- Kernel width adjusts function class

Carnegie Mellon University

- Constrained quadratic program

$$
\begin{array}{ll}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle \quad\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

- Risk minimization setting

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \frac{\max \left[0,1-y_{i}\left[\left\langle w, x_{i}\right\rangle \quad\right]\right]}{\text { empirical risk }}
$$

Follows from finding minimal slack variable for w

Soft margin as proxy for binary

- Soft margin loss $\max (0,1-y f(x))$
- Binary loss $\{y f(x)<0\}$

More loss functions

Risk minimization view

- Find function f minimizing classification error

$$
R[f]:=\mathbf{E}_{x, y \sim p(x, y)}[\{y f(x)>0\}]
$$

- Compute empirical average

$$
R_{\mathrm{emp}}[f]:=\frac{1}{m} \sum_{i=1}^{m}\left\{y_{i} f\left(x_{i}\right)>0\right\}
$$

- Minimization is nonconvex
- Overfitting as we minimize empirical error
- Compute convex upper bound on the loss
- Add regularization for capacity control
regularization

$$
R_{\mathrm{reg}}[f]:=\frac{1}{m} \sum_{i=1}^{m} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)+\lambda \Omega[f]
$$

Summary

- Support Vector Classification

Large Margin Separation, optimization problem

- Properties

Support Vectors, kernel expansion

- Soft margin classifier

Dual problem, robustness

