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Roadmap
• so far: (large-margin) supervised learning

• binary, multiclass, and structured classifications

• online learning: avg perceptron/MIRA, convergence proof

• kernels and kernelized perceptron in dual

• SVMs: formulation, KKT, dual, convex optimization, slacks

• structured perceptron, HMM, and Viterbi algorithm

• what we left out: many classical algorithms

• nearest neighbors (instance-based), decision trees, logistic regression...

• next up: unsupervised learning

• clustering: k-means, EM, mixture models, hierarchical

• dimensionality reduction: linear (PCA/ICA, MDS), nonlinear (isomap) 2
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Sup=>Unsup: Nearest Neighbor=> k-means

• let’s look at a supervised learning method: nearest neighbor

• SVM, perceptron (in dual) and NN are all instance-based learning

• instance-based learning: store a subset of examples for classification

• compression rate: SVM: very high, perceptron: medium high, NN: 0
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k-Nearest Neighbor

• one way to prevent overfitting => more stable results

4



NN Voronoi in 2D and 3D
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Voronoi for Euclidian and Manhattan
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Unsupervised Learning
• cost of supervised learning

• labeled data: expensive to annotate!

• but there exists huge data w/o labels

• unsupervised learning

• can only hallucinate the labels

• infer some “internal structures” of data

• still the “compression” view of learning

• too much data => reduce it!

• clustering: reduce # of examples

• dimensionality reduction: reduce # of dimensions
7
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Challenges in Unsupervised Learning

• how to evaluate the results?

• there is no gold standard data!

• internal metric?

• how to interpret the results?

• how to “name” the clusters?

• how to initialize the model/guess?

• a bad initial guess can lead to very bad results

• unsup is very sensitive to initialization (unlike supervised)

• how to do optimization => in general no longer convex!
8
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment

11

(c)

−2 0 2

−2

0

2



k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment
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k-means
• (randomly) pick k points to be initial centroids

• repeat the two steps until convergence

• assignment to centroids: voronoi, like NN

• recomputation of centroids based on the new assignment

• how to define convergence?

• after a fixed number of iterations, or

• assignments do not change, or

• centroids do not change (equivalent?) or

• change in objective function falls below threshold
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k-means objective function

• residual sum of squares (RSS)

• sum of distances from points to their centroids

• guaranteed to decrease monotonically

• convergence proof: decrease + finite # of clusterings
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k-means for image segmentation
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Problems with k-means

• problem: sensitive to initialization

• the objective function is non-convex: many local minima

• why?

• k-means works well if

• clusters are spherical

• clusters are well separated

• clusters of similar volumes

• clusters have similar # of examples
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Better (“soft”) k-means?
• random restarts -- definitely helps

• soft clusters => EM with Gaussian Mixture Model
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k-means

• randomize k initial centroids

• repeat the two steps until convergence

• E-step: assignment each example to centroids (Voronoi)

• M-step: recomputation of centroids (based on the new assignment)
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EM for Gaussian Mixtures
• randomize k means, covariances, mixing coefficients

• repeat the two steps until convergence

• E-step: evaluate the responsibilities using current parameters

• M-step: reestimate parameters using current responsibilities
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EM for Gaussian Mixtures
• randomize k means, covariances, mixing coefficients

• repeat the two steps until convergence

• E-step: evaluate the responsibilities using current parameters

• M-step: reestimate parameters using current responsibilities
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EM for Gaussian Mixtures
• randomize k means, covariances, mixing coefficients

• repeat the two steps until convergence

• E-step: evaluate the responsibilities using current parameters

• M-step: reestimate parameters using current responsibilities
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EM for Gaussian Mixtures
• randomize k means, covariances, mixing coefficients

• repeat the two steps until convergence

• E-step: evaluate the responsibilities using current parameters

• M-step: reestimate parameters using current responsibilities
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EM for Gaussian Mixtures
• randomize k means, covariances, mixing coefficients

• repeat the two steps until convergence

• E-step: evaluate the responsibilities using current parameters

• M-step: reestimate parameters using current responsibilities
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EM for Gaussian Mixtures
• randomize k means, covariances, mixing coefficients

• repeat the two steps until convergence

• E-step: evaluate the responsibilities using current parameters

• M-step: reestimate parameters using current responsibilities
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EM for Gaussian Mixtures
• randomize k means, covariances, mixing coefficients

• repeat the two steps until convergence

• E-step: evaluate the responsibilities using current parameters

• M-step: reestimate parameters using current responsibilities
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EM for Gaussian Mixtures
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Convergence

• EM converges much slower than k-means

• can’t use “assignment doesn’t change” for convergence

• use log likelihood of the data

• stop if increase in log likelihood smaller than threshold

• or a maximum # of iterations has reached
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EM: pros and cons (vs. k-means)

• EM: pros

• doesn’t need the data to be spherical

• doesn’t need the data to be well-separated

• doesn’t need the clusters to be in similar sizes/volumes

• EM: cons

• converges much slower than k-means

• per-iteration computation also slower

• (to speedup EM): use k-means to burn-in

• (same as k-means) local minimum!
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k-means is a special case of EM

• k-means is “hard” EM

• covariance matrix is diagonal -- i.e., spherical

• diagonal variances are approaching 0
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CS 562 - EM

Why EM increases p(data) iteratively?
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CS 562 - EM

Why EM increases p(data) iteratively?
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CS 562 - EM

How to maximize the auxiliary?
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CS 562 - EM

Dimensionality Reduction
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CS 562 - EM

Dimensionality Reduction
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CS 562 - EM

Dimensionality Reduction
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CS 562 - EM

Algorithms

• linear methods

• PCA - principle ...

• ICA - independent ...

• CCA - canonical ...

• MDS - multidim. scaling

• LEM - laplacian eignen maps

• LDA1 - linear discriminant analysis

• LDA2 - latent dirichlet allocation

42

• non-linear methods

• kernelized PCA

• isomap

• LLE - locally linear embedding

• SDE - semidefinite embedding

all are spectral methods! -- i.e., using eigenvalues



CS 562 - EM

PCA

• greedily find d orthogonal axes onto which 
the variance under projection is maximal

• the “max variance subspace” formulation

• 1st PC: direction of greatest variability in data

• 2nd PC: the next unrelated max-var direction

• remove all variance in 1st PC, redo max-var

• another equivalent formulation: 
“minimum reconstruction error”

• find orthogonal vectors onto which the 
projection yields min MSE reconstruction
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CS 562 - EM

PCA optimization: max-var proj.
• first translate data to zero mean

• compute co-variance matrix

• find top d eigenvalues and eigenvectors of covar matrix

• project data onto those eigenvectors
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CS 562 - EM

PCA for k-means and whitening

• rescaling to zero mean and unit variance as preprocessing

• we did that in perceptron HW1/2 also!

• but PCA can do more: whitening (spherication)
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CS 562 - EM

Eigendigits
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CS 562 - EM

Eigenfaces
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CS 562 - EM

Eigenfaces
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CS 562 - EM

Eigenfaces
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CS 562 - EM

LDA: Fisher’s linear discriminant analysis

• PCA finds a small representation of the data

• LDA performs dimensionality reduction while preserving 
as much the given class discrimination info as possible

• it’s a linear classification method (like perceptron)

• find a scalar projection that maximizes separability

• max separation b/w projected means

• min variance within each projected class
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CS 562 - EM

PCA vs LDA
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CS 562 - EM

Linear vs. non-Linear

50

LLE or isomap



CS 562 - EM

Linear vs. non-Linear
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CS 562 - EM

Linear vs. non-Linear
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CS 562 - EM

Linear vs. non-Linear
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CS 562 - EM

Linear vs. non-Linear
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CS 562 - EM

Linear vs. non-Linear
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CS 562 - EM

PCA vs Kernel PCA
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CS 562 - EM

Brain does non-linear dim. redux
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