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Structured Prediction

• binary classification: output is binary

• multiclass classification: output is a number (small # of classes)

• structured classification: output is a structure (seq., tree, graph)

• part-of-speech tagging, parsing, summarization, translation

• exponentially many classes: search (inference) efficiency is crucial!2
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Discriminative Models

Generic Perceptron
• online-learning: one example at a time

• learning by doing

• find the best output under the current weights

• update weights at mistakes
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Perceptron: from binary to structured
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Brief History of Perceptron

1959
Rosenblatt
invention

1962
Novikoff

proof

1969*
Minsky/Papert
book killed it

1999
Freund/Schapire

voted/avg: revived

2002
Collins

structured

2003
Crammer/Singer

MIRA

1997
Cortes/Vapnik

SVM

2006
Singer group
aggressive

2005*
McDonald/Crammer/Pereira

structured MIRA

DEAD

*mentioned in lectures but optional
(others papers all covered in detail)

online approx.

max margin
+max margin

+kernels
+soft-margin

conservative updates

inseparable case

2007--2010*
Singer group

Pegasos

subgradient descent

minibatch

minibatch

batch

online

AT&T Research ex-AT&T and students



Multiclass Classification: Review
• one weight vector (“prototype”) for each class: 

• multiclass decision rule:
  (best agreement w/ prototype) 

ŷ = argmax

z21...M
w

(z) · x

Q1: what about 2-class?

Q2: do we still need 
augmented space?



Multiclass Perceptron: Review
• on an error, penalize the weight for the wrong 

class, and reward the weight for the true class



Convergence of Multiclass
update rule:
w w +��(x, y, z)

separability:
9u, s.t. 8(x, y) 2 D, z 6= y

u ·��(x, y, z) � �



Discriminative Models

Example:  POS  Tagging
• gold-standard:    DT   NN   VBD  DT   NN

•                       the   man   bit    the    dog

• current output:  DT   NN   NN   DT   NN

•                       the   man   bit    the    dog

• assume only two feature classes

• tag bigrams          ti-1    ti

• word/tag pairs            wi

• weights ++:  (NN, VBD)    (VBD, DT)     (VBD→bit)

• weights --:  (NN, NN)     (NN, DT)      (NN→bit)
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Discriminative Models

←

Structured Perceptron
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Inference: Dynamic Programming
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CS 562 - Lec 5-6:  Probs & WFSTs

Viterbi for argmax
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how about unigram?



CS 562 - Lec 5-6:  Probs & WFSTs

Python implementation
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Q: what about top-down 
recursive + memoization?



CS 562 - Lec 5-6:  Probs & WFSTs

Trigram HMM
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time complexity: O(nT3)
in general: O(nTg) for g-gram



Discriminative Models

Efficiency vs. Expressiveness

• the inference (argmax) must be efficient

• either the search space GEN(x) is small, or factored

• features must be local to y (but can be global to x)

• e.g. bigram tagger, but look at all input words (cf. CRFs)
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Discriminative Models

Averaged Perceptron

• more stable and accurate results

• approximation of voted perceptron 
(Freund & Schapire, 1999)
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Discriminative Models

Averaging Tricks

• Daume (2006, PhD thesis)
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Discriminative Models

Do we need smoothing?

• smoothing is much easier in discriminative models

• just make sure for each feature template, its subset 
templates are also included

• e.g., to include (t0 w0 w-1) you must also include

• (t0 w0) (t0 w-1) (w0 w-1)

• and maybe also (t0 t-1) because t is less sparse than w
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Geometry of Convergence Proof pt 1
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Geometry of Convergence Proof pt 2
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Experiments



Discriminative Models

Experiments: Tagging
• (almost) identical features from (Ratnaparkhi, 1996)

• trigram tagger: current tag ti, previous tags ti-1, ti-2 

• current word wi and its spelling features

• surrounding words wi-1 wi+1 wi-2 wi+2..
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Discriminative Models

Experiments: NP Chunking

• B-I-O scheme

• features:

• unigram model

• surrounding words 
and POS tags
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Rockwell International Corp. 
       B               I              I
's Tulsa unit said it signed 
B    I        I      O  B    O       
a tentative agreement ...
B      I              I



Discriminative Models

Experiments: NP Chunking
• results

• (Sha and Pereira, 2003) trigram tagger

• voted perceptron: 94.09% vs. CRF: 94.38%
24



Structured Perceptron (Collins 02)

• challenge: search efficiency (exponentially many classes)

• often use dynamic programming (DP)

• but still too slow for repeated use, e.g. parsing is O(n3)

• and can’t use non-local features in DP
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Learning w/ Inexact Inference (Huang et al 2012)

• routine use of inexact inference in NLP (e.g. beam search)

• how does structured perceptron work with inexact search?

• so far most structured learning theory assume exact search

• would search errors break these learning properties?

• if so how to modify learning to accommodate inexact search?
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Liang Huang (CUNY)

Idea: Search-Error-Robust Model

• train a “search-specific” or “search-error-robust” model

• we assume the same “search box” in training and testing

• model should “live with” search errors from search box

• exact search => convergence;  greedy => no convergence

• how can we make perceptron converge w/ greedy search?
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Convergence with Exact Search
• linear classification: converges iff. data is separable

• structured: converges iff. data separable & search exact

• there is an oracle vector that correctly labels all examples

• one vs the rest (correct label better than all incorrect labels)

• theorem: if separable, then # of updates ≤ R2 / δ2     R: diameter
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Convergence with Exact Search
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No Convergence w/ Greedy Search
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Early update (Collins/Roark 2004) to rescue
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Why?

• why does inexact search break convergence property?

• what is required for convergence? exactness?

• why does early update (Collins/Roark 04) work?

• it works well in practice and is now a standard method

• but there has been no theoretical justification

• we answer these Qs by inspecting the convergence proof
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Geometry of Convergence Proof pt 1
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Geometry of Convergence Proof pt 2
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Violation is All we need!
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y

Violation-Fixing Perceptron
• if we guarantee violation, we don’t care about exactness!

• violation is good b/c we can at least fix a mistake
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What if can’t guarantee violation

• this is why perceptron doesn’t work well w/ inexact search

• because not every update is guaranteed to be a violation

• thus the proof breaks; no convergence guarantee

• example: beam or greedy search

• the model might prefer the correct label (if exact search)

• but the search prunes it away

• such a non-violation update is “bad”
because it doesn’t fix any mistake

• the new model still misguides the search
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Standard Update: No Guarantee
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Early Update: Guarantees Violation
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Experiments
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1) Trigram Part of Speech Tagging
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• standard update performs terribly with greedy search (b=1)

• because search error is severe at b=1: half updates are bad!

• no real difference beyond b=2: search error becomes rare

% of bad (non-violation)
standard updates 53% 10% 1.5% 0.5%



Max-Violation Reduces Training Time
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• max-violation peaks at b=2, greatly reduced training time

• early update achieves the highest dev/test accuracy

• comparable to best published accuracy (Shen et al ‘07)

• future work: add non-local features to tagging

beam iter time test

standard

early

max-violation

- 6 162m 97.28

4 6 37m 97.27

2 3 26m 97.27

Shen et al (2007)Shen et al (2007)Shen et al (2007)Shen et al (2007) 97.33



2) Incremental Dependency Parsing
• DP incremental dependency parser (Huang and Sagae 2010)

• non-local history-based features rule out exact DP

• we use beam search, and search error is severe

• baseline: early update. extremely slow: 38 iterations
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Max-violation converges much faster

• early update:   38 iterations, 15.4 hours  (92.24)

• max-violation: 10 iterations,  4.6 hours   (92.25)
                     12 iterations,  5.5 hours   (92.32)
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Comparison b/w tagging & parsing
• search error is much more severe in parsing than in tagging

• standard update is OK in tagging except greedy search (b=1)

• but performs horribly in parsing even at large beam (b=8)

• because ~50% of standard updates are bad (non-violation)!
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