
Machine Learning
CUNY Graduate Center, Spring 2013

http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

Professor Liang Huang
huang@cs.qc.cuny.edu

Lectures 9-10: Structured Learning

(structured perceptron, HMM, learning w/ inexact search)

http://vision.cs.qc.cuny.edu/huang/python-f2012/
http://vision.cs.qc.cuny.edu/huang/python-f2012/
mailto:lhuang@isi.edu
mailto:lhuang@isi.edu

Structured Prediction

• binary classification: output is binary

• multiclass classification: output is a number (small # of classes)

• structured classification: output is a structure (seq., tree, graph)

• part-of-speech tagging, parsing, summarization, translation

• exponentially many classes: search (inference) efficiency is crucial!2

x

y=-1y=+1

x the man bit the dog

DT NN VBD DT NN

x

y

the man bit the dog x

y

S

NP

DT

the

NN

man

VP

VB

bit

NP

DT

the

NN

dog

the man bit the dog x

那 人 咬 了 狗 y

Discriminative Models

Generic Perceptron
• online-learning: one example at a time

• learning by doing

• find the best output under the current weights

• update weights at mistakes

3

inferencexi

update weights
zi

yi

w

Perceptron: from binary to structured

4

x

y=-1y=+1

x

y

update weights

if y ≠ z

w

x zexact
inference

trivial

2 classes

binary classification

the man bit the dog

DT NN VBD DT NN

x

y y

update weights

if y ≠ z

w

x zexact
inference

hardexponential
of classesstructured classification

y

update weights

if y ≠ z

w

x zexact
inference

easy

constant
of classes

multiclass classification

Brief History of Perceptron

1959
Rosenblatt
invention

1962
Novikoff

proof

1969*
Minsky/Papert
book killed it

1999
Freund/Schapire

voted/avg: revived

2002
Collins

structured

2003
Crammer/Singer

MIRA

1997
Cortes/Vapnik

SVM

2006
Singer group
aggressive

2005*
McDonald/Crammer/Pereira

structured MIRA

DEAD

*mentioned in lectures but optional
(others papers all covered in detail)

online approx.

max margin
+max margin

+kernels
+soft-margin

conservative updates

inseparable case

2007--2010*
Singer group

Pegasos

subgradient descent

minibatch

minibatch

batch

online

AT&T Research ex-AT&T and students

Multiclass Classification: Review
• one weight vector (“prototype”) for each class:

• multiclass decision rule:
 (best agreement w/ prototype)

ŷ = argmax

z21...M
w

(z) · x

Q1: what about 2-class?

Q2: do we still need
augmented space?

Multiclass Perceptron: Review
• on an error, penalize the weight for the wrong

class, and reward the weight for the true class

Convergence of Multiclass
update rule:
w w +��(x, y, z)

separability:
9u, s.t. 8(x, y) 2 D, z 6= y

u ·��(x, y, z) � �

Discriminative Models

Example: POS Tagging
• gold-standard: DT NN VBD DT NN

• the man bit the dog

• current output: DT NN NN DT NN

• the man bit the dog

• assume only two feature classes

• tag bigrams ti-1 ti

• word/tag pairs wi

• weights ++: (NN, VBD) (VBD, DT) (VBD→bit)

• weights --: (NN, NN) (NN, DT) (NN→bit)

9

x

x

y

z

Φ(x, z)

Φ(x, y)

Discriminative Models

←

Structured Perceptron

10

inferencexi

update weights
zi

yi

w

Inference: Dynamic Programming

11

y

update weights

if y ≠ z

w

x zexact
inference

CS 562 - Lec 5-6: Probs & WFSTs

Viterbi for argmax

12

how about unigram?

CS 562 - Lec 5-6: Probs & WFSTs

Python implementation

13

Q: what about top-down
recursive + memoization?

CS 562 - Lec 5-6: Probs & WFSTs

Trigram HMM

14

time complexity: O(nT3)
in general: O(nTg) for g-gram

Discriminative Models

Efficiency vs. Expressiveness

• the inference (argmax) must be efficient

• either the search space GEN(x) is small, or factored

• features must be local to y (but can be global to x)

• e.g. bigram tagger, but look at all input words (cf. CRFs)

15

inferencexi

update weights
zi

yi

w

x

y

argmax
y∈GEN(x)

Discriminative Models

Averaged Perceptron

• more stable and accurate results

• approximation of voted perceptron
(Freund & Schapire, 1999)

16

j

←

0

jj + 1

=

∑

j

Wj

Discriminative Models

Averaging Tricks

• Daume (2006, PhD thesis)

17

Discriminative Models

Do we need smoothing?

• smoothing is much easier in discriminative models

• just make sure for each feature template, its subset
templates are also included

• e.g., to include (t0 w0 w-1) you must also include

• (t0 w0) (t0 w-1) (w0 w-1)

• and maybe also (t0 t-1) because t is less sparse than w

18

x

y

Geometry of Convergence Proof pt 1

19

y

update weights

if y ≠ z

w

x zexact
inference

y

w
(k

)

w
(k
+
1)

correct
label

�
�
(
x

,

y

,

z)
update

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

perceptron update:

z
exact
1-best

(by induction)

δ
separation

unit oracle
vector u

margin� �

(part 1: upperbound)

<
90˚

Geometry of Convergence Proof pt 2

20

y

update weights

if y ≠ z

w

x zexact
inference

y

w
(k

)

w
(k
+
1)

violation: incorrect label scored higher

parts 1+2 => update bounds:

correct
label

�
�
(
x

,

y

,

z)
update

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

perceptron update:

violation

by induction:

R: max diameter

z
exact
1-best

diameter
 R2

k R2/�2
(part 2: upperbound)

Experiments

Discriminative Models

Experiments: Tagging
• (almost) identical features from (Ratnaparkhi, 1996)

• trigram tagger: current tag ti, previous tags ti-1, ti-2

• current word wi and its spelling features

• surrounding words wi-1 wi+1 wi-2 wi+2..

22

Discriminative Models

Experiments: NP Chunking

• B-I-O scheme

• features:

• unigram model

• surrounding words
and POS tags

23

Rockwell International Corp.
 B I I
's Tulsa unit said it signed
B I I O B O
a tentative agreement ...
B I I

Discriminative Models

Experiments: NP Chunking
• results

• (Sha and Pereira, 2003) trigram tagger

• voted perceptron: 94.09% vs. CRF: 94.38%
24

Structured Perceptron (Collins 02)

• challenge: search efficiency (exponentially many classes)

• often use dynamic programming (DP)

• but still too slow for repeated use, e.g. parsing is O(n3)

• and can’t use non-local features in DP
25

the man bit the dog

DT NN VBD DT NN

x

y y

update weights

if y ≠ z

w

x zexact
inference

x

y=-1y=+1

x

y

update weights

if y ≠ z

w

x zexact
inference

trivial

hard

constant
of classes

exponential
of classes

binary classification

structured classification

Learning w/ Inexact Inference (Huang et al 2012)

• routine use of inexact inference in NLP (e.g. beam search)

• how does structured perceptron work with inexact search?

• so far most structured learning theory assume exact search

• would search errors break these learning properties?

• if so how to modify learning to accommodate inexact search?
26

the man bit the dog

DT NN VBD DT NN

x

y

x zinexact
inference

y

update weights

if y ≠ z

w

does it still work???

beam searchgreedy search

Liang Huang (CUNY)

Idea: Search-Error-Robust Model

• train a “search-specific” or “search-error-robust” model

• we assume the same “search box” in training and testing

• model should “live with” search errors from search box

• exact search => convergence; greedy => no convergence

• how can we make perceptron converge w/ greedy search?
27

x zinexact
inference

y

update weights

if y ≠ z

w

x zinexact
inference

training

testing
w

Convergence with Exact Search
• linear classification: converges iff. data is separable

• structured: converges iff. data separable & search exact

• there is an oracle vector that correctly labels all examples

• one vs the rest (correct label better than all incorrect labels)

• theorem: if separable, then # of updates ≤ R2 / δ2 R: diameter

28

y=+1y=-1

y100

z ≠ y100

x100

x100 x111

x2000

x3012

R: diameter
R: diameter

δδ

Rosenblatt => Collins
 1957 2002

Convergence with Exact Search

29

w
(k

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

standard perceptron
converges with exact

search

correct
label

current
model

w(k+1)

up
dat

e

No Convergence w/ Greedy Search

30

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V NN

V V

w
(k)

w
(k+

1)

standard perceptron
does not converge
with greedy search

correct
label

up
dat

e

current
model

new
model

Early update (Collins/Roark 2004) to rescue

31

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V N

w
(k)

w
(k+

1)

�
�
(
x

,

y

,

z)w (k+1)

w
(k)

stop and update at the first mistake

V

N

standard perceptron
does not converge
with greedy search

correct
label

current
model

new
model

up
dat

e

new
model

Why?

• why does inexact search break convergence property?

• what is required for convergence? exactness?

• why does early update (Collins/Roark 04) work?

• it works well in practice and is now a standard method

• but there has been no theoretical justification

• we answer these Qs by inspecting the convergence proof
32

V

V N

N V

N

V V �
�
(
x

,

y

,

z)w (k+1)

w
(k)

Geometry of Convergence Proof pt 1

33

y

update weights

if y ≠ z

w

x zexact
inference

y

w
(k

)

w
(k
+
1)

correct
label

�
�
(
x

,

y

,

z)
update

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

perceptron update:

z
exact
1-best

(by induction)

δ
separation

unit oracle
vector u

margin� �

(part 1: upperbound)

<
90˚

Geometry of Convergence Proof pt 2

34

y

update weights

if y ≠ z

w

x zexact
inference

y

w
(k

)

w
(k
+
1)

violation: incorrect label scored higher

parts 1+2 => update bounds:

correct
label

�
�
(
x

,

y

,

z)
update

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

perceptron update:

violation

by induction:

R: max diameter

z
exact
1-best

diameter
 R2

k R2/�2
(part 2: upperbound)

<
90˚

Violation is All we need!

35

y

violation: incorrect label scored higher

correct
label

�
�
(
x

,

y

,

z)
update

• exact search is not really required by the proof

• rather, it is only used to ensure violation!

w
(k

)

w
(k
+
1)

cu
rr

en
t

m
od

el

update

ne
w

m

od
el

R: max diameter

all
 violations

z
exact
1-best

the proof only uses 3 facts:

1. separation (margin)
2. diameter (always finite)
3. violation (but no need for exact)

y

Violation-Fixing Perceptron
• if we guarantee violation, we don’t care about exactness!

• violation is good b/c we can at least fix a mistake

36

y

update weights

if y ≠ z

w

x zexact
inference

y

update weights

if y’ ≠ z

w

x zfind
violation

y’

same mistake bound as before!

standard perceptron violation-fixing perceptron

all
 violations

all

po
ssi

ble

What if can’t guarantee violation

• this is why perceptron doesn’t work well w/ inexact search

• because not every update is guaranteed to be a violation

• thus the proof breaks; no convergence guarantee

• example: beam or greedy search

• the model might prefer the correct label (if exact search)

• but the search prunes it away

• such a non-violation update is “bad”
because it doesn’t fix any mistake

• the new model still misguides the search

37

beam

bad

update

current
model

Standard Update: No Guarantee

38

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V NN

V V

w
(k)

w
(k+

1)

standard update
doesn’t converge

b/c it doesn’t
guarantee violation

correct label scores higher.
non-violation: bad update!

correct
label

Early Update: Guarantees Violation

39

w
(k)

�
�
(x
,

y

,

z

)

V

V N

N V

N

V V training example
time flies
N V

output space
{N,V} x {N, V}

N VV

V NN

V V

w
(k)

w
(k+

1)

�
�
(
x

,

y

,

z)w (k+1)

w
(k)

early update: incorrect prefix
scores higher: a violation!

V

N

standard update
doesn’t converge

b/c it doesn’t
guarantee violation

correct
label

Experiments

the man bit the dog

DT NN VBD DT NN

x

y

the man bit the dog x

y

bit

man

the

dog

the

trigram part-of-speech tagging incremental dependency parsing

local features only,
exact search tractable

(proof of concept)

non-local features,
exact search intractable

(real impact)

1) Trigram Part of Speech Tagging

41

• standard update performs terribly with greedy search (b=1)

• because search error is severe at b=1: half updates are bad!

• no real difference beyond b=2: search error becomes rare

% of bad (non-violation)
standard updates 53% 10% 1.5% 0.5%

Max-Violation Reduces Training Time

42

• max-violation peaks at b=2, greatly reduced training time

• early update achieves the highest dev/test accuracy

• comparable to best published accuracy (Shen et al ‘07)

• future work: add non-local features to tagging

beam iter time test

standard

early

max-violation

- 6 162m 97.28

4 6 37m 97.27

2 3 26m 97.27

Shen et al (2007)Shen et al (2007)Shen et al (2007)Shen et al (2007) 97.33

2) Incremental Dependency Parsing
• DP incremental dependency parser (Huang and Sagae 2010)

• non-local history-based features rule out exact DP

• we use beam search, and search error is severe

• baseline: early update. extremely slow: 38 iterations

43

Max-violation converges much faster

• early update: 38 iterations, 15.4 hours (92.24)

• max-violation: 10 iterations, 4.6 hours (92.25)
 12 iterations, 5.5 hours (92.32)

44

Comparison b/w tagging & parsing
• search error is much more severe in parsing than in tagging

• standard update is OK in tagging except greedy search (b=1)

• but performs horribly in parsing even at large beam (b=8)

• because ~50% of standard updates are bad (non-violation)!

45

test

standard

early

max-
violation

79.1

92.1

92.2

% of bad
standard updates

take-home message:
our methods are more helpful
for harder search problems!

Annotated Bibliography

• Collins, 2002. Discriminative Training for Hidden Markov
Models. In Proceedings of EMNLP. (“structured perceptron”)

• Collins and Roark, 2004. Perceptron Algorithm for
Incremental Parsing. In Proceedings of ACL (“early-update”)

• Daume and Marcu, 2005. Learning as Search Optimization. In
Proceedings of ICML (“LaSO”).

• Daume, 2006. PhD Thesis. (fast “averaging” trick)

• Huang, Phayong, and Guo, 2012. Structured Perceptron with
Inexact Search. In Proceedings of NAACL. (“violation-fixing”
framework and proofs, “max-violation”)

46

