Machine Learning

CUNY Graduate Center, Spring 2013

Lectures 9-10: Structured Learning

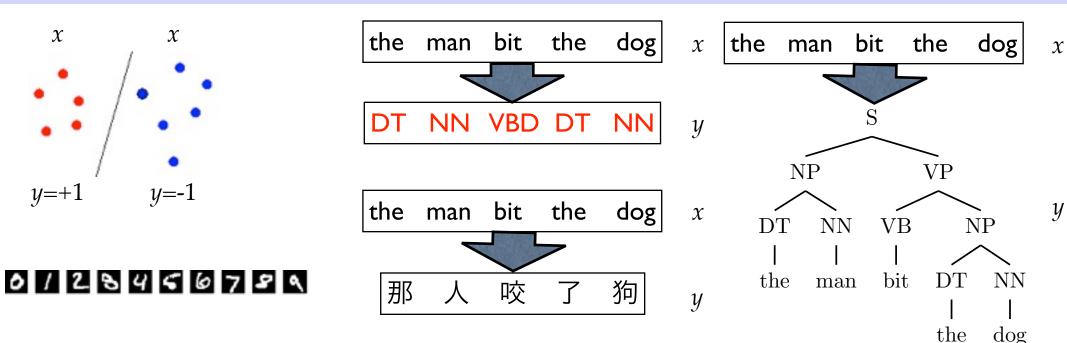
(structured perceptron, HMM, learning w/ inexact search)

Professor Liang Huang

huang@cs.qc.cuny.edu

http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

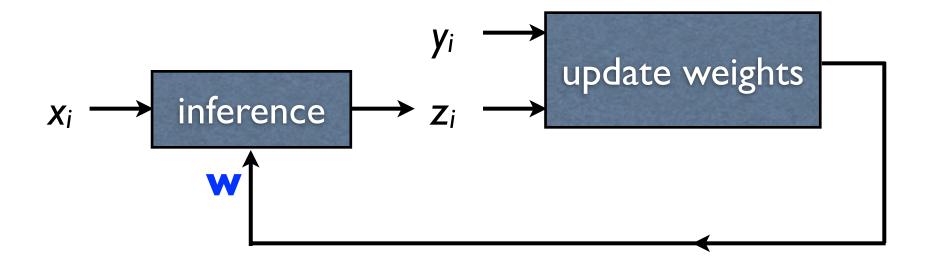
Structured Prediction



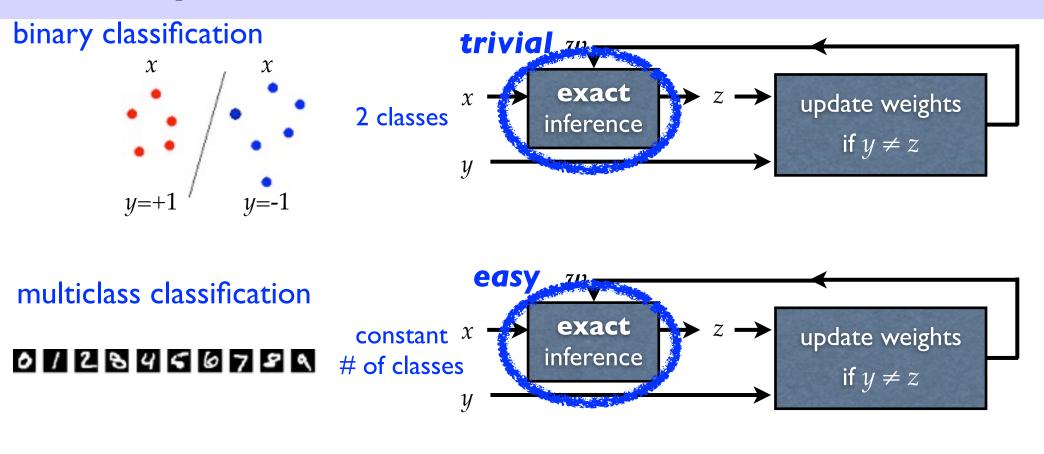
- binary classification: output is binary
- multiclass classification: output is a number (small # of classes)
- structured classification: output is a structure (seq., tree, graph)
 - part-of-speech tagging, parsing, summarization, translation
 - exponentially many classes: search (inference) efficiency is crucial!₂

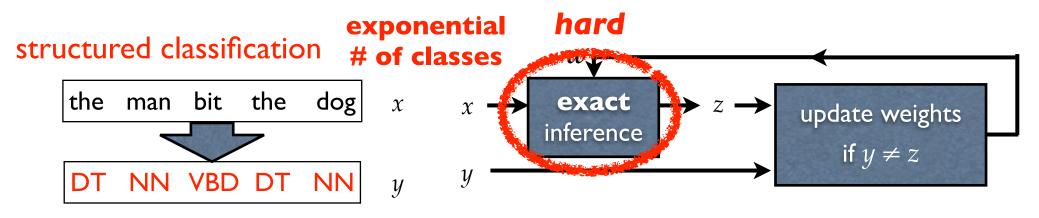
Generic Perceptron

- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes

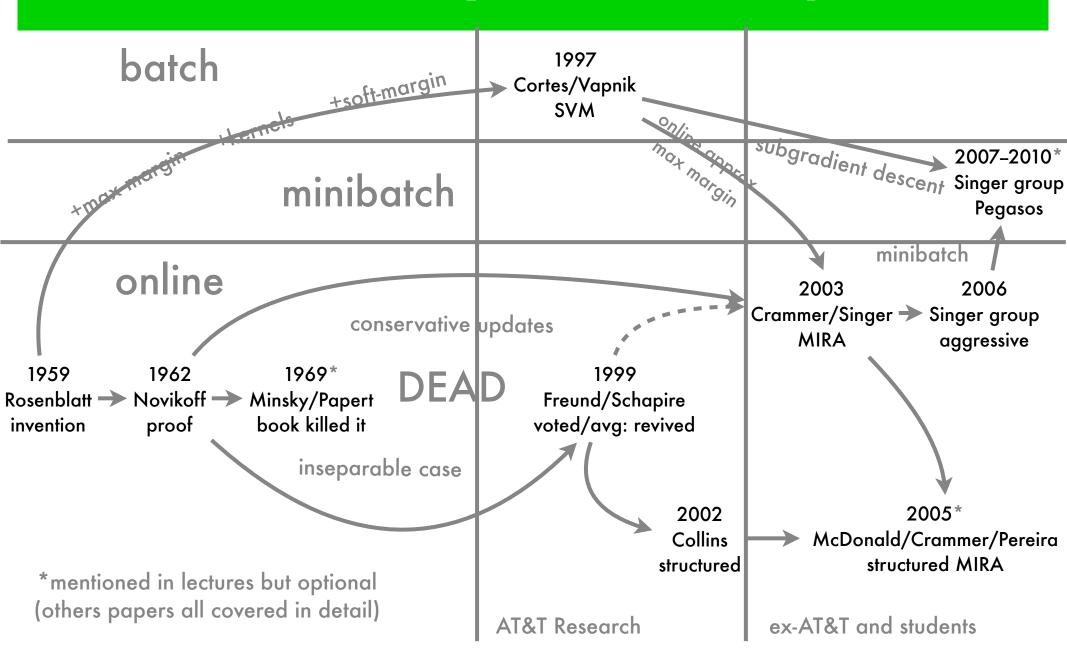


Perceptron: from binary to structured





Brief History of Perceptron



Multiclass Classification: Review

- one weight vector ("prototype") for each class: $\mathbf{w} = (\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(M)}),$
- multiclass decision rule: $\hat{y} = \operatorname*{argmax}_{z \in 1...M} w^{(z)} \cdot x$ (best agreement w/ prototype) $z \in 1...M$

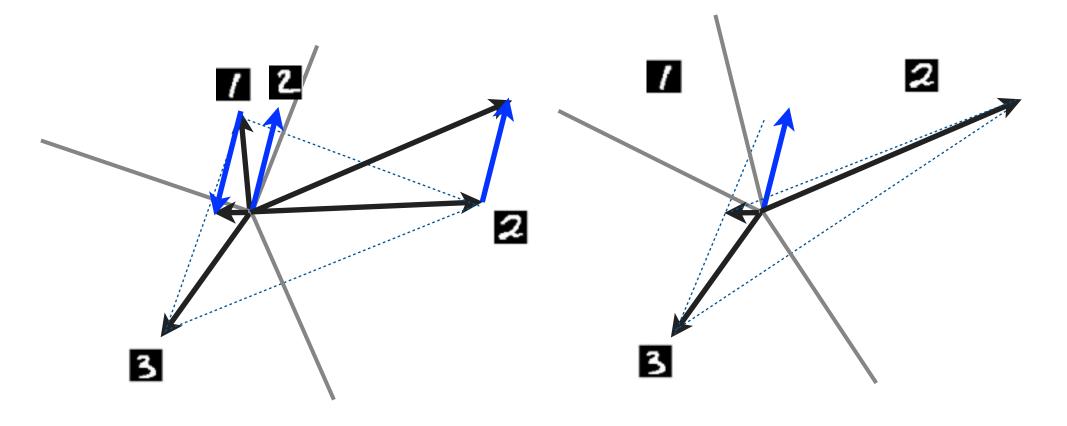
2

Q2: do we still need augmented space?

0/28456789

Multiclass Perceptron: Review

• on an error, penalize the weight for the wrong class, and reward the weight for the true class



Convergence of Multiclass

0128456789

$$\mathbf{w} = (\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(M)}),$$

where $\mathbf{w}^{(i)}$ is used to calculate the functional margin for training example with label *i*;

for a given training example \mathbf{x} and a label y, we define feature map function $\boldsymbol{\Phi}$ as

$$\Phi(\mathbf{x}, y) = (\mathbf{0}^{(1)}, \dots, \mathbf{0}^{(y-1)}, \mathbf{x}, \mathbf{0}^{(y+1)}, \dots, \mathbf{0}^{(M)}).$$

such that $\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x}, y) = \mathbf{w}^{(y)} \cdot \mathbf{x}$.

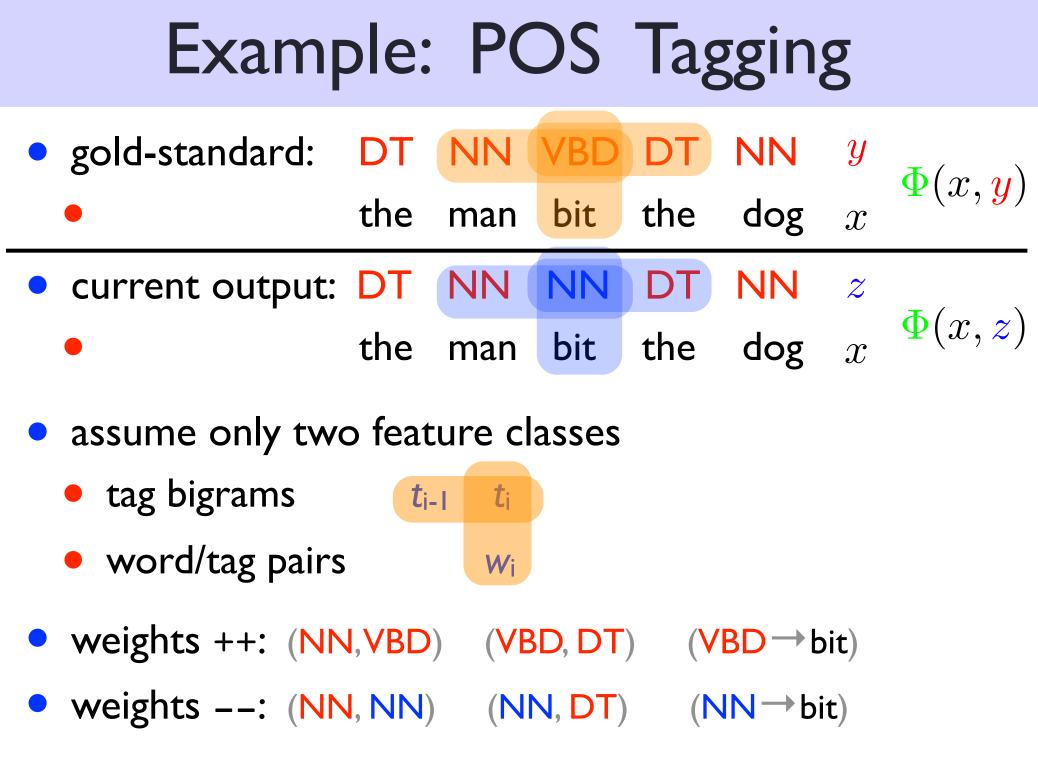
We also define that, with a given training example x, the difference between two feature vectors for labels y and z as $\Delta \Phi$:

 $\Delta \mathbf{\Phi}(\mathbf{x}, y, z) = \mathbf{\Phi}(\mathbf{x}, y) - \mathbf{\Phi}(\mathbf{x}, z).$

update rule:

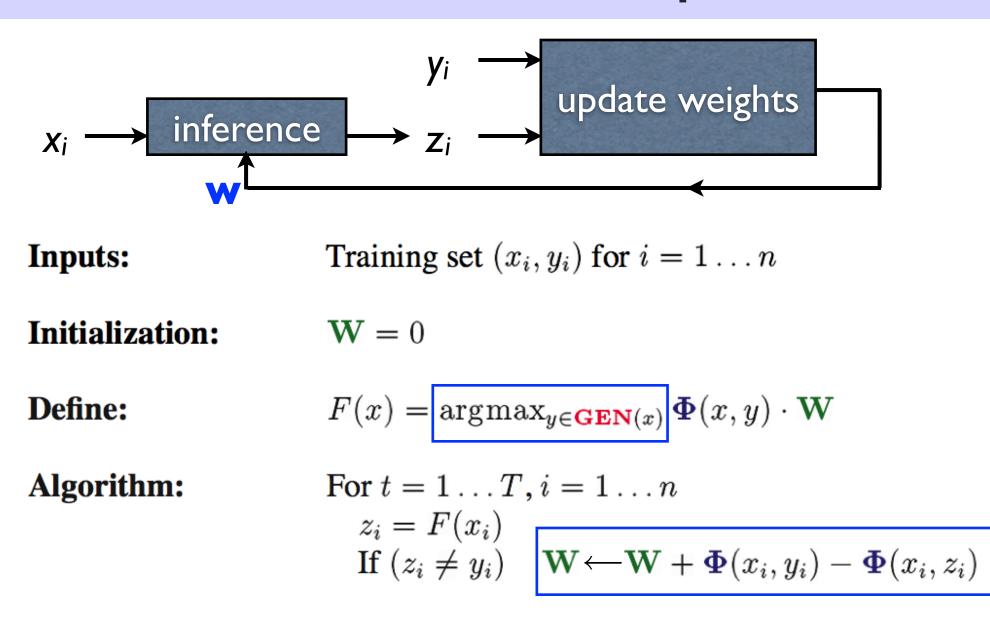
 $\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{\Phi}(\mathbf{x}, y, z)$

$$\exists \mathbf{u}, \text{ s.t. } \forall (\mathbf{x}, y) \in D, z \neq y$$
$$\mathbf{u} \cdot \Delta \mathbf{\Phi}(\mathbf{x}, y, z) \ge \delta$$



Discriminative Models

Structured Perceptron

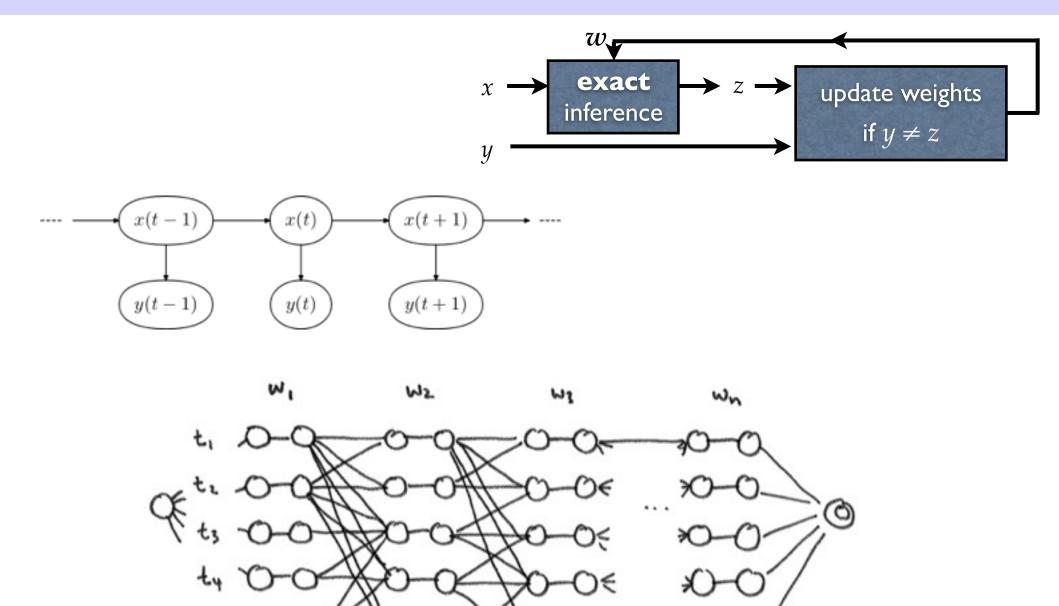


Output:

Parameters W

Discriminative Models

Inference: Dynamic Programming



Viterbi for argmax

Viterbi search for argmax P(t...t). P(w...w)t...t): t ... t for j = 1 + mQ[1,j] = P(t_j) · P(w, 1+j) Q[i,j] = cost of shortest path ending. with word i getting assigned tag j. for i= 2 to n for j= 1 to m Q[i,j] = 0 best-pred [i,j] . 0 best-score = - 00 for k= 1 to m r = P(t; ltx). P(wiltj). Q[i-1, K] if r > best-score best-score = r sets back pointers best-pred [i,j] = K Q[i,j] = r final-best = 0 final-score = - 00 how about unigram? for j= 1 to m if Q[n, j] > final-store final-score = Q[n,j] final-best = j print thinkl-best prints best tays in reverse current = final-best for i = n-1 down to 1 order

current = best-prev [it1, current]

print tourrent

12

Python implementation

Complete this Python code implementing the Viterbi algorithm for part-of-speech tagging. It should print a list of word/tag pairs, e.g. [('a', 'D'), ('can', 'N'), ('can', 'A'), ('can', 'V'), ('a', 'D'), ('can', 'N')].

```
from collections import defaultdict
                                                                  Q: what about top-down
2
   best = defaultdict(lambda : defaultdict(float))
3
                                                                 recursive + memoization?
   best[0]["<s>"] = 1
   back = defaultdict(dict)
5
6
   words = "<s> a can can can a can </s>".split()
7
8
   tags = {"a": ["D"], "can": ["N", "A", "V"], "</s>": ["</s>"]}
                                                                   # possible tags for each word
9
   ptag = {"D": {"N": 1}, "V": {"</s>": 0.5, "D":0.5}, ... }
                                                                   \# ptag[x][y] = p(y | x)
10
   pword = {"D": {"a": 0.5}, "N": {"can": 0.1}, ... }
                                                                    \# pword[x][w] = p(w | x)
11
12
   for i, word in enumerate(words[1:], 1):
                                                                    # i=1,2...; word=a,can,...
13
       for tag in tags[word]:
14
           for prev in best[i-1] :
15
               if tag in ptag[prev] :
16
                   score = best[i-1][prev]
                                             * ptag[prev][tag] * pword[tag][word]
17
                   if score > best[i][tag]:
                                                                        ω,
                                                                                W2
                                                                                         w
18
                       best[i][tag] = score
19
                       back[i][tag] = prev
20
                                                                                                         ര
21
   def backtrack(i, tag):
22
                                                                    ty O
       if i == 0:
23
           return []
^{24}
                                                                   tm O
       return backtrack(i-1, back[i][tag]) + [(words[i], tag)]
25
26
   print backtrack(len(words)-1, "</s>")[:-1]
27
                                                                                                      13
```

Trigram HMM

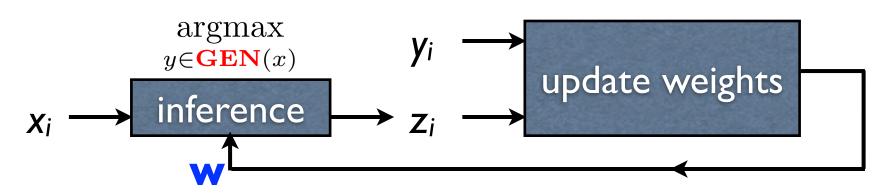
ω, WZ for j = 1 to m Q, [1, j] = ... for j= 1 to m for j2 = 1 to m Q[2, j, j2] = ... for i = 3 to n for j= 1 to m for jz = 1 to m time complexity: $O(nT^3)$ Q[i,j,j2] = 0 in general: $O(nT^g)$ for g-gram best-pred [i, j, j2] = 0 best-score = -00 for k = 1 to m $r = P(t_{j_2} | t_j) \cdot P(w_i | t_{j_2}) \cdot Q[i-1, K, j]$ if r> best-score ...

W4

titz

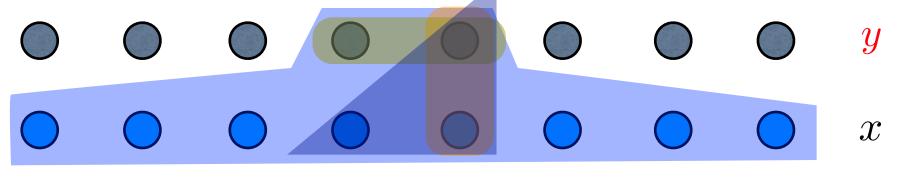
tzti

Efficiency vs. Expressiveness



• the inference (argmax) must be efficient

- either the search space GEN(x) is small, or factored
- features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)



Averaged Perceptron

Inputs:	Training set (x_i, y_i) for $i = 1 \dots n$
Initialization:	$\mathbf{W}_0 = 0$
Define:	$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{\Phi}(x, y) \cdot \mathbf{W}$
Algorithm:	For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$ If $(z_i \neq y_i) \mathbf{W}_{j+1} \longrightarrow \mathbf{W}_j + \mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z_i)$
Output:	Parameters $\mathbf{W} = \sum_{j} \mathbf{W}_{j}$

- more stable and accurate results
- approximation of voted perceptron (Freund & Schapire, 1999)

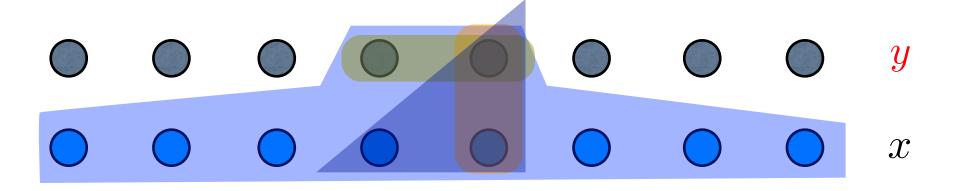
Averaging Tricks

Daume (2006, PhD thesis)

Algorithm <u>AVERAGED</u>STRUCTUREDPERCEPTRON $(x_{1:N}, y_{1:N}, I)$ 1: $\boldsymbol{w}_0 \leftarrow \langle 0, \ldots, 0 \rangle$ 2: $\boldsymbol{w}_a \leftarrow \langle 0, \ldots, 0 \rangle$ 3: $c \leftarrow 1$ 4: for i = 1 ... I do for $n = 1 \dots N$ do 5: $\hat{y}_n \leftarrow rg\max_{y \in \mathcal{Y}} \boldsymbol{w}_0^\top \Phi(x_n, y_n)$ 6: 7: if $y_n \neq \hat{y}_n$ then 8: $\boldsymbol{w}_0 \leftarrow \boldsymbol{w}_0 + \Phi(\boldsymbol{x}_n, \boldsymbol{y}_n) - \Phi(\boldsymbol{x}_n, \hat{\boldsymbol{y}}_n)$ 9: $\boldsymbol{w}_a \leftarrow \boldsymbol{w}_a + c\Phi(\boldsymbol{x}_n, \boldsymbol{y}_n) - c\Phi(\boldsymbol{x}_n, \hat{\boldsymbol{y}}_n)$ end if 10: $c \leftarrow c+1$ 11: end for 12: 13: end for 14: return $w_0 - w_a/c$

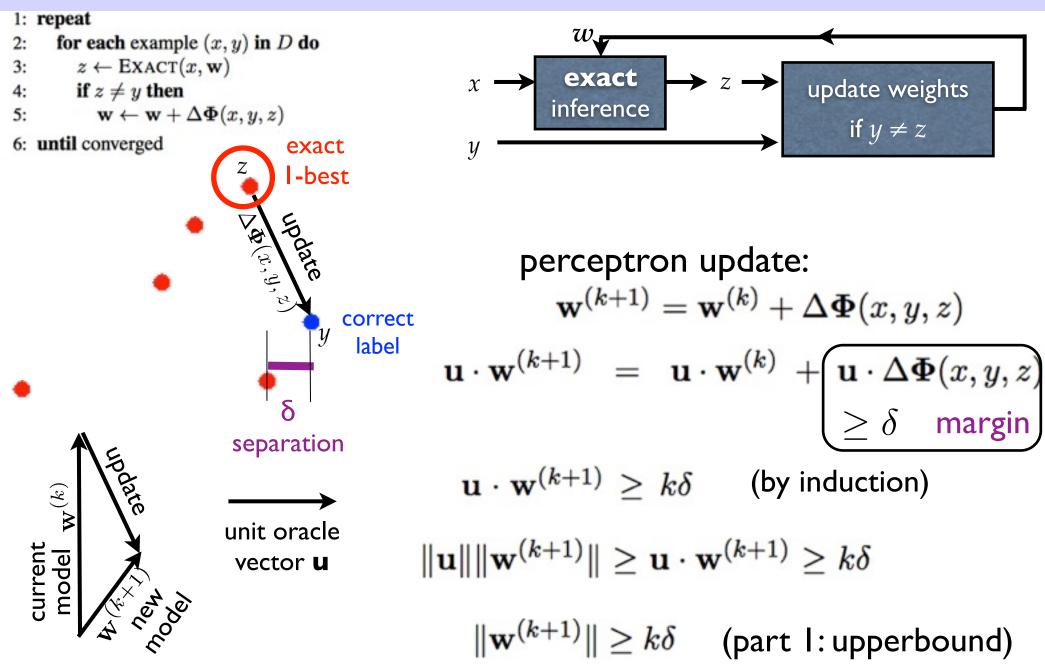
Figure 2.3: The averaged structured perceptron learning algorithm.

Do we need smoothing?

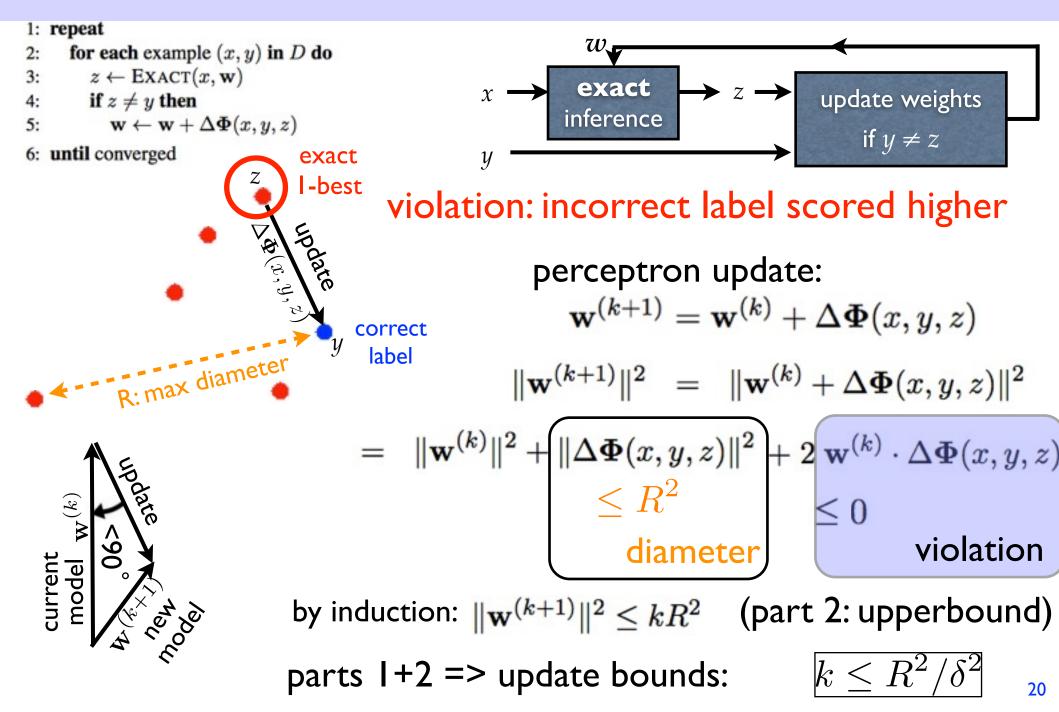


- smoothing is much easier in discriminative models
- just make sure for each feature template, its subset templates are also included
 - e.g., to include $(t_0 w_0 w_{-1})$ you must also include
 - $(t_0 w_0) (t_0 w_{-1}) (w_0 w_{-1})$
 - and maybe also $(t_0 t_{-1})$ because t is less sparse than w

Geometry of Convergence Proof pt I



Geometry of Convergence Proof pt 2



Experiments

Experiments: Tagging

- (almost) identical features from (Ratnaparkhi, 1996)
 - trigram tagger: current tag t_i, previous tags t_{i-1}, t_{i-2}
 - current word wi and its spelling features
 - surrounding words W_{i-1} W_{i+1} W_{i-2} W_{i+2}.

Method	Error rate/%	Numits
Perc, avg, cc=0	2.93	10
Perc, noavg, cc=0	3.68	20
Perc, avg, cc=5	3.03	6
Perc, noavg, cc=5	4.04	17
ME, cc= 0	3.4	100
ME, $cc=5$	3.28	200

Discriminative Models

Experiments: NP Chunking

•	B-I-	O s	cher	ne	
Rockwell International Corp.					
	В				Ι
('s Tulsa unit)said it)signed					
В	I	Ι	ΟΕ	3 ()
a te	entati	ve ag	jreem	nent	
B	I				

- features:
 - unigram model
 - surrounding words and POS tags

Current word	w_i	$\& t_i$
Previous word	w_{i-1}	$\& t_i$
Word two back	w_{i-2}	$\& t_i$
Next word	w_{i+1}	$\& t_i$
Word two ahead	w_{i+2}	$\& t_i$
Bigram features	w_{i-2}, w_{i-1}	$\& t_i$
	w_{i-1}, w_{i}	$\& t_i$
	w_{i}, w_{i+1}	$\& t_i$
	w_{i+1}, w_{i+2}	$\& t_i$
Current tag	p_i	$\& t_i$
Previous tag	p_{i-1}	$\& t_i$
Tag two back	p_{i-2}	$\& t_i$
Next tag	p_{i+1}	$\& t_i$
Tag two ahead	p_{i+2}	$\& t_i$
Bigram tag features	p_{i-2}, p_{i-1}	$\& t_i$
	p_{i-1} , p_i	$\& t_i$
	p_{i}, p_{i+1}	$\& t_i$
	p_{i+1}, p_{i+2}	$\& t_i$
Trigram tag features	p_{i-2}, p_{i-1}, p_i	$\& t_i$
	p_{i-1}, p_i, p_{i+1}	$\& t_i$
	p_i, p_{i+1}, p_{i+2}	$\& t_i$

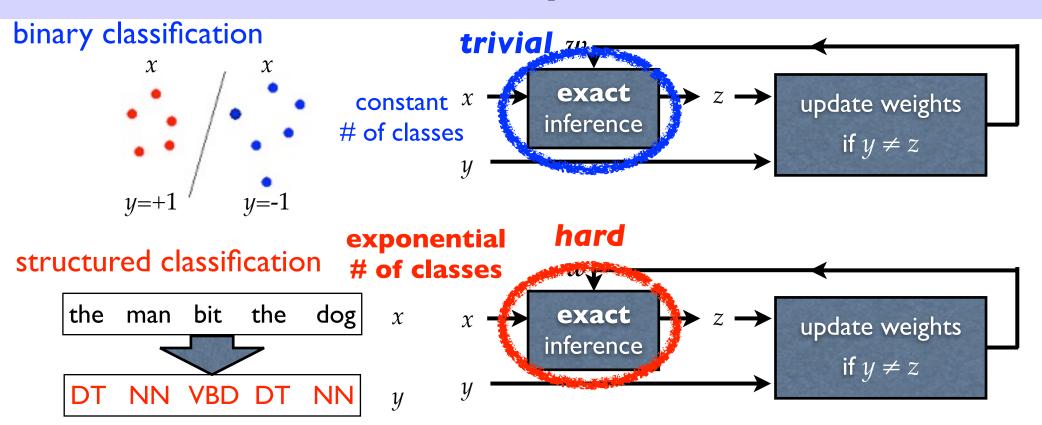
Experiments: NP Chunking

results

Method	F-Measure	Numits
Perceptron, avg, cc=0	93.53	13
Perceptron, noavg, cc=0	93.04	35
Perceptron, avg, cc=5	93.33	9
Perceptron, noavg, cc=5	91.88	39
Max-ent, cc=0	92.34	900
Max-ent, cc=5	92.65	200

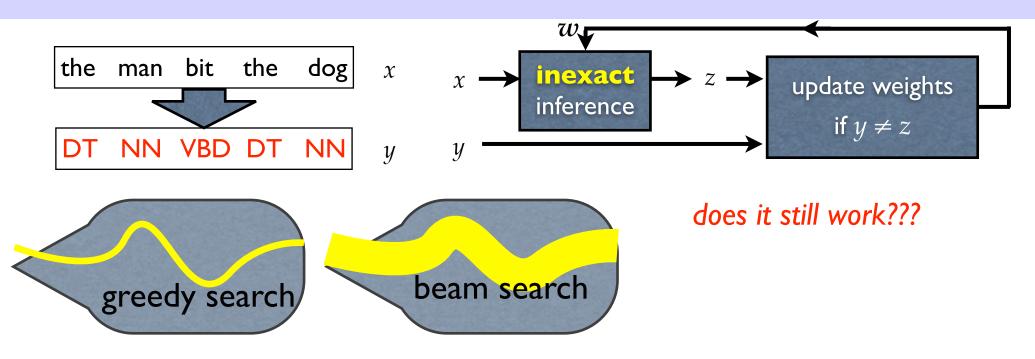
- (Sha and Pereira, 2003) trigram tagger
 - voted perceptron: 94.09% vs. CRF: 94.38%

Structured Perceptron (Collins 02)



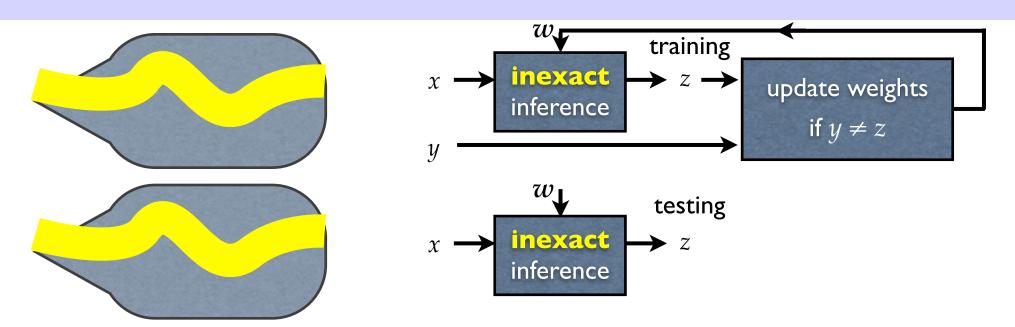
- challenge: search efficiency (exponentially many classes)
 - often use dynamic programming (DP)
 - but still too slow for repeated use, e.g. parsing is $O(n^3)$
 - and can't use non-local features in DP

Learning w/ Inexact Inference (Huang et al 2012)



- routine use of inexact inference in NLP (e.g. beam search)
- how does structured perceptron work with inexact search?
 - so far most structured learning theory assume exact search
 - would search errors break these learning properties?
 - if so how to modify learning to accommodate inexact search?

Idea: Search-Error-Robust Model

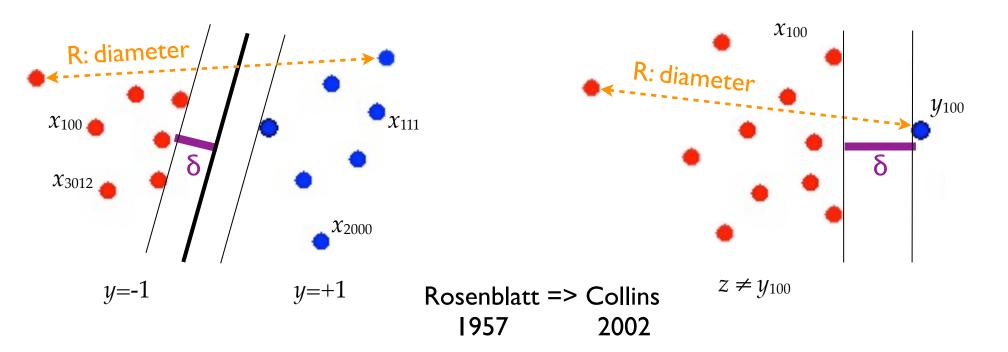


- train a "search-specific" or "search-error-robust" model
 - we assume the same "search box" in training and testing
 - model should "live with" search errors from search box
- exact search => convergence; greedy => no convergence

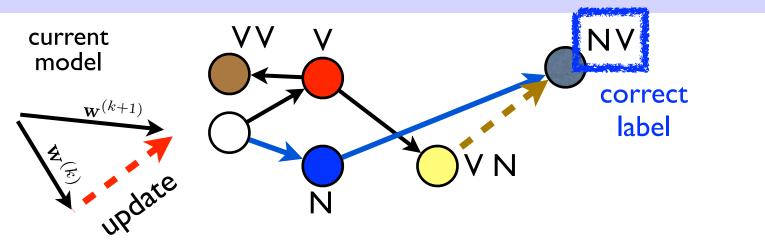
how can we make perceptron converge w/ greedy search?
 Liang Huang (CUNY)

Convergence with Exact Search

- linear classification: converges iff. data is separable
- structured: converges iff. data separable & search exact
 - there is an oracle vector that correctly labels all examples
 - one vs the rest (correct label better than all incorrect labels)
- theorem: if separable, then **# of updates** $\leq \mathbb{R}^2 / \delta^2$ R: diameter



Convergence with Exact Search

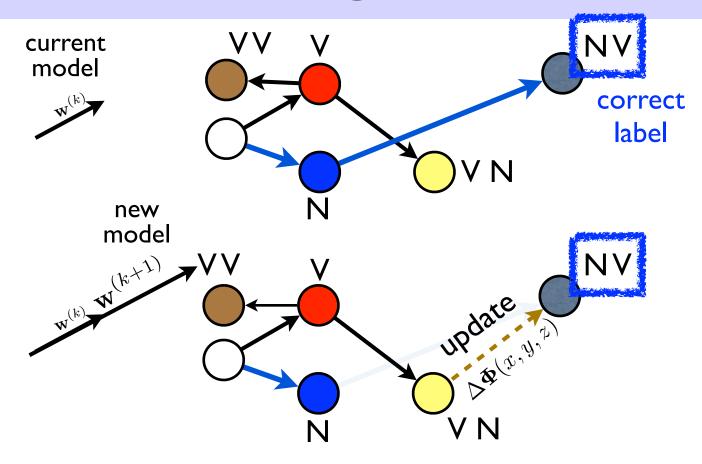


training example time flies N V

output space {N,V} x {N,V}

standard perceptron converges with exact search

No Convergence w/ Greedy Search

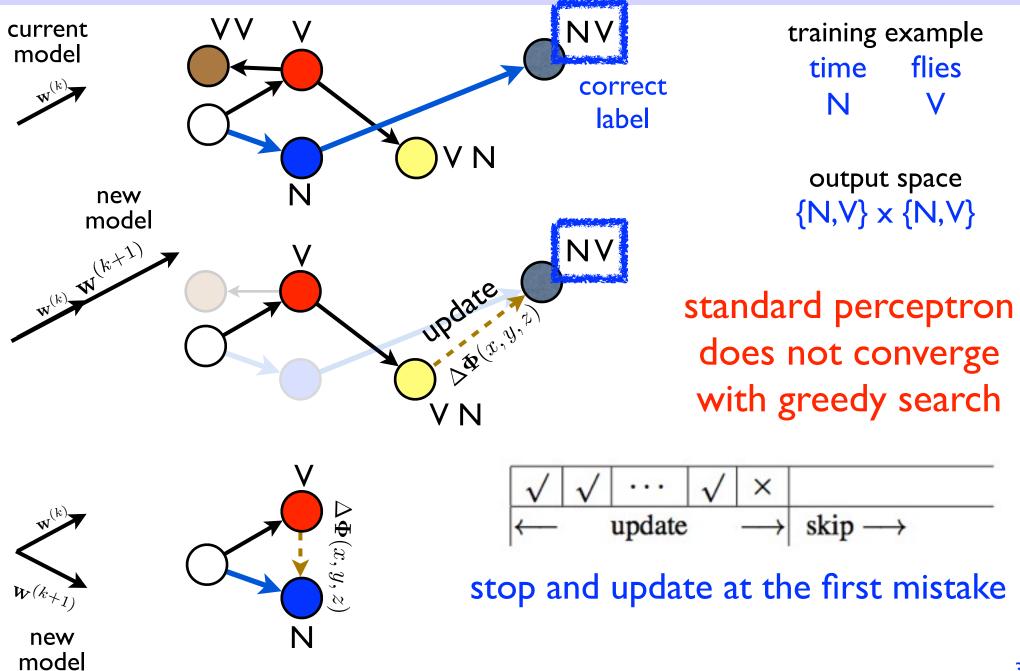


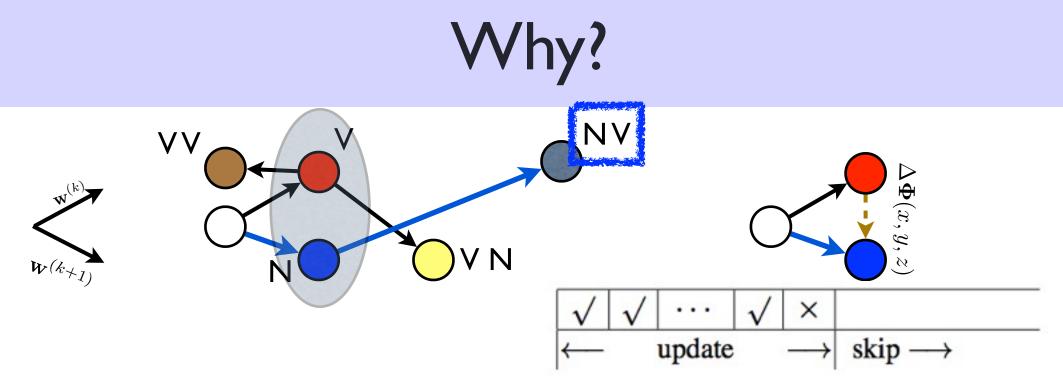
training example time flies N V

output space {N,V} x {N,V}

standard perceptron does not converge with greedy search

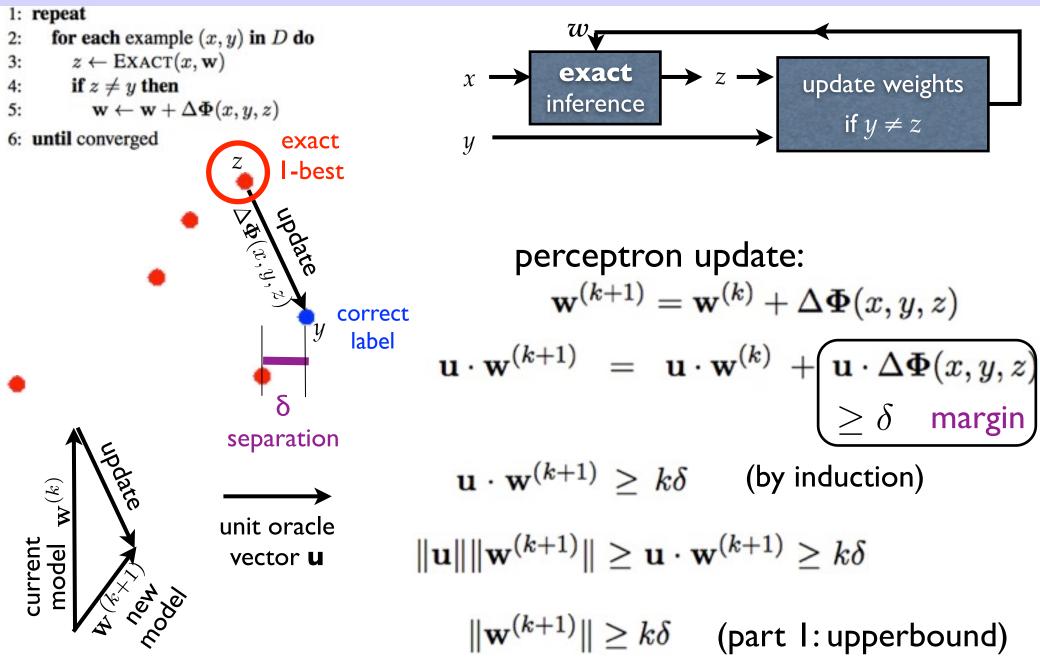
Early update (Collins/Roark 2004) to rescue



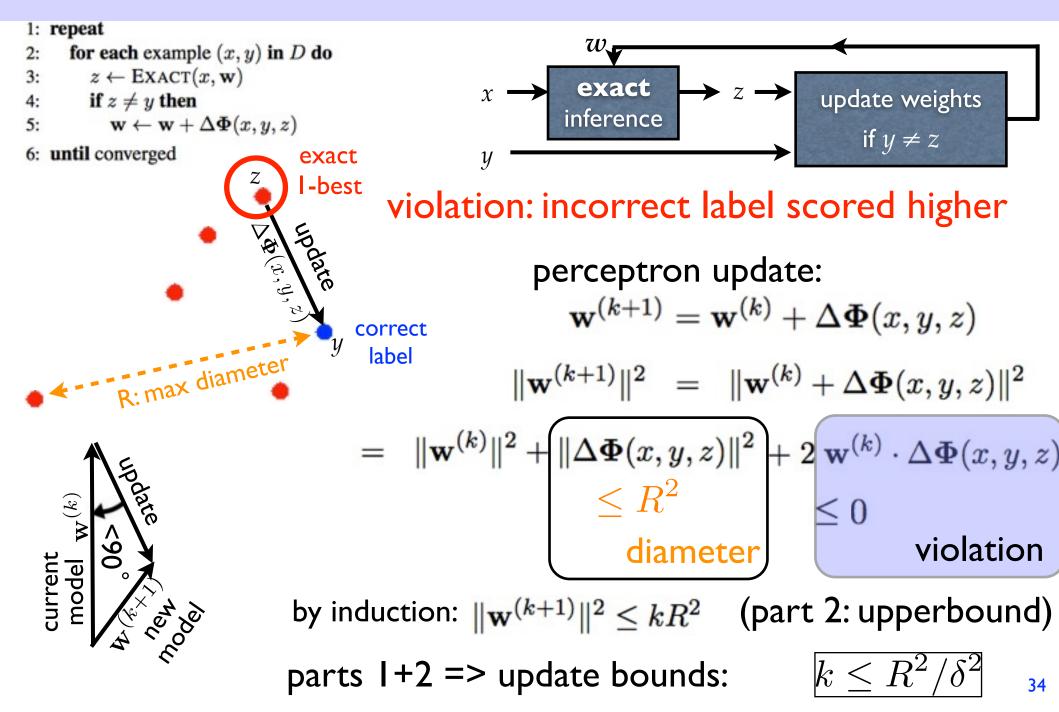


- why does inexact search break convergence property?
 - what is required for convergence? exactness?
- why does early update (Collins/Roark 04) work?
 - it works well in practice and is now a standard method
 - but there has been no theoretical justification
- we answer these Qs by inspecting the convergence proof

Geometry of Convergence Proof pt I

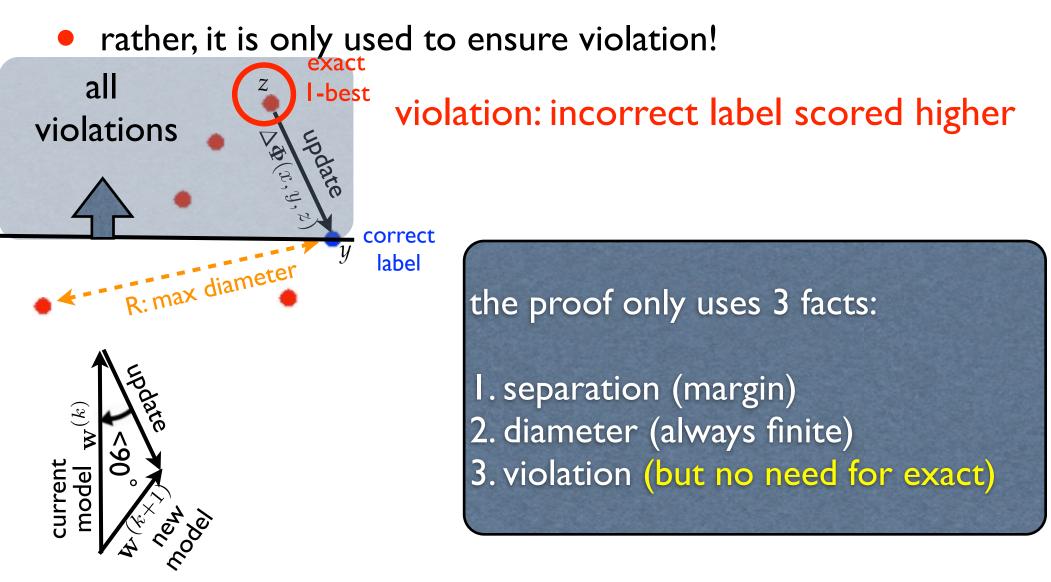


Geometry of Convergence Proof pt 2



Violation is All we need!

exact search is **not** really required by the proof



Violation-Fixing Perceptron

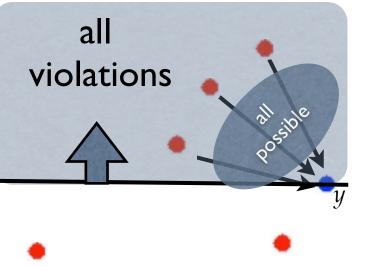
- if we guarantee violation, we don't care about exactness!
 - violation is good b/c we can at least fix a mistake

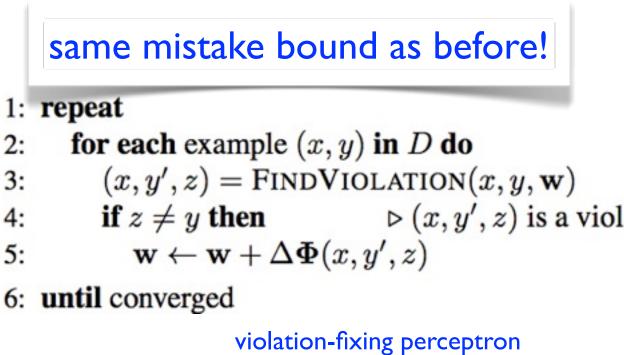
2:

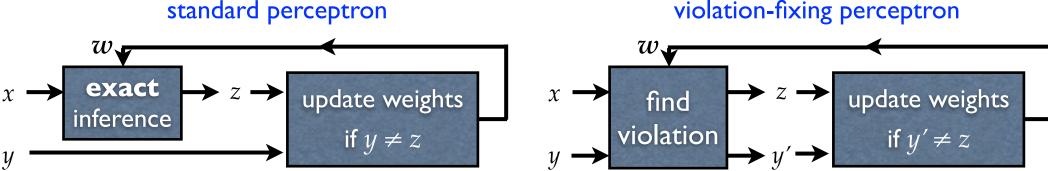
3:

4:

5:

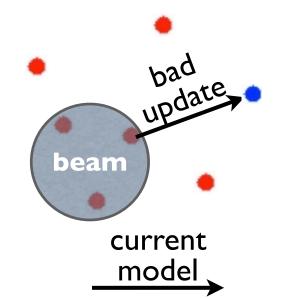




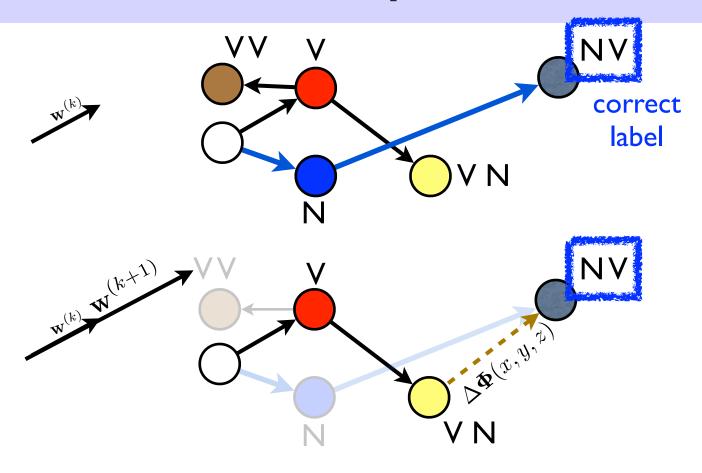


What if can't guarantee violation

- this is why perceptron doesn't work well w/ inexact search
 - because not every update is guaranteed to be a violation
 - thus the proof breaks; no convergence guarantee
- example: beam or greedy search
 - the model might prefer the correct label (if exact search)
 - but the search prunes it away
 - such a non-violation update is "bad" because it doesn't fix any mistake
 - the new model still misguides the search



Standard Update: No Guarantee



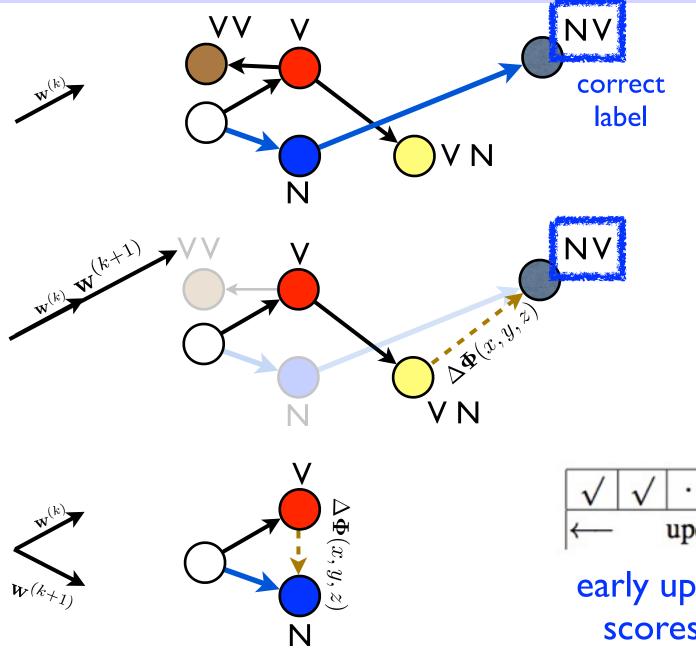
training example time flies N V

output space $\{N,V\} \times \{N,V\}$

standard update doesn't converge b/c it doesn't guarantee violation

correct label scores higher. non-violation: bad update!

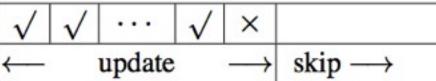
Early Update: Guarantees Violation



training example time flies N V

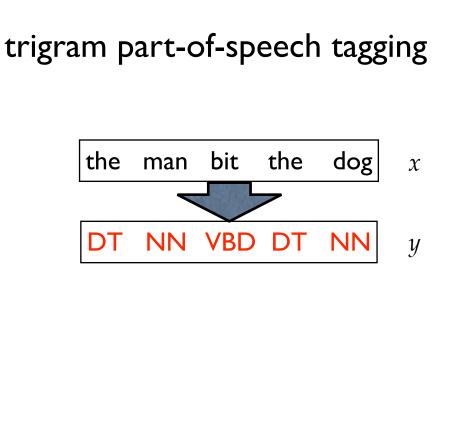
output space {N,V} × {N,V}

standard update doesn't converge b/c it doesn't guarantee violation

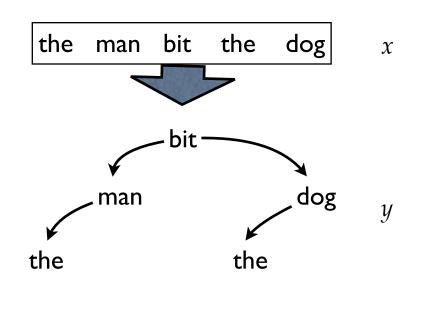


early update: incorrect prefix scores higher: a violation!

Experiments



local features only, exact search tractable (proof of concept) incremental dependency parsing



non-local features, exact search intractable (real impact)

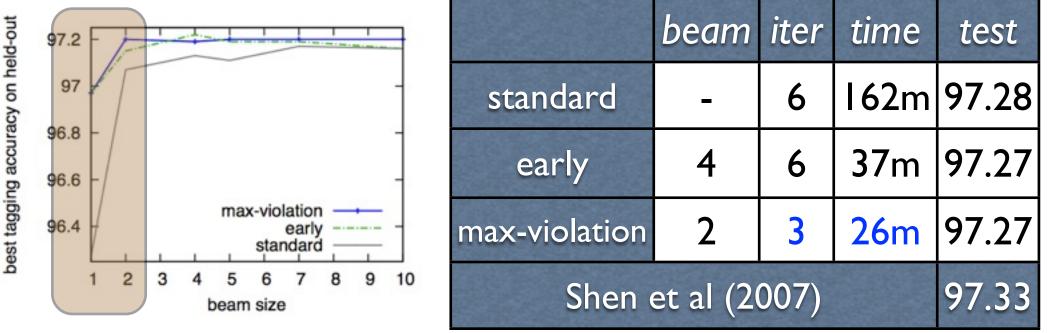
I) Trigram Part of Speech Tagging

- standard update performs terribly with greedy search (b=1)
 - because search error is severe at b=1: half updates are bad!
 - no real difference beyond b=2: search error becomes rare



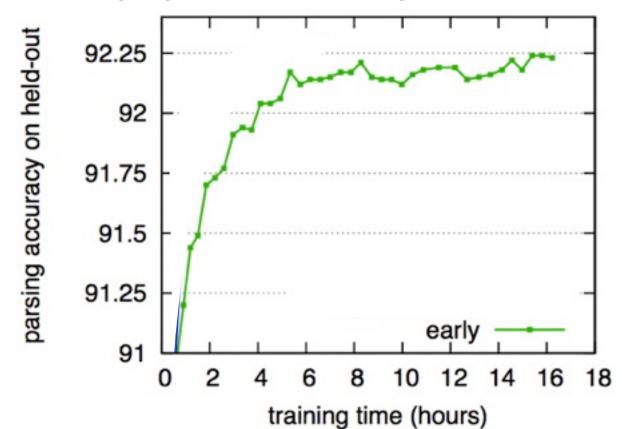
Max-Violation Reduces Training Time

- max-violation peaks at b=2, greatly reduced training time
- early update achieves the highest dev/test accuracy
 - comparable to best published accuracy (Shen et al '07)
- future work: add non-local features to tagging



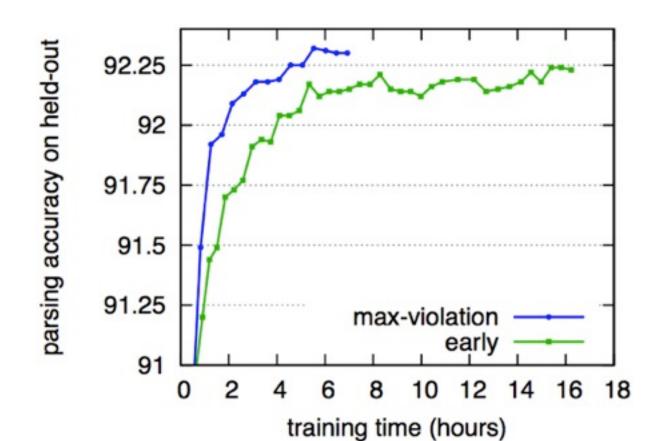
2) Incremental Dependency Parsing

- DP incremental dependency parser (Huang and Sagae 2010)
- non-local history-based features rule out exact DP
 - we use beam search, and search error is severe
 - baseline: early update. extremely slow: 38 iterations



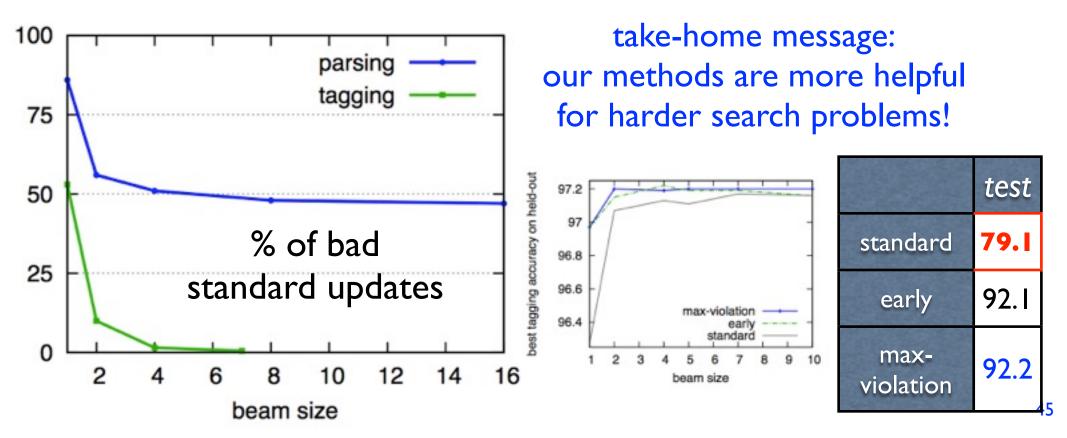
Max-violation converges much faster

- early update: 38 iterations, 15.4 hours (92.24)
- max-violation: 10 iterations, 4.6 hours (92.25)
 I2 iterations, 5.5 hours (92.32)



Comparison b/w tagging & parsing

- search error is much more severe in parsing than in tagging
- standard update is OK in tagging except greedy search (b=1)
- but performs horribly in parsing even at large beam (b=8)
 - because ~50% of standard updates are bad (non-violation)!



Annotated Bibliography

- Collins, 2002. Discriminative Training for Hidden Markov Models. In Proceedings of EMNLP. ("structured perceptron")
- Collins and Roark, 2004. Perceptron Algorithm for Incremental Parsing. In Proceedings of ACL ("early-update")
- Daume and Marcu, 2005. Learning as Search Optimization. In Proceedings of ICML ("LaSO").
- Daume, 2006. PhD Thesis. (fast "averaging" trick)
- Huang, Phayong, and Guo, 2012. Structured Perceptron with Inexact Search. In Proceedings of NAACL. ("violation-fixing" framework and proofs, "max-violation")