
Language Technology, Spring 2013, HW 2

Prof. Liang Huang

Due at 11:59pm on Friday April 5 on Blackboard; late submissions by Sunday April 7

In Japanese text, foreign words borrowed in the modern era (such as Western names and technical terms)
are transliterated into special symbols called katakana. Katakana is a syllabary, in which most symbols stand
for syllable sounds (such as ko or ra). Because spoken Japanese consists largely of consonant-vowel syllables,
most katakana symbols stand for two Japanese phonemes. In this assignment, among other things, we’ll
decode katakana words of English origin back into English. Refer to the slides for this section and the tutorial
on writing systems and transliteration for more information (available from the course website).

You will get from hw2/hw2-data.tgz which includes:

eword.wfsa a unigram WFSA of English word sequences
epron.wfsa a trigram WFSA of English phoneme sequences

eword-epron.data an online dictionary of English words and their phoneme sequences
eword-epron.wfst a WFST from English words to English phoneme sequences
epron-eword.wfst inverse transducer; the result of carmel -v eword-epron.wfst

epron-espell.wfst a WFST from English phoneme sequences to English letter sequences

epron-jpron.data a database of aligned English/Japanese phoneme sequence pairs
jprons.txt a short list of Japanese Katakana sounds to decode
epron.probs a human-readable version of epron.wfsa.

1 Pronouncing and Spelling English (15 pts)

1. Pick some English words and pronounce them with eword-epron.wfst. This transducer is essentially
a giant lookup table built from eword-epron.data. Turn in five (5) examples. Here is one:

echo HELLO | carmel -sliOEQk 5 eword-epron.wfst

2. Now let’s try to pronounce character sequences without whole-word lookup (since we may face unknown
words, for example). You can send a character string backwards through epron-espell.wfst. Try
several words and turn in your examples; here is a suggested command:

echo ’H E L L O’ | carmel -sriIEQk 5 epron-espell.wfst

Did you get some non-sense output? Why? Explain it in terms of probabilitic modeling.

3. Let’s fix the nonsense by adding a language model of likely pronunciations, epron.wfsa. Try several
and turn in your examples.

echo ’H E L L O’ | carmel -sriIEQk 5 epron.wfsa epron-espell.wfst

1

4. Now spell out some phoneme sequences by using epron-espell.wfst in the forward direction. Try
several and turn in your examples.

echo ’HH EH L OW’ | carmel -sliOEQk 50 epron-espell.wfst

5. How to improve the above results? Well, you can try to take advantage of the language model
eword.wfsa (as a filter). But you need a “bridge” from espell to eword. That’s trivial, isn’t it? Write
a simple Python program gen_espell_eword.py to generate espell-eword.wfst from the word list
in eword-epron.data. And now you can:

echo ’HH EH L OW’ | carmel -sliOEQk 50 epron-espell.wfst espell-eword.wfst eword.wfsa

Try several examples and turn them in. Include gen_espell_eword.py and espell-eword.wfst in
the submission also.

6. Well, alternatively, you can go directly from epron to eword:

echo ’HH EH L OW’ | carmel -sliOEQk 50 epron-eword.wfst eword.wfsa

Is this better than 5)? Try the same set of examples can compare the results with those from 5).

7. Try to pronounce some words that are not in the data file eword-espell.data. Try several examples
and turn them in.

echo WHALEBONES | carmel -sliOEQk 5 eword-epron.wfst

8. Now try pronouncing letter sequences of those same words. Try several examples and turn them in.

echo ’W H A L E B O N E S’ | carmel -sriIEQk 5 epron.wfsa epron-espell.wfst

9. How about phoneme sequences of new words? What happens when you use eword-epron.wfst versus
epron-espell.wfst? Try several examples and turn them in.

echo ’W EY L B OW N Z’ | carmel -sriIEQk 5 eword-epron.wfst

echo ’W EY L B OW N Z’ | carmel -sliOEQk 5 epron-espell.wfst

10. You can hook up these transducers in unexpected ways. What is the following command trying to
accomplish?

echo ’BEAR’ | carmel -sliOEQk 10 eword-epron.wfst epron-eword.wfst eword.wfsa

11. Write up a half-page or so of observations from your experiments. What did you learn about these
automata and what they can (or can’t) do? Please take time to express your thoughts clearly using
complete sentences.

2

2 Decoding English Words from Japanese Katakana (50 pts)

1. Look at epron-jpron.data. Each pair in this file consists of an English phoneme sequence paired with
a Japanese phoneme sequence. For each pair, Japanese phonemes are assigned integers telling which
English phonemes map to them. For example:

AE K T ER ;; English phoneme sequence for ’actor’

A K U T A A ;; Same word, loaned into Japanese

1 2 2 3 4 4 ;; e.g., Japanese T maps to the 3rd English sound

From the data, we can see that each English phoneme maps to one or more Japanese phonemes.
Estimate the channel probabilities p(j | s) where j represents one or more Japanese phoneme(s), and
s an English phoneme, using the simplest maximum likelihood estimation (MLE). Write a Python
program estimate.py that generates the file epron-jpron.probs like this (each line represents one
p(j | s), and you can omit those with probability < 0.01 and you can omit those where one English
phoneme maps to more than three (3) Japanese phonemes since they are mostly noise):

AE : A # 0.95

AE : Y A # 0.05

T : T # 0.4

T : T O # 0.4

T : TT O # 0.1

T : TT # 0.1

R : A A # 0.8

R : E R # 0.1

R : E R U # 0.1

...

Transitions for each English phoneme should be consecutive (see above). Include estimate.py and
epron-jpron.probs.

2. Now, based on this, you can create a WFST called epron-jpron.wfst. It should probabilistically map
English phoneme sequences onto Japanese ones, behaving something like this in the forward direction:

echo ’L AE M P’ | carmel -sliOEQk 5 epron-jpron.wfst

and you’ll get a list like

R A M P

R U A M P

R A M U P

R A M P U

R A M PP U

...

Most transducers will consist of 300 transitions or so.

3. Using your knowledge about Japanese syllable structure (see slides), do these results (including their
rankings) make sense? If not, why (briefly explain)?

4. Now consider the following Japanese katakana sequences, from a Japanese newspaper (actually these
are the phoneme sequences that are easily read off from the katakana characters):

3

H I R A R I K U R I N T O N

H O M A A SH I N P U S O N

R A PP U T O PP U

SH E E B I N G U K U R I I M U

CH A I R U D O SH I I T O

SH I I T O B E R U T O

SH I N G U R U R U U M U

G A A R U H U R E N D O

T O R A B E R A A Z U CH E KK U

B E B I I SH I T A A

S U K O TT O R A N D O

B A I A R I N K O N TCH E R U T O

(For your convenience I have included a jprons.txt for the above sequences.)

How would you decode them into English phoneme sequences using carmel (with the WFST you just
built and with help of epron.wfsa)? Show and command-line and results (with probs, with -k 5

option). Do they make sense (as English words)?

5. Now redo the above exercise, but this time into English words by assembling eword.wfsa, eword-epron.wfst,
and epron-jpron.wfst with carmel. Show the command-line and results (with probs, with -k 5). Do
you think the results make more sense this time? Briefly explain.

6. Try search for at least three (3) other Japanese katakana examples not covered in this HW or in slides,
and try to decode them back into English using the above approach. They should preferably be a two
word phrase or a compound word, like “shopping center” or ”piano sonata”.

7. Are there other ways to decode into English words given all these existing WFSAs and WFSTs (with
some tweaking)? What are the differences of these methods (speed, accuracy, etc.)?

3 Viterbi Decoding Implementation (35 pts)

1. (25 pts) Now implement your own Viterbi decoding in Python for Question 2.4 (jprons to eprons).
Your command-line should be:

echo -e ’P I A N O\nN A I T O’ | ./decode.py epron.probs epron-jpron.probs

with the result like: (note the input represents the Japanese katakana PI A NO, not the English word!)

P IY AA N OW # 1.489806e-08

N AY T # 8.824983e-06

For your convenience, we have converted epron.wfsa into a human-readable epron.probs, in the same
format as epron-jpron.probs above, e.g.:

T S : </s> # 0.774355

T S : AH # 0.0333625

T S : Z # 2.92651e-07

which correspond to our intuition that sounds T S (words with -ts) are very likely to end a sentence or
a word, and sounds T S AH are much less likely (but still noticeable in words like WATSON and BOTSON),
but T S Z is (almost) completely unheard of (with a tiny prob here due to smoothing).

You only need to print the 1-best solution and its probability. Please

4

(a) describe your algorithm in pseudocode first,

(b) analyse its complexity, and

(c) implement it in Python. Your grade will depend on both correctness and efficiency.

Note that each English phoneme corresponds to one to three Japanese phonemes (the PIANO ex-
ample is 1-1 and is too simple, and the NIGHT/KNIGHT example is more interesting), so the Viterbi
algorithm from the slides needs to be extended a little bit.

Compare your 1-best results with carmel’s (on the data in Q2.4). Try your best to match them. Include
a side-by-side comparison (hint: diff -y).

Hint: if you want to make sure your program is 100% correct with respect to Carmel, you can compare
their results by:

cat jprons.txt | ./viterbi.py epron.probs epron-jpron.probs > results.my

cat jprons.txt | carmel -bsriIEQk 1 epron.wfsa epron-jpron.wfst 2>/dev/null \

| awk ’{for (i=1;i<NF;i++) printf("%s ", $i); printf("# %e\n", $NF)}’ \

> results.carmel

diff -b results.my results.carmel

You should see no output if you did everything correctly. To generate a side-by-side comparison,
replace diff -b by diff -by.

FYI, my not-very-optimized implementation is 60 lines of Python, and runs about 4 times slower than
Carmel. Your implementation will be graded in terms of both correctness and efficiency.

4 Extra Credit

1. Decoding with Word LM (20 pts)

(Do NOT attempt this problem until you finish everything else. This problem is extremely hard.) Now
if you are to decode with the approach in Question 2.5 (using eword.wfsa), how would you do it?
Describe your algorithm in pseudocode and analyse its complexity, but don’t implement it!

5 Debrief

Please include a separate debrief.txt for these questions:

1. Did you work alone, or did you discuss with other students? If the latter please write down their
names. Note: in general, only high-level discussions are allowed; each student still has to write the
code, perform the experiments, and write the report all by him/herself.

2. How many hours did you spend on this assignment?

3. Would you rate it as easy, moderate, or difficult?

4. Are the lectures too fast, too slow, or just in the right pace?

5. Any other comments?

Note: You’ll get 5 pts off for not including the debrief. If you have submitted but forgot to do include
it before the deadline, email debrief.txt alone to TA Jie (jchu1@gc.cuny.edu) and the professor.

5

