Language Technology

CUNY Graduate Center Spring 2013

Unit I: Sequence Models

Lectures 5-6: Language Models and Smoothing

Python Review: Styles

• do not write ... when you can write ... for key in d.keys(): for key in d: if key in d: if d.has key(key): i = 0for x in a: for i, x in enumerate(a): i += 1 a[0:len(a) - i]a[:-i] for line in \setminus for line in sys.stdin: sys.stdin.readlines(): for x in a: print " ".join(map(str, a)) print x, print s = "" for i in range(lev): print " " * lev s += " " print s

Noisy-Channel Model

Noisy-Channel Model

Applications of Noisy-Channel

	Application	Input	Output	p(<i>i</i>)	p(o i)
	Machine Translation	L ₁ word sequences	L ₂ word sequences	$p(L_1)$ in a language model	translation model
	Optical Character Recognition (OCR)	actual text	text with mistakes	prob of language text	model of OCR errors
	Part Of Speech (POS) tagging	POS tag sequences	English words	prob of POS sequences	p(w t)
	Speech recognition	word sequences	speech signal	prob of word sequences	acoustic model
spe	elling correction	correct text	text with mistakes	prob. of language text	noisy spelling

Noisy Channel Examples

$$WFSA \rightarrow t \cdots t \rightarrow WFST \rightarrow w \cdots w$$

to release a product for image clean-up that dramatically improved OCR accuracy, and won the coveted "Product of the Year" award from *Imaging*

Th qck brwn fx jmps vr th lzy dg. Ths sntnc hs II twnty sx Ittrs n th lphbt.

I cnduo't byleiee taht I culod aulaclty uesdtannrd waht I was rdnaieg. Unisg the icndeblire pweor of the hmuan mnid, aocdcrnig to rseecrah at Cmabrigde Uinervtisy, it dseno't mttaer in waht oderr the Iterets in a wrod are, the olny irpoamtnt tihng is taht the frsit and Isat Itteer be in the rhgit pclae.

Therestcanbeatotalmessandyoucanstillreaditwi thoutaproblem.Thisisbecausethehumanminddo esnotreadeveryletterbyitself,butthewordasawh ole.

Noisy Channel Examples

Language Model for Generation

search suggestions

Language Models

- problem: what is $P(\mathbf{w}) = P(w_1 w_2 ... w_n)$?
 - ranking: P(an apple) > P(a apple)=0, P(he often swim)=0
 - prediction: what's the next word? use $P(w_n | w_1 ... w_{n-1})$

- $\approx P(w_1) P(w_2 | w_1) P(w_3 | w_1 w_2) ... P(w_n | w_{n-2} w_{n-1})$ trigram
- $\approx P(w_1) P(w_2 | w_1) P(w_3 | w_2)$... $P(w_n | w_{n-1})$ bigram
- $\approx P(w_1) P(w_2)$ $P(w_3)$... $P(w_n)$ unigram
- \approx P(w) P(w) P(w) P(w) ... P(w) 0-gram

Estimating n-gram Models

- maximum likelihood: $p_{ML}(x) = c(x)/N$; $p_{ML}(xy) = c(xy)/c(x)$
- problem: unknown words/sequences (unobserved events)
- sparse data problem
- solution: smoothing

Smoothing

- have to give some probability mass to unseen events
 - (by discounting from seen events)
- QI: how to divide this wedge up?
- Q2: how to squeeze it into the pie?

(D. Klein)

new wedge (one they slice for each character sequence of length < 20 that was never observed in training data)

ML, MAP, and smoothing

- simple question: what's P(H) if you see H H H H?
- always maximize posterior: what's the best m given d?
- with uniform prior, same as likelihood (explains data)

 $= \operatorname{argmax}_{m} p(d|m)$

• $\operatorname{argmax}_{m} p(m|d) = \operatorname{argmax}_{m} p(m) p(d|m)$ bayes, and p(d)=1

when p(m) uniform

Suppose	9 = H H L H		
m,	cold is unbiesed	P(d m) = シンシンシ= 0.066	۱.
m2	coin is biased so that P(H) = 3/4	P(a/m) = = = + + + + + = 0.105	.0
m3	so that P(H) = 9/10	$P(a m) = \frac{9}{10} \cdot \frac{9}{10} \cdot \frac{1}{10} \cdot \frac{9}{10} = 0.073$	

ML, MAP, and smoothing

made u

- m_1 coin is unbiased P(m) = 0.90 m_2 coin is biased 3/4 P(m) = 0.01 m_3 coin is biased 7/4 P(m) = 0.01
- what if we have arbitrary prior

• like
$$p(\theta) = \theta (I - \theta)$$

- maximum a posteriori estimation (MAP)
- MAP approaches MLE with infinite
- MAP = MLE + smoothing
 - this prior is just "extra two tosses, unbiased"

you can inject other priors, like "extra 4 tosses, 3 Hs"
CS 562 - Lec 5-6: Probs & WFSTs

Smoothing: Add One (Laplace)

new wedge (one they slice for each character sequence of length < 20 that was never observed in training data)

- MAP: add a "pseudocount" of I to every word in Vocab
- $P_{lap}(x) = (c(x) + I) / (N + V)$ V is Vocabulary size
 - P_{lap}(unk) = I / (N+V) same probability for all unks
- how much prob. mass for unks in the above diagram?
 - e.g., N=10⁶ words, V=26²⁰, $V_{obs} = 10^5$, $V_{unk} = 26^{20} 10^5$

Smoothing: Add Less than One

new wedge (one they slice for each character sequence of length < 20 that was never observed in training data)

- add one gives too much weight on unseen words!
- solution: add less than one (Lidstone) to each word in V
- $P_{lid}(x) = (c(x) + \lambda) / (N + \lambda V)$ $0 < \lambda < I$ is a parameter
 - $P_{lid}(unk) = \lambda / (N + \lambda V)$ still same for unks, but smaller
- Q: how to tune this λ ? on held-out data!

Smoothing:Witten-Bell

- key idea: use one-count things to guess for zero-counts
 - recurring idea for unknown events, also for Good-Turing
- prob. mass for unseen: T / (N + T) T: # of seen types
 - 2 kinds of events: one for each token, one for each type
 - = MLE of seeing a new type (T among N+T are new
 - divide this mass evenly among V-T unknown words

•
$$p_{wb}(x) = T / (V-T)(N+T)$$
 unknown word
= $c(x) / (N+T)$ known word

bigram case more involved; see J&M Chapter for details

Smoothing: Good-Turing

- again, one-count words in training ~ unseen in test
- let $N_c = #$ of words with frequency r in training
- $P_{GT}(x) = c'(x) / N$ where $c'(x) = (c(x)+1) N_{c(x)+1} / N_{c(x)}$
- total adjusted mass is $sum_c c' N_c = sum_c (c+1) N_{c+1} / N$

remaining mass: N₁ / N: split evenly among unks EXAMPLE:

Smoothing: Good-Turing

from Church and Gale (1991).
bigram LMs. unigram vocab size = 4x10^{5.}
T_r is the frequencies in the held-out data (see f_{empirical}).

$r = f_{MLE}$	<i>f</i> empirical	fLap	f_{del}	fgt	N_r	T_r
0	0.000027	0.000137	0.000037	0.000027	74 671 100 000	2 019 187
1	0.448	0.000274	0.396	0.446	2 018 046	903 206
2	1.25	0.000411	1.24	1.26	449 721	564 153
3	2.24	0.000548	2.23	2.24	188 933	424 015
4	3.23	0.000685	3.22	3.24	105 668	341 099
5	4.21	0.000822	4.22	4.22	68 379	287 776
6	5.23	0.000959	5.20	5.19	48 190	251 951
7	6.21	0.00109	6.21	6.21	35 709	221 693
8	7.21	0.00123	7.18	7.24	27 710	199 779
9	8.26	0.00137	8.18	8.25	22 280	183 971

Smoothing: Good-Turing

- Good-Turing is much better than add (less than) one
- problem $I: N_{cmax+1} = 0$, so c'max = 0
 - solution: only adjust counts for those less than k (e.g., 5)
- problem 2: what if $N_c = 0$ for some middle c?
 - solution: smooth N_c itself

Smoothing: Backoff

$$\hat{p}(w_i|w_{i-2}w_{i-1}) = \begin{cases} \tilde{p}(w_i|w_{i-2}w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_i) > 0\\ \alpha_1 p(w_i|w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_i) = 0\\ & \text{and } C(w_{i-1}w_i) > 0\\ \alpha_2 p(w_i), & \text{otherwise.} \end{cases}$$

Smoothing: Interpolation

$$\hat{p}(w_i|w_{i-2}w_{i-1}) = \lambda_1 p(w_i|w_{i-2}w_{i-1}) \\ + \lambda_2 p(w_i|w_{i-1}) \\ + \lambda_3 p(w_i)$$

subject to the constraint that $\sum_{j} \lambda_{j} = 1$

Entropy and Perplexity

- classical entropy (uncertainty): $H(X) = -sum p(x) \log p(x)$
 - how many "bits" (on average) for encoding
- sequence entropy (distribution over sequences):
 - $H(L) = \lim_{n \to \infty} I/n H(w_{1...} w_{n})$ Q: why I/n?
 - = lim I/n sum_{w in L} $p(w_1...w_n) \log p(w_1...w_n)$
- Shannon-McMillan-Breiman theorem:
 - $H(L) = \lim_{n \to \infty} -\frac{1}{n \log p(w_1...w_n)}$ don't need all w in L!
 - if w is long enough, just take I/n log p(w) is enough!
- perplexity is 2⁴(H(L))

Perplexity of English

- on 1.5 million WSJ test set:
 - unigram: 962 9.9 bits
 - bigram: 170 7.4 bits
 - trigram: 1096.8 bits
- higher-order n-grams generally has lower perplexity
 - but higher than trigram is not that significant
- what about human??

Shannon Game

guess the next letter; compute entropy (bits per char)

• 0-gram: 4.76, I-gram: 4.03, 2-gram: 3.32, 3-gram: 3.1

• native speaker: ~1.1 (0.6~1.3); me: ~2.3

CS 562 - Lec 5-6: Probs & WFSTs <u>http://math.ucsd.edu/~crypto/java/ENTROPY/</u>