Language Technology

CUNY Graduate Center Spring 2013

Unit I: Sequence Models

Lectures 5-6: Language Models and Smoothing
required hard optional

Professor Liang Huang
liang.huang.sh@gmail.com

Python Review: Styles

- do not write ...

when you can write ...

for key in d.keys() :	for key in d:
if d.has_key(key) :	if key in d:
	for i, x in enumerate(a):
a[0:len(a) - i]	a[:-i]
```for line in \ sys.stdin.readlines():```	for line in sys.stdin:
for $x$ in $a$ :   print $x$, print	print " ".join(map(str, a))
```s = "" for i in range(lev): print s```	print " " * lev

Noisy-Channel Model

$$
\text { WFSA } \rightarrow t \cdots t \rightarrow W F S T \longrightarrow w \cdots w
$$

Noisy-Channel Model

Applications of Noisy-Channel

			$\xrightarrow{2 \rightarrow \sim}$	
Application	Input	Output	$\mathrm{p}(\mathrm{i})$	p(o\|i)
Machine Translation	L_{1} word sequences	L_{2} word sequences	$\begin{aligned} & \mathrm{p}\left(L_{1}\right) \text { in a } \\ & \text { language model } \end{aligned}$	translation model
Optical Character Recognition (OCR)	actual text	text with mistakes	prob of language text	model of OCR errors
Part Of Speech (POS) tagging	POS tag sequences	English words	prob of POS sequences	$\mathrm{p}(w \mid t)$
Speech recognition	word sequences	speech signal	prob of word sequences	acoustic model
elling correction	orrect text	text with mistakes	prob. of language text	noisy spelling

Noisy Channel Examples

Th qck brwn fx jmps vr th lzy dg. Ths sntnc hs II twnty sx Ittrs nth lphbt.

I cnduo't bvleiee taht I culod aulaclty uesdtannrd waht I was rdnaieg. Unisg the icndeblire pweor of the hmuan mnid, aocdcrnig to rseecrah at Cmabrigde Uinervtisy, it dseno't mttaer in waht oderr the Iterets in a wrod are, the olny irpoamtnt tihng is taht the frsit and Isat Itteer be in the rhgit pclae.

Therestcanbeatotalmessandyoucanstillreaditwi thoutaproblem.Thisisbecausethehumanminddo esnotreadeveryletterbyitself,butthewordasawh ole.

CS 562 - Lec 5-6: Probs \&WFSTs

Noisy Channel Examples

Language Model for Generation

- search suggestions

Language Models

- problem: what is $\mathrm{P}(\mathbf{w})=\mathrm{P}\left(\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}\right)$.
- ranking: $\mathrm{P}($ an apple $)>\mathrm{P}($ a apple $)=0, \mathrm{P}($ he often swim $)=0$
- prediction: what's the next word? use $P\left(w_{n} \mid w_{1} \ldots w_{n-1}\right)$
- Obama gave a speech about
- $P\left(w_{1} w_{2} \ldots w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \ldots P\left(w_{n} \mid w_{1} \ldots w_{n-1}\right)$
- $\approx P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1} w_{2}\right) \ldots P\left(w_{n} \mid w_{n-2} w_{n-1}\right)$ trigram
- $\approx P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{2}\right) \quad \ldots P\left(w_{n} \mid w_{n-1}\right) \quad$ bigram
- $\approx P\left(w_{1}\right) P\left(w_{2}\right)$

P(w_{3})
... $P\left(w_{n}\right)$
unigram

- $\approx \mathrm{P}(\mathrm{w}) \mathrm{P}(\mathrm{w})$

P(w)
... $P(w)$
0-gram

Estimating n-gram Models

"In pesen she was inferecer to both sisters"

O-grom	10^{-6}	10^{-6}	10^{66}	10^{-6}	10^{-6}	10^{-6}	$=10^{-36}$
unigram	. 011	. 015	. 00005	. 032	. 0005	. 0003	$=4 \times 10^{-17}$
bigrem	. 009	. 122	0	. 212	. 0004	. 006	:
trigram	?	. 5	0	?	-	0	-
4 -gram	?	?	\bigcirc	?	?	?	=

- maximum likelihood: $p_{M L}(x)=c(x) / N ; \quad p_{M L}(x y)=c(x y) / c(x)$
- problem: unknown words/sequences (unobserved events)
- sparse data problem
- solution: smoothing

Smoothing

- have to give some probability mass to unseen events
- (by discounting from seen events)
- QI: how to divide this wedge up?
- Q2: how to squeeze it into the pie?

new wedge (one they slice for each. character sequence of length <20 that was never observed in training data.)

ML, MAP, and smoothing

- simple question: what's $\mathrm{P}(\mathrm{H})$ if you see H H H H ?
- always maximize posterior: what's the best m given d ?
- with uniform prior, same as likelihood (explains data)
- $\operatorname{argmax}_{m} p(m \mid d)=\operatorname{argmax}_{m} p(m) p(d \mid m) \quad$ bayes, and $p(d)=1$

$$
=\operatorname{argmax}_{\mathrm{m}} \mathrm{p}(\mathrm{~d} \mid \mathrm{m})
$$

when $p(m)$ uniform
suppose $d=H H T H$
m_{1} cols is unbiased $P(d / m)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=0.066$
m_{2} coin is biased
So that $P(H)=3 / 4$ $P(d \mid \mu)=\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4}=0.105$
$m_{3} \quad$ comm is biased so that $P(H)=9 / 10 \quad P(d \mid m)=\frac{9}{10} \cdot \frac{9}{10} \cdot \frac{1}{10} \cdot \frac{9}{10}=0.073$

ML, MAP, and smoothing

$\left.\begin{array}{lll}m_{1} \text { coin is unbicsed } & P(m)=0.90 \\ m_{2} \text { coin is bicsed } 3 / 4 & P(m)=0.01 \\ m_{3} \text { coin is biased } 1 / 4 & P(m)=0.01\end{array}\right\}$ just "made up" !

- what if we have arbitrary prior
- like $p(\theta)=\theta(I-\theta)$
- maximum a posteriori estimation (MAP)

- MAP approaches MLE with infinite
- MAP = MLE + smoothing
$P(m) \cdot P(d \mid m)$
- this prior is just "extra two tosses, unbiased"

- you can inject other priors, like "extra 4 tosses, 3 Hs "

Smoothing: Add One (Laplace)

new wedge (one they slice for each chermeter sequence of length <20 that was never observed in training data)

- MAP: add a "pseudocount" of I to every word in Vocab
- $\mathrm{P}_{\text {lap }}(\mathrm{x})=(\mathrm{c}(\mathrm{x})+\mathrm{I}) /(\mathrm{N}+\mathrm{V})$

V is Vocabulary size

- $\mathrm{P}_{\text {lap }}($ un $)=I /(\mathrm{N}+\mathrm{V})$
same probability for all unks
- how much prob. mass for unks in the above diagram?
- e.g., $\mathrm{N}=10^{6}$ words, $\mathrm{V}=26^{20}, \mathrm{~V}_{\text {obs }}=10^{5}, \mathrm{~V}_{\text {lunk }}=26^{20}-10^{5}$

Smoothing: Add Less than One

new wedge (one thay slica for each charmeter seguence of longth <20 that was never observed in training data)

- add one gives too much weight on unseen words!
- solution: add less than one (Lidstone) to each word in V
- $P_{\text {lid }}(x)=(c(x)+\lambda) /(N+\lambda V)$ $0<\lambda<1$ is a parameter
- $P_{\text {lid }}($ unk $)=\lambda /(N+\lambda V) \quad$ still same for
Q: how to tune this λ ? on held-out data!

Smoothing:Witten-Bell

- key idea: use one-count things to guess for zero-counts - recurring idea for unknown events, also for Good-Turing
- prob. mass for unseen: $\mathrm{T} /(\mathrm{N}+\mathrm{T}) \quad \mathrm{T}$: \# of seen types
- 2 kinds of events: one for each token, one for each type
- = MLE of seeing a new type (T among $\mathrm{N}+\mathrm{T}$ are new
- divide this mass evenly among $\mathrm{V}-\mathrm{T}$ unknown words
- $\operatorname{Pwb}(x)=T /(V-T)(N+T)$ $=c(x) /(N+T)$
unknown word known word
- bigram case more involved; see J\&M Chapter for details

Smoothing: Good-Turing

- again, one-count words in training ~ unseen in test
- let $N_{c}=\#$ of words with frequency r in training
- $P_{\mathrm{Gt}}(\mathrm{x})=\mathrm{c}^{\prime}(\mathrm{x}) / \mathrm{N}$ where $\mathrm{c}^{\prime}(\mathrm{x})=(\mathrm{c}(\mathrm{x})+\mathrm{I}) \mathrm{N}_{\mathrm{c}(\mathrm{x})+\mathrm{I}} / \mathrm{N}_{\mathrm{c}(\mathrm{x})}$
- total adjusted mass is $\operatorname{sum}_{c} c^{\prime} N_{c}=\operatorname{sum}_{c}(c+1) N_{c+1} / N$
- remaining mass: N_{I} / N : split evenly among unks ExAmple:

$\frac{r}{0}$	$\frac{N_{r}}{1000}$	$\frac{N_{r+1}}{100}$	$\frac{r^{*}}{-}$	$\frac{r^{*} / N}{1-z}$
1	100	40	0.8	Sums
2	40	20	1.5	to
3	20	10	2.0	z
4	10	6	3.0	
5	6	3	3.0	\vdots
\vdots	\vdots	\vdots	\vdots	

Smoothing: Good-Turing

- from Church and Gale (1991). bigram LMs. unigram vocab size $=4 \times 10^{5}$. T_{r} is the frequencies in the held-out data (see fempirical).

| $r=\mathrm{f}_{\text {MLE }}$ | $f_{\text {empirical }}$ | $f_{\text {Lap }}$ | $f_{\text {del }}$ | f_{GT} | N_{r} | T_{r} |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| 0 | 0.000027 | 0.000137 | 0.000037 | 0.000027 | 74671100000 | 2019187 |
| 1 | 0.448 | 0.000274 | 0.396 | 0.446 | 2018046 | 903206 |
| 2 | 1.25 | 0.000411 | 1.24 | 1.26 | 449721 | 564153 |
| 3 | 2.24 | 0.000548 | 2.23 | 2.24 | 188933 | 424015 |
| 4 | 3.23 | 0.000685 | 3.22 | 3.24 | 105668 | 341099 |
| 5 | 4.21 | 0.000822 | 4.22 | 4.22 | 68379 | 287776 |
| 6 | 5.23 | 0.000959 | 5.20 | 5.19 | 48190 | 251951 |
| 7 | 6.21 | 0.00109 | 6.21 | 6.21 | 35709 | 221693 |
| 8 | 7.21 | 0.00123 | 7.18 | 7.24 | 27710 | 199779 |
| 9 | 8.26 | 0.00137 | 8.18 | 8.25 | 22280 | 183971 |

Smoothing: Good-Turing

- Good-Turing is much better than add (less than) one
- problem I: $\mathrm{N}_{\mathrm{cmax}+\mathrm{I}}=0$, so c'max $=0$
- solution: only adjust counts for those less than k (e.g., 5)
- problem 2: what if $\mathrm{N}_{\mathrm{c}}=0$ for some middle c ?
- solution: smooth N_{c} itself
smooth N_{r} itself, e.g.:
N_{r} The curve $\left(N_{r}=a r^{b}\right.$) gives better N_{r}

Smoothing: Backoff

$$
\hat{p}\left(w_{i} \mid w_{i-2} w_{i-1}\right)= \begin{cases}\tilde{p}\left(w_{i} \mid w_{i-2} w_{i-1}\right), & \text { if } C\left(w_{i-2} w_{i-1} w_{i}\right)>0 \\ \alpha_{1} p\left(w_{i} \mid w_{i-1}\right), & \text { if } C\left(w_{i-2} w_{i-1} w_{i}\right)=0 \\ & \text { and } C\left(w_{i-1} w_{i}\right)>0 \\ \alpha_{2} p\left(w_{i}\right), & \text { otherwise. }\end{cases}
$$

Smoothing: Interpolation

$$
\begin{aligned}
\hat{p}\left(w_{i} \mid w_{i-2} w_{i-1}\right)= & \lambda_{1} p\left(w_{i} \mid w_{i-2} w_{i-1}\right) \\
& +\lambda_{2} p\left(w_{i} \mid w_{i-1}\right) \\
& +\lambda_{3} p\left(w_{i}\right)
\end{aligned}
$$

subject to the constraint that $\sum_{j} \lambda_{j}=1$

Entropy and Perplexity

- classical entropy (uncertainty): $H(X)=-s u m p(x) \log p(x)$
- how many "bits" (on average) for encoding
- sequence entropy (distribution over sequences):
- $\mathrm{H}(\mathrm{L})=\lim \mathrm{I} / \mathrm{nH}\left(\mathrm{w}_{1} . . \mathrm{w}_{\mathrm{n}}\right)$

Q: why I/n?
$=\lim \mathrm{I} / \mathrm{n}$ sum_\{win L$\} \mathrm{p}\left(\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right) \log \mathrm{p}\left(\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right)$

- Shannon-McMillan-Breiman theorem:
- $H(L)=\lim -I / n \log P\left(w_{1} \ldots w_{n}\right) \quad$ don't need all w in $L!$
- if w is long enough, just take $-1 / n \log p(w)$ is enough!
- perplexity is $2^{\wedge}\{\mathrm{H}(\mathrm{L})\}$

Perplexity of English

- on I. 5 million WSJ test set:
- unigram: 962
- bigram: 170
- trigram: 109
9.9 bits
7.4 bits
6.8 bits
- higher-order n-grams generally has lower perplexity
- but higher than trigram is not that significant
- what about human??

Shannon Game

- guess the next letter; compute entropy (bits per char)
- 0-gram: 4.76, I-gram: 4.03, 2-gram: 3.32, 3-gram: 3.I
- native speaker:~I.I (0.6~I.3); me:~2.3

```
SINCE THE LESSONS ARE FREE IF K 10101111311114232212121119631115121 NITTING DOESNT APPEAL TO YOU TH 22621111172112111524111131111113111121 EN YOU MIGHT WANT TO LEARN TO W 3111411161111111111111111314191120218 ATERSKI
1212512
```

```
ASON THAT I MANAGED
11112111112252421131
HE ACCIDENT WITHOUT
13156111311113511211
S THAT I SPENT YEAR
11111111111318111125211
j A TOLERANCE FOR BL
162241822112111111111114
HEAD
111
```

