CS 562: Empirical Methods in Natural Language Processing

Unit 3: Natural Language Learning

 Part I:Unsupervised Learning(EM, forward-backward, inside-outside)

Fall 201I
Liang Huang (lhuang@isi.edu)

Review of Noisy-Channel Model

Application	Input	Output	$\mathbf{p}(\boldsymbol{i})$	$\mathbf{p}(o \mid i)$
Machine	L_{1} word	L_{2} word	$\mathrm{p}\left(L_{1}\right)$ in a	translation
Translation	sequences	sequences	language model	model
Optical Character	actual text	text with	prob of	model of
Recognition (OCR)		mistakes	language text	OCR errors
Part Of Speech	POS tag	English	prob of	$\mathrm{p}(w \mid t)$
(POS) tagging	sequences	words	POS sequences	
Speech recognition	word	speech	prob of word	acoustic
sequences	signal	sequences	model	

Example I: Part-of-Speech Tagging

$$
\begin{aligned}
& P(t \cdots t \mid w \cdots w) \\
& \sim P(t \cdots t) \cdot P(w \cdots w \mid t \cdots t) \\
& \sim \underbrace{\text { len }}_{\begin{array}{c}
\text { local } \begin{array}{c}
\text { grammar } \\
\text { preference }
\end{array}
\end{array} P \underbrace{P\left(t_{1}\right) \cdot P\left(t_{2} \mid t_{1}\right) \ldots P\left(t_{n} \mid t_{n-1}\right)}_{\text {lexical preference }} \cdot \underbrace{P\left(w_{1} \mid t_{1}\right) \cdots P\left(w_{n} \mid t_{n}\right)}} \\
& \text { - use tag bigram as } \\
& \text { a language model } \\
& \text { channel model is } \\
& \text { context-indep. } \\
& \text { source } \\
& \text { channel } \\
& \text { (®) } \\
& \text { new string }
\end{aligned}
$$

Ideal vs.Available Data

WFSA $\rightarrow t \cdots t \rightarrow$ WFST $w \cdots w$

Ideal vs. Available Data
WFSA $\rightarrow t \cdots t \rightarrow W F S T \rightarrow W$
CRYPTOGRAPHY

1. generate $e_{1} \ldots e_{n}$ by $P\left(e_{k} \mid e_{k-1}\right)$
e...
e...
2. for $i=1$ to n
output c_{i} by $p\left(c_{i} \mid e_{i}\right)$

Ideal vs. Available Data
WFSA $\rightarrow t \cdots t \rightarrow W F S T \rightarrow W$
CRYPTOGRAPHY

1. generate $e_{1} \ldots e_{n}$ by $P\left(e_{k} \mid e_{k-1}\right)$
e...

SPELLING - TO-SOUND

1. generate pho, \cdots phon
2. transform into $C_{1} \cdots C_{m}$ by WFST

K	A	Y	E
1	1	\hat{N}	1
C	a	ℓ	l
e			

e...
cc...

K
K
C

cable
$l l o r a$

Ideal vs. Available Data

WFSA $\rightarrow t \cdots t \rightarrow W F S T \longrightarrow W$
CRYPTOGRAPHY

1. generate $e_{1} \ldots e_{n}$ by $P\left(e_{k} \mid e_{k-1}\right)$
2. for $i=1$ to n output c_{i} by $p\left(c_{i} \mid e_{i}\right)$

SPELLING - TO-SOUND

1. generate pho, ${ }^{\text {p }}$ phon
2. transform into $C_{1} \cdots C_{m}$ by WFST
$m T$
3. generate $e_{1} \cdots e_{n}$ by $p\left(e_{k} \mid e_{k-1}\right)$
4. for $i=1$ to n
generate f_{i} by $p\left(f_{i} \mid e_{i}\right)$
5. permute all f_{i} by $1 / n$!

K
K

KAYE
cable
$l l o r a$

$\left.\begin{array}{llll}\hline e & e & f & \cdots \\ 1 & x & e & \\ f & f & f & \cdots\end{array}\right]$	e e e \cdots f f f \cdots e e \cdots f f f \cdots

Ideal vs. Available Data

HW3: ideal
EY B AH L
A B E R U
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

AH B AW T
A B A U T O
123344

AH LER T
A R A A T O
$\begin{array}{llllll}1 & 2 & 3 & 3 & 4 & 4\end{array}$

EY S
E E S U
1122

HW5: realistic

EY B AH L
A B E R U

AH B AW T
A B A U T O

AH L ER T
A R A A T O

EY S
E E S U

Ideal vs.Available Data

WFSA $\rightarrow t \cdots t \rightarrow$ WFST $w \cdots w$

Ideal vs. Available Data
WFSA $\rightarrow t \cdots t \rightarrow W$ WET $\longrightarrow W$
CRYPTOGRAPHY

1. generate $e_{1} \ldots e_{n}$ by $P\left(e_{k} \mid e_{k-1}\right)$
e...
e...
2. for $i=1$ to n
output c_{i} by $p\left(c_{i} \mid e_{i}\right)$

Ideal vs. Available Data

WFSA $\rightarrow t \cdots t \rightarrow W F S T \longrightarrow W \cdots$
CRYPTOGRAPHY

1. generate $e_{1} \ldots e_{n}$ by $P\left(e_{k} \mid e_{k-1}\right)$
e...
2. for $i=1$ to n
output c_{i} by $p\left(c_{i} \mid e_{i}\right)$

PART of SPEECH

1. generate $t_{1} \cdots t_{n}$ by $P\left(t_{k} \mid t_{k-1}\right)$
2. for $i=1$ to n output w_{i} by $p\left(w_{i} \mid t_{i}\right)$
e...
\square
cc...
ww w...

Ideal vs. Available Data
WFSA $\rightarrow t \cdots t \rightarrow W F S T \rightarrow W$
CRYPTOGRAPHY

1. generate $e_{1} \ldots e_{n}$ by $P\left(e_{k} \mid e_{k-1}\right)$
2. for $i=1$ to n output c_{i} by $p\left(c_{i} \mid e_{i}\right)$

PART of SPEECH

1. generate $t_{1} \cdots t_{n}$ by $P\left(t_{k} \mid t_{k-1}\right)$
2. for $i=1$ to n output w_{i} by $p\left(\omega_{i} \mid t_{i}\right)$

SPELLING - TO-SOUND

1. generate pho, ${ }^{\text {p }}$ phon
2. transform into $C_{1} \cdots C_{m}$ by WFST
e...

cc...
t…

t	t	\cdots
$w w w$	\cdots	

ww w...

$K A Y E$
cable
$Y O R A$
$\ell l o r a$

Ideal vs. Available Data
WFSA $\rightarrow t \cdots t \rightarrow W F S T \rightarrow W$
CRYPTOGRAPHY

1. generate $e_{1} \ldots e_{n}$ by $P\left(e_{k} \mid e_{k-1}\right)$
2. for $i=1$ to n output c_{i} by $p\left(c_{i} \mid e_{i}\right)$

PART of SPEECH

1. generate $t_{1} \cdots t_{n}$ by $P\left(t_{k} \mid t_{k-1}\right)$
2. for $i=1$ to n output w_{i} by $p\left(\omega_{i} \mid t_{i}\right)$

SPELLING - TO-SOUND

1. generate pho, \cdots phon
2. transform into $C_{1} \cdots C_{m}$ by WFST

SPELLING-TO-SOUND (no examples)
e...

七...
tot \cdots
www…

K	A	Y	E						
1	1	A	1						
C	a	ℓ	l						
e				$	$	Y	0	R	A
:---	:---	:---	:---						
A	1	1	1						
ℓ	ℓ	0	r	a					

(same)
e...
cc...
ww w...
$K A Y E$
cable
$Y O R A$
$l l o r a$
KAYE....
flora...

Incomplete Data / Model

Idea: $\underset{m}{\operatorname{argmax}} P($ incomplete-data $\mid m)$

EM: Expectation-Maximization
Example: Cryptography. $\underset{m}{\operatorname{argmax}} P\left(c_{1} \cdots c_{n} \mid m\right)$

$$
\begin{aligned}
& \underset{m}{\operatorname{argmax}} \sum_{e_{1} \cdots e_{n}} p\left(e_{1} \cdots e_{n}\right) \cdot p\left(c_{1} \cdots c_{n} \mid e_{1} \cdots e_{n}, m\right) \\
& \operatorname{\operatorname {argmax}} \sum_{e_{1} \cdots e_{n}} p\left(e_{1} \cdots e_{n}\right) \cdot p\left(c_{1} \mid e_{1}, m\right) \cdots p\left(e_{n} \mid e_{n}, m\right)
\end{aligned}
$$

each choice of m yields a specific number! some m are better than others!
which is best?
start with m such that $P\left(c_{i} \mid e_{j}, m\right)=1 / 27$. that gives a certain $P\left(c_{1} \cdots c_{n} \mid m\right)$. now, change m to m^{\prime} such that

$$
P\left(c_{1} \cdots c_{n} \mid m^{\prime}\right) \geqslant P\left(c_{1} \cdots c_{n} \mid m\right)
$$

(\& repeat)

How to Change m? I) Hard
Idea \#1

Suggests iterative procedure.

$$
\begin{array}{ll}
\text { initially: } & t(a \mid x)=0.5 \\
& t(b \mid x)=0.5 \\
& t(a \mid y)=0.5 \\
& t(b \mid y)=0.5
\end{array}
$$

How to Change m? I) Hard
Idea \#1

Suggests iterative procedure.
initially:

$$
\begin{aligned}
& t(a \mid x)=0.5 \\
& t(b \mid x)=0.5 \\
& t(a \mid y)=0.5 \\
& t(b \mid y)=0.5
\end{aligned}
$$

$$
\text { viterbi: } \left.\begin{array}{llllllllll}
a & a & a & b & a & a & b & b & a \\
y & x & x & x & x & x & y & x & x
\end{array}\right\} \begin{aligned}
& \text { NoTE: other } \\
& \text { decoding are } \\
& \text { equally good. } \\
& \text { (tie break) }
\end{aligned}
$$

revised:

$$
\begin{aligned}
& t(a \mid x)=6 / 7 \\
& t(b \mid x)=1 / 7 \\
& t(a \mid y)=1 / 2 \\
& t(b \mid y)=1 / 2
\end{aligned}
$$

How to Change m? I) Hard
viterbi:

a	a	a	b	a	a	b	a	a
y	x	x	x	x	x	y	x	x

NOTE: other decodings are (tie break)
revised:

$$
\begin{aligned}
& t(a \mid x)=6 / 7 \\
& t(b \mid x)=1 / 7 \\
& t(a \mid y)=1 / 2 \\
& t(b \mid y)=1 / 2
\end{aligned}
$$

revised
viterbi: $a \quad a \quad b a \quad a b a a$

How to Change m? I) Hard
viterbi: $\quad a \quad a \quad b \quad a \quad a \quad a \quad a$
NOTE: other decoding are
equally good. (tie break)
revised:

$$
\begin{aligned}
& t(a \mid x)=6 / 7 \\
& t(b \mid x)=1 / 7 \\
& t(a \mid y)=1 / 2 \\
& t(b \mid y)=1 / 2
\end{aligned}
$$

revised
viterbi:

$$
\begin{array}{lllllll}
a & a & b & a & b & a \\
x & x & x & x & y & x & x
\end{array}
$$

revised:

$$
\begin{aligned}
& t(a \mid x)=1 \\
& t(b \mid x)=0 \\
& t(a \mid y)=0 \\
& t(b \mid y)=1
\end{aligned}
$$

stuck now in local minimum, as viterbi doesn't change.
\Rightarrow VITERBI TRAINING

How to Change m? 2) Soft

Idea \#1

Idea \#2

Fractional Counts

- distribution over all possible hallucinated hidden variables
- W AI N

W A I N
hard-EM counts

W	$A I N$		
1	1	N	
W	A	I	N

I
0.333

$$
\begin{array}{ll}
\text { AY|-> } & \text { A: } 0.333 \\
\mathrm{~W} \mid-> & \mathrm{W}: 0.667 \\
\mathrm{~N} \mid-> & \mathrm{N}: 0.667
\end{array}
$$

fractional counts 0.25

$\mathrm{AY} \mid->$	$\mathrm{A} I: 0.500$
$\mathrm{~W} \mid->$	$\mathrm{W}: 0.750$
$\mathrm{~N} \mid->$	$\mathrm{N}: 0.750$

eventually ... 0
eventually ... 0
AY|-> A I: 0.500
W|-> W: 0.750
$\mathrm{N} \mid->\quad \mathrm{N}: ~ 0.750$
fractional counts

0
0.333

A I: 0.333
W A: 0.333
I N: 0.333
0.5

A: 0.250
W A: 0.250
I N: 0.250
... I

W AI N

W A I N

I: 0.333
0.25

I: 0.250

Fractional Counts

- how about

```
W EH T
W E T O
\begin{tabular}{lll}
\(B\) & \(I Y\) & \(B I Y\) \\
\(\mid\) & \(\mid \backslash\) & \(|\backslash|\) \\
\(B\) & \(I\) & \(B I \quad I\)
\end{tabular}
```

- so EM can possibly: (I) learn something correct
(2) learn something wrong (3) doesn't learn anything
- but with lots of data => likely to learn something good

EM: slow version (non-DP)

- initialize the conditional prob. table to uniform
- repeat until converged:
- E-step:

W AI N	W AI N	W AI N		
\|	/	\| \| \	\\| \ \	
W A I N	W A I N	W A I		
Z	z'	z"		
$\left(\begin{array}{lll}z_{1} & z_{2} & z_{3}\end{array}\right)$				

- for each training example x (here: (e...e, j...j) pair):
- for each hidden z : compute $p(x, z)$ from the current model
- $p(x)=\operatorname{sum}_{z} p(x, z) ; \quad$ [debug: corpus prob $p($ data $) *=p(x)$]
- for each hidden $z=\left(z_{1} z_{2} \ldots z_{n}\right)$: for each i :
- fraccount $\left(z_{i}\right)+=p(x, z)$
/ $p(x)$
- M-step: count-n-divide on fraccounts => new model

EM: fast version (DP)

- initialize the conditional prob. table to uniform
- repeat until converged:
- E-step:

- for each training example x (here: (e...e, j...j) pair):
- forward from s to t; note: forw $[t]=p(x)=\operatorname{sum}_{z} p(x, z)$
- backward from t to s; note: back[t]=I;back[s] = forw[t]
- for each edge (u, v) in the DP graph with label $(u, v)=z_{i}$
- $\operatorname{fraccount}\left(z_{i}\right)+=$ forw $[u] * \operatorname{back}[v] * \operatorname{prob}(u, v) / p(x)$
- M-step: count-n-divide on fraccounts)=> new model

How to avoid enumeration?

- dynamic programming: the forward-backward algorithm
- forward is just like Viterbi, replacing max by sum
- backward is like reverse Viterbi (also with sum)

Example Forward Code

- for HW5. this example shows forward only.

```
n, m = len(eprons), len(jprons)
forward[0][0] = 1
for i in xrange(0, n):
    epron = eprons[i]
    for j in forward[i]:
        for k in range(1, min(m-j, 3)+1):
        jseg = tuple(jprons[j:j+k])
        score = forward[i][j] * table[epron][jseg]
        forward[i+1][j+k] += score
```

totalprob *= forward[n][m]

[^0]

Example Forward Code

- for HW5. this example shows forward only.

```
n, m = len(eprons), len(jprons)
forward[0][0] = 1
for i in xrange(0, n):
    epron = eprons[i]
    for j in forward[i]:
        for k in range(1, min(m-j, 3)+1):
        jseg = tuple(jprons[j:j+k])
        score = forward[i][j] * table[epron][jseg]
        forward[i+1][j+k] += score
```

totalprob *= forward[n][m]

Example Forward Code

- for HW5. this example shows forward only.

```
n, m = len(eprons), len(jprons)
forward[0][0] = 1
```

for i in xrange (0, n):
epron = eprons[i]
for j in forward[i]:

forw $[s]=\operatorname{back}[t]=1.0$

$$
\text { for } k \text { in range }(1, \min (m-j, 3)+1) \text { : }
$$

$$
j s e g=\text { tuple(jprons[j:j+k]) }
$$

$$
\text { score }=\text { forward[i][j] * table[epron][jseg] }
$$

forward[i+1][j+k] += score
totalprob *= forward[n][m]

CS 562-EM

EM: fast version (DP)

- initialize the conditional prob. table to uniform
- repeat until converged:
- E-step:

- for each training example x (here: (e...e, j...j) pair):
- forward from s to t; note: forw $[t]=p(x)=\operatorname{sum}_{z} p(x, z)$
- backward from t to s; note: back[t]=I;back[s] = forw[t]
- for each edge (u, v) in the DP graph with label $(u, v)=z_{i}$
- fraccount $\left(z_{i}\right)+=$ forw $[u] * \operatorname{back}[v] * \operatorname{prob}(u, v) / p(x)$
- M-step: count-n-divide on fraccounts)=> new model

EM

example: cryptanalysis

$$
\begin{aligned}
& x_{1} \cdots x_{n} \quad \text { observed ciphertext } \\
& z_{1} \cdots z_{n} \quad \text { hidden plaintext } \\
& b\left(z_{j} \mid z_{k}\right) \quad \text { sound bigrom probsilities } \\
& t\left(x_{j} \mid z_{k}\right) \quad \text { channel substitution ("encoding") probs } \\
& P\left(x_{1} \cdots x_{n}, z_{1} \cdots z_{n}\right) \quad=\prod_{i=1}^{n} b\left(z_{i} \mid z_{i-1}\right) \cdot t\left(x_{i} \mid z_{i}\right) \\
& P\left(x_{1} \cdots x_{m}\right) \quad=\sum_{z_{1} \cdots z_{n}}^{\prod_{i=1}^{n} b\left(z_{i} \mid z_{i-1}\right) \cdot t\left(x_{i} \mid z_{i}\right)} \\
& P\left(z_{1} \cdots z_{n} \mid x_{1} \cdots x_{n}\right) \quad=\frac{P\left(x_{1} \cdots x_{n}, z_{1} \cdots z_{n}\right)}{P\left(x_{1} \cdots x_{n}\right)}
\end{aligned}
$$

OBSERVABLE, FIXED
HIDDEN
PROB.

Why EM increases p(data) iteratively?

$$
D=\log p(x ; \theta)=\log \sum_{z} p(x, z ; \theta) \frac{p\left(z \mid x ; \theta_{t}\right)}{p\left(z \mid x ; \theta_{t}\right)} .
$$

Why EM increases p(data) iteratively?

$$
D=\log p(x ; \theta)=\log \sum_{z} p(x, z ; \theta) \frac{p\left(z \mid x ; \theta_{t}\right)}{p\left(z \mid x ; \theta_{t}\right)} .
$$

Note that $\sum_{z} p\left(z \mid x ; \theta_{t}\right)=1$ and $p\left(z \mid x ; \theta_{t}\right) \geq 0$ for all z. Therefore D is the logarithm of a weighted sum, so we can apply Jensen's inequality, which says $\log \sum_{j} w_{j} v_{j} \geq \sum_{j} w_{j} \log v_{j}$, given $\sum_{j} w_{j}=1$ and each $w_{j} \geq 0$. Here, we let the sum range over the values z of Z, with the weight w_{j} being $p\left(z \mid x ; \theta_{t}\right)$. We get

$$
D \geq E=\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log \frac{p(x, z ; \theta)}{p\left(z \mid x ; \theta_{t}\right)}
$$

Why EM increases p(data) iteratively?

$$
D=\log p(x ; \theta)=\log \sum_{z} p(x, z ; \theta) \frac{p\left(z \mid x ; \theta_{t}\right)}{p\left(z \mid x ; \theta_{t}\right)} .
$$

Note that $\sum_{z} p\left(z \mid x ; \theta_{t}\right)=1$ and $p\left(z \mid x ; \theta_{t}\right) \geq 0$ for all z. Therefore D is the logarithm of a weighted sum, so we can apply Jensen's inequality, which says $\log \sum_{j} w_{j} v_{j} \geq \sum_{j} w_{j} \log v_{j}$, given $\sum_{j} w_{j}=1$ and each $w_{j} \geq 0$. Here, we let the sum range over the values z of Z, with the weight w_{j} being $p\left(z \mid x ; \theta_{t}\right)$. We get

$$
D \geq E=\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log \frac{p(x, z ; \theta)}{p\left(z \mid x ; \theta_{t}\right)}
$$

Separating the fraction inside the logarithm to obtain two sums gives

$$
E=\left(\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta)\right)-\left(\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p\left(z \mid x ; \theta_{t}\right)\right)
$$

Since $E \leq D$ and we want to maximize D, consider maximizing E. The weights $p\left(z \mid x ; \theta_{t}\right)$ do not depend on θ, so we only need to maximize the first sum, which is

$$
\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta)
$$

Why EM increases p(data) iteratively?

How do we know that maximizing E actually leads to an improvement in the likelihood? With $\theta=\theta_{t}$,

$$
E=\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log \frac{p\left(x, z ; \theta_{t}\right)}{p\left(z \mid x ; \theta_{t}\right)}=\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p\left(x ; \theta_{t}\right)=\log p\left(x ; \theta_{t}\right)
$$

How to maximize the auxiliary?

$$
\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta)
$$

In general, the E-step of an EM algorithm is to compute $p\left(z \mid x ; \theta_{t}\right)$ for all z. The \mathbf{M}-step is then to find θ to maximize $\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta)$.

How to maximize the auxiliary?

$$
\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta)
$$

In general, the E-step of an EM algorithm is to compute $p\left(z \mid x ; \theta_{t}\right)$ for all z. The M -step is then to find θ to maximize $\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta)$.

W AI N	W AI N	W AI N			
$1 /$	$\mid 1 \backslash \backslash$	$\\| \backslash \$ \hline W A I N & W A I N & W A I N \hline $p(z \mid x)=0.5$	$p\left(z^{\prime} \mid x\right)=0$	$p\left(z^{\prime \prime} \mid x\right)=$	

How to maximize the auxiliary?

$$
\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta) .
$$

In general, the E-step of an EM algorithm is to compute $p\left(z \mid x ; \theta_{t}\right)$ for all z. The M -step is then to find θ to maximize $\sum_{z} p\left(z \mid x ; \theta_{t}\right) \log p(x, z ; \theta)$.

[^0]: CS 562-EM

