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Overview!
n Why MT!
n Statistical vs. rule-based MT!
n Computing translation probabilities from a 

parallel corpus!
n  IBM Models 1-3!
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A Brief History!
n Machine translation was one of the first 

applications envisioned for computers!
n Warren Weaver (1949): “I have a text in front of me 

which is written in Russian but I am going to pretend that it is 
really written in English and that it has been coded in some 
strange symbols. All I need to do is strip off the code in order to 
retrieve the information contained in the text.”!

n First demonstrated by IBM in 1954 with a 
basic word-for-word translation system!
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Interest in MT!
n Commercial interest:!

n  U.S. has invested in MT for intelligence 
purposes!

n  MT is popular on the web—it is the most 
used of Google’s special features!

n  EU spends more than $1 billion on translation 
costs each year.!

n  (Semi-)automated translation could lead to 
huge savings!
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Interest in MT!
n  Academic interest:!

n  One of the most challenging problems in NLP 
research!

n  Requires knowledge from many NLP sub-areas, e.g., 
lexical semantics, parsing, morphological analysis, 
statistical modeling,…!

n  Being able to establish links between two languages 
allows for transferring resources from one language 
to another!

!
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Rule-Based vs. Statistical MT!
n  Rule-based MT:!

n  Hand-written transfer rules!
n  Rules can be based on lexical or structural transfer!
n  Pro: firm grip on complex translation phenomena!
n  Con: Often very labor-intensive -> lack of robustness!

n  Statistical MT!
n  Mainly word or phrase-based translations!
n  Translation are learned from actual data!
n  Pro: Translations are learned automatically!
n  Con: Difficult to model complex translation 

phenomena!
!
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Parallel Corpus!
n Example from DE-News (8/1/1996)!
!English! German!

Diverging opinions about planned 
tax reform!

Unterschiedliche Meinungen zur 
geplanten Steuerreform !

The discussion around the 
envisaged major tax reform 
continues .!

Die Diskussion um die 
vorgesehene grosse Steuerreform 
dauert an .!

The FDP economics expert , Graf 
Lambsdorff , today came out in 
favor of advancing the enactment 
of significant parts of the 
overhaul , currently planned for 
1999 .!

Der FDP - Wirtschaftsexperte Graf 
Lambsdorff sprach sich heute 
dafuer aus , wesentliche Teile der 
fuer 1999 geplanten Reform 
vorzuziehen .!
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Word-Level Alignments!
n Given a parallel sentence pair we can link 

(align) words or phrases that are 
translations of each other:!

!
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Parallel Resources!
n  Newswire: DE-News (German-English), Hong-

Kong News, Xinhua News (Chinese-English),!
n  Government: Canadian-Hansards (French-

English), Europarl (Danish, Dutch, English, 
Finnish, French, German, Greek, Italian, 
Portugese, Spanish, Swedish), UN Treaties 
(Russian, English, Arabic, . . . )!

n  Manuals: PHP, KDE, OpenOffice (all from 
OPUS, many languages)!

n  Web pages: STRAND project (Philip Resnik)!
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Sentence Alignment!
n  If document De is translation of document Df 

how do we find the translation for each 
sentence?!

n  The n-th sentence in De is not necessarily the 
translation of the n-th sentence in document Df!

n  In addition to 1:1 alignments, there are also 1:0, 
0:1, 1:n, and n:1 alignments!

n  Approximately 90% of the sentence alignments 
are 1:1!
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Sentence Alignment (c’ntd)!
n  There are several sentence alignment 

algorithms:!
n  Align (Gale & Church): Aligns sentences based on 

their character length (shorter sentences tend to 
have shorter translations then longer sentences). 
Works astonishingly well!

n  Char-align: (Church): Aligns based on shared 
character sequences. Works fine for similar 
languages or technical domains!

n  K-Vec (Fung & Church): Induces a translation lexicon 
from the parallel texts based on the distribution of 
foreign-English word pairs.!
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Computing Translation Probabilities!
n  Given a parallel corpus we can estimate        

P(e | f) The maximum likelihood estimation of 
P(e | f) is: freq(e,f)/freq(f)!

n  Way too specific to get any reasonable 
frequencies! Vast majority of unseen data will 
have zero counts!!

n  P(e | f ) could be re-defined as:!
              !
!
n  Problem: The English words maximizing !
   P(e | f ) might not result in a readable sentence!

€ 

P(e | f ) = max
eif j

∏ P(ei | f j )
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Computing Translation Probabilities 
(c’tnd)!
n  We can account for adequacy: each foreign 

word translates into its most likely English word!
n  We cannot guarantee that this will result in a 

fluent English sentence!
n  Solution: transform P(e | f) with Bayes’ rule:  

P(e | f) = P(e) P(f | e) / P(f)!
n  P(f | e) accounts for adequacy!
n  P(e) accounts for fluency!
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Decoding!
n  The decoder combines the evidence from P(e) 

and P(f | e) to find the sequence e that is the 
best translation:!

n  The choice of word e’ as translation of f’ 
depends on the translation probability P(f’ | e’) 
and on the context, i.e. other English words 
preceding e’!€ 

argmax
e

P(e | f ) = argmax
e

P( f | e)P(e)
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Noisy Channel Model for Translation!
!
!
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Language Modeling!
n  Determines the probability of some English 

sequence         of length l!
n  P(e) is hard to estimate directly, unless l is very 

small!
!
n  P(e) is normally approximated as:!
!
!
!where m is size of the context, i.e. number of 
previous words that are considered, normally 
m=2 (tri-gram language model!

!

€ 

e1
l

€ 

P(e1
l ) = P(e1 ) P(eii= 2

l
∏ | e1

i−1)

€ 

P(e1
l ) = P(e1 )P(e2 | e1) P(eii= 3

l
∏ | ei−m

i−1 )
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Translation Modeling!
n  Determines the probability that the foreign word 

f is a translation of the English word e!
n  How to compute P(f | e) from a parallel corpus?!
n  Statistical approaches rely on the co-

occurrence of e and f in the parallel data: If e 
and f tend to co-occur in parallel sentence pairs, 
they are likely to be translations of one another!
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Finding Translations in a Parallel Corpus!
n  Into which foreign words f, . . . , f’ does e 

translate?!
n  Commonly, four factors are used:!

n  How often do e and f co-occur? (translation)!
n  How likely is a word occurring at position i to 

translate into a word occurring at position j? 
(distortion) For example: English is a verb-second 
language, whereas German is a verb-final language!

n  How likely is e to translate into more than one word? 
(fertility) For example: defeated can translate into 
eine Niederlage erleiden!

n  How likely is a foreign word to be spuriously 
generated? (null translation)!
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Translation Steps!
 !
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IBM Models 1–5!
n  Model 1: Bag of words!

n  Unique local maxima!
n  Efficient EM algorithm (Model 1–2)!

n  Model 2: General alignment: !
n  Model 3: fertility: n(k | e)!

n  No full EM, count only neighbors (Model 3–5)!
n  Deficient (Model 3–4)!

n  Model 4: Relative distortion, word classes!
n  Model 5: Extra variables to avoid deficiency!

€ 

a(epos | f pos,elength, f length )



21!

IBM Model 1!
n  Given an English sentence e1 . . . el and a foreign sentence 

f1 . . . fm!
n  We want to find the ’best’ alignment a, where a is a set pairs of 

the form {(i , j), . . . , (i’, j’)}, !
    0<= i , i’ <=  l and 1<= j , j’<= m!
n  Note that if (i , j), (i’, j) are in a, then i equals i’, i.e. no many-to-

one alignments are allowed!
n  Note we add a spurious NULL word to the English sentence at 

position 0!
n  In total there are (l + 1)m different alignments A!
n  Allowing for many-to-many alignments results in (2l)m possible 

alignments A!
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IBM Model 1!
n Simplest of the IBM models!
n Does not consider word order (bag-of-

words approach)!
n Does not model one-to-many alignments!
n Computationally inexpensive!
n Useful for parameter estimations that are 

passed on to more elaborate models!
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IBM Model 1!
n  Translation probability in terms of alignments:!
!
!where:!

!
!!
!!
!and:!

€ 

P( f | e) = P( f ,a | e)
a∈A
∑

€ 

P( f ,a | e) = P(a | e) ⋅ P( f | a,e)

=
1

(l +1)m
P( f j

j=1

m

∏ | ea j
)

€ 

P( f | e) =
1

(l +1)m
P( f j

j=1

m

∏ | ea j
)

a∈A
∑
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IBM Model 1!
n We want to find the most likely alignment:!

n Since P(a | e) is the same for all a:!

n Problem: We still have to enumerate all 
alignments!

argmax
a∈A

1
(l +1)m

P( f j
j=1

m

∏ | eaj )

€ 

argmax
a∈A

P( f j
j=1

m

∏ | ea j
)
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IBM Model 1!
n  Since P(fj | ei) is independent from P(fj’ | ei’) we 

can find the maximum alignment by looking at 
the individual translation probabilities only!

n  Let                               , then for each aj:!

!
n  The best alignment can computed in a 

quadratic number of steps: (l+1 x m)!
!

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

€ 

argmax
a∈A

= (a1, ... ,am )

€ 

a j = argmax
0≤ i≤ l

P( f j | ei)
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Computing Model 1 Parameters!
n How to compute translation probabilities 

for model 1 from a parallel corpus?!
n Step 1: Determine candidates. For each 

English word e collect all foreign words f 
that co-occur at least once with e!

n Step 2: Initialize P(f | e) uniformly, i.e.   !
n  P(f | e) = 1/(no of co-occurring foreign words)!
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Computing Model 1 Parameters!
n  Step 3: Iteratively refine translation probablities:!
!1    for n iterations!

       2        set tc to zero!
!3         for each sentence pair (e,f) of lengths (l,m)!
!4              for j=1 to m!

      5                    total=0;!
      6                    for i=1 to l!
      7                          total += P(fj | ei);!
      8                    for i=1 to l!

!9                         tc(fj | ei) += P(fj | ei)/total;!
    10         for each word e!
    11               total=0; !
    12               for each word f s.t. tc(f | e) is defined!
    13                     total += tc(f | e);!
    14               for each word f s.t. tc(f | e) is defined!
    15                     P(f | e) = tc(f | e)/total;!
!
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IBM Model 1 Example!
n  Parallel ‘corpus’:!

the dog :: le chien!
the cat :: le chat!

n  Step 1+2 (collect candidates and initialize 
uniformly):!
P(le | the)     = P(chien | the)    = P(chat | the)     = 1/3!
P(le | dog)    = P(chien | dog)   = P(chat | dog)    = 1/3!
P(le | cat)     = P(chien | cat)     = P(chat | cat)     = 1/3!
P(le | NULL) = P(chien | NULL) = P(chat | NULL) = 1/3!
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IBM Model 1 Example!
n  Step 3: Iterate!
n  NULL the dog :: le chien!

n  j=1 !
!total =  P(le | NULL)+P(le | the)+P(le | dog)= 1!
!tc(le | NULL) += P(le | NULL)/1  != 0 += .333/1 = 0.333!
!tc(le | the) += P(le | the)/1 ! != 0 += .333/1 = 0.333!
!tc(le | dog) += P(le | dog)/1 ! != 0 += .333/1 = 0.333!

n  j=2!
!total =  P(chien | NULL)+P(chien | the)+P(chien | dog)=1!
!tc(chien | NULL) += P(chien | NULL)/1    = 0 += .333/1 = 0.333!
!tc(chien | the) += P(chien | the)/1 ! = 0 += .333/1 = 0.333!
!tc(chien | dog) += P(chien | dog)/1 ! = 0 += .333/1 = 0.333!
! ! ! !!
! ! ! !   !
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IBM Model 1 Example!
n  NULL the cat :: le chat!

n  j=1 !
!total =  P(le | NULL)+P(le | the)+P(le | cat)=1!
!tc(le | NULL) += P(le | NULL)/1    != 0.333 += .333/1 = 0.666!
!tc(le | the) += P(le | the)/1           != 0.333 += .333/1 = 0.666!
!tc(le | cat) += P(le | cat)/1           != 0        +=.333/1  = 0.333!

n  j=2!
!total =  P(chien | NULL)+P(chien | the)+P(chien | dog)=1!
!tc(chat | NULL) += P(chat | NULL)/1 != 0 += .333/1  = 0.333!
!tc(chat | the) += P(chat | the)/1            != 0 += .333/1  = 0.333!
!tc(chat | cat) += P(chat | dog)/1           != 0 += .333/1  = 0.333!
! ! ! !!
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IBM Model 1 Example!
n  Re-compute translation probabilities !

n  total(the) = tc(le | the) + tc(chien | the) + tc(chat | the)!
! !                 = 0.666 + 0.333 + 0.333 = 1.333!

    P(le | the) = tc(le | the)/total(the)!
! ! !     =  0.666 / 1.333 = 0.5!

    P(chien | the) = tc(chien | the)/total(the)!
!                          = 0.333/1.333 0.25!

    P(chat | the) = tc(chat | the)/total(the)!
!                          = 0.333/1.333 0.25!

n  total(dog) = tc(le | dog) + tc(chien | dog) = 0.666!
     P(le | dog) = tc(le | dog)/total(dog)!
! ! !     =  0.333 / 0.666 = 0.5!

     P(chien | dog) = tc(chien | dog)/total(dog)!
! ! !     =  0.333 / 0.666 = 0.5!
! ! ! !
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IBM Model 1 Example!
n  Iteration 2:!
n  NULL the dog :: le chien!

n  j=1 !
!total =  P(le | NULL)+P(le | the)+P(le | dog)= 1.5!

             = 0.5 + 0.5 + 0.5 = 1.5!
!tc(le | NULL) += P(le | NULL)/1  != 0 += .5/1.5 = 0.333!
!tc(le | the) += P(le | the)/1 ! != 0 += .5/1.5 = 0.333!
!tc(le | dog) += P(le | dog)/1 ! != 0 += .5/1.5 = 0.333!

n  j=2!
!total =  P(chien | NULL)+P(chien | the)+P(chien | dog)=1!

             = 0.25 + 0.25 + 0.5 = 1!
!tc(chien | NULL) += P(chien | NULL)/1    = 0 += .25/1 = 0.25!
!tc(chien | the) += P(chien | the)/1 ! = 0 += .25/1 = 0.25!
!tc(chien | dog) += P(chien | dog)/1 ! = 0 += .5/1   = 0.5!

!
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IBM Model 1 Example!
n  NULL the cat :: le chat!

n  j=1 !
!total =  P(le | NULL)+P(le | the)+P(le | cat)= 1.5!

             = 0.5 + 0.5 + 0.5 = 1.5!
!tc(le | NULL) += P(le | NULL)/1  != 0.333 += .5/1 = 0.833!
!tc(le | the) += P(le | the)/1 ! != 0.333 += .5/1 = 0.833!
!tc(le | cat) += P(le | cat)/1 ! != 0    += .5/1 = 0.5!

n  j=2!
!total =  P(chat | NULL)+P(chat | the)+P(chat | cat)=1!

             = 0.25 + 0.25 + 0.5 = 1!
!tc(chat | NULL) += P(chat | NULL)/1       = 0 += .25/1 = 0.25!
!tc(chat | the) += P(chat | the)/1 ! = 0 += .25/1 = 0.25!
!tc(chat | cat) += P(chat | cat)/1 ! = 0 += .5/1   = 0.5!
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IBM Model 1 Example!
n  Re-compute translations (iteration 2):!

n  total(the) = tc(le | the) + tc(chien | the) + tc(chat | the)!
! !                 = .833 + 0.25 + 0.25 = 1.333!

    P(le | the) = tc(le | the)/total(the)!
! ! !     =  .833 / 1.333 = 0.625!

    P(chien | the) = tc(chien | the)/total(the)!
!                          = 0.25/1.333 = 0.188!

    P(chat | the) = tc(chat | the)/total(the)!
!                          = 0.25/1.333 = 0.188!

n  total(dog) = tc(le | dog) + tc(chien | dog)!
                    = 0.333 + 0.5 = 0.833!
     P(le | dog) = tc(le | dog)/total(dog)!
! ! !     =  0.333 / 0.833 = 0.4!

     P(chien | dog) = tc(chien | dog)/total(dog)!
! ! !     =  0.5 / 0.833 = 0.6!
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IBM Model 1Example!
n  After 5 iterations:!
   P(le | NULL) = 0.755608028335301!
   P(chien | NULL) = 0.122195985832349!
   P(chat | NULL) = 0.122195985832349!
   P(le | the) = 0.755608028335301!
   P(chien | the) = 0.122195985832349!
   P(chat | the) = 0.122195985832349!
   P(le | dog) = 0.161943319838057!
   P(chien | dog) = 0.838056680161943!
   P(le | cat) = 0.161943319838057!
   P(chat | cat) = 0.838056680161943!
!
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IBM Model 1 Recap!
n  IBM Model 1 allows for an efficient computation 

of translation probabilities!
n  No notion of fertility, i.e., it’s possible that the 

same English word is the best translation for all 
foreign words!

n  No positional information, i.e., depending on the 
language pair, there might be a tendency that 
words occurring at the beginning of the English 
sentence are more likely to align to words at the 
beginning of the foreign sentence!
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IBM Model 3!
n  IBM Model 3 offers two additional 

features compared to IBM Model 1:!
n  How likely is an English word e to align to k 

foreign words (fertility)? !
n  Positional information (distortion), how likely 

is a word in position i to align to a word in 
position j?!
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IBM Model 3: Fertility!
n  The best Model 1 alignment could be that a single English 

word aligns to all foreign words!
n  This is clearly not desirable and we want to constrain the 

number of words an English word can align to !
n  Fertility models a probability distribution that word e aligns 

to k words: n(k,e)!
n  Consequence: translation probabilities cannot be 

computed independently of each other anymore!
n  IBM Model 3 has to work with full alignments, note there 

are up to (l+1)m different alignments!
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IBM Model 1 + Model 3!
n  Iterating over all possible alignments is 

computationally infeasible!
n Solution: Compute the best alignment 

with Model 1 and change some of the 
alignments to generate a set of likely 
alignments (pegging)!

n Model 3 takes this restricted set of 
alignments as input!
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Pegging!
n Given an alignment a we can derive 

additional alignments from it by making 
small changes:!
n  Changing a link (j,i) to (j,i’)!
n  Swapping a pair of links (j,i) and (j’,i’) to (j,i’) 

and (j’,i) !
n The resulting set of alignments is called 

the neighborhood of a!
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IBM Model 3: Distortion!
n  The distortion factor determines how likely it is 

that an English word in position i aligns to a 
foreign word in position j, given the lengths of 
both sentences:  !

                           d(j | i, l, m)!
n  Note, positions are absolute positions!

!
 !
!
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Deficiency!
n  Problem with IBM Model 3: It assigns probability 

mass to impossible strings!
n  Well formed string: “This is possible”!
n  Ill-formed but possible string: “This possible is”!
n  Impossible string:!

n  Impossible strings are due to distortion values 
that generate different words at the same 
position!

n  Impossible strings can still be filtered out in later 
stages of the translation process!
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Limitations of IBM Models!
n  Only 1-to-N word mapping!
n  Handling fertility-zero words (difficult for 

decoding)!
n  Almost no syntactic information!

n  Word classes!
n  Relative distortion!

n  Long-distance word movement!
n  Fluency of the output depends entirely on the 

English language model!
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Decoding!
n  How to translate new sentences?!
n  A decoder uses the parameters learned on a 

parallel corpus!
n  Translation probabilities!
n  Fertilities!
n  Distortions!

n  In combination with a language model the 
decoder generates the most likely translation!

n  Standard algorithms can be used to explore the 
search space (A*, greedy searching, …)!

n  Similar to the traveling salesman problem!


