
1!

Statistical Machine Translation!
!
 Bonnie Dorr Christof Monz!
!
CMSC 723: Introduction to Computational Linguistics!
!
 Lecture 8!
!
 October 27, 2004!

!
!

2!

Overview!
n Why MT!
n Statistical vs. rule-based MT!
n Computing translation probabilities from a

parallel corpus!
n  IBM Models 1-3!

3!

A Brief History!
n Machine translation was one of the first

applications envisioned for computers!
n Warren Weaver (1949): “I have a text in front of me

which is written in Russian but I am going to pretend that it is
really written in English and that it has been coded in some
strange symbols. All I need to do is strip off the code in order to
retrieve the information contained in the text.”!

n First demonstrated by IBM in 1954 with a
basic word-for-word translation system!

4!

Interest in MT!
n Commercial interest:!

n  U.S. has invested in MT for intelligence
purposes!

n  MT is popular on the web—it is the most
used of Google’s special features!

n  EU spends more than $1 billion on translation
costs each year.!

n  (Semi-)automated translation could lead to
huge savings!

5!

Interest in MT!
n  Academic interest:!

n  One of the most challenging problems in NLP
research!

n  Requires knowledge from many NLP sub-areas, e.g.,
lexical semantics, parsing, morphological analysis,
statistical modeling,…!

n  Being able to establish links between two languages
allows for transferring resources from one language
to another!

!

6!

Rule-Based vs. Statistical MT!
n  Rule-based MT:!

n  Hand-written transfer rules!
n  Rules can be based on lexical or structural transfer!
n  Pro: firm grip on complex translation phenomena!
n  Con: Often very labor-intensive -> lack of robustness!

n  Statistical MT!
n  Mainly word or phrase-based translations!
n  Translation are learned from actual data!
n  Pro: Translations are learned automatically!
n  Con: Difficult to model complex translation

phenomena!
!

7!

Parallel Corpus!
n Example from DE-News (8/1/1996)!
!English! German!

Diverging opinions about planned
tax reform!

Unterschiedliche Meinungen zur
geplanten Steuerreform !

The discussion around the
envisaged major tax reform
continues .!

Die Diskussion um die
vorgesehene grosse Steuerreform
dauert an .!

The FDP economics expert , Graf
Lambsdorff , today came out in
favor of advancing the enactment
of significant parts of the
overhaul , currently planned for
1999 .!

Der FDP - Wirtschaftsexperte Graf
Lambsdorff sprach sich heute
dafuer aus , wesentliche Teile der
fuer 1999 geplanten Reform
vorzuziehen .!

8!

Word-Level Alignments!
n Given a parallel sentence pair we can link

(align) words or phrases that are
translations of each other:!

!

9!

Parallel Resources!
n  Newswire: DE-News (German-English), Hong-

Kong News, Xinhua News (Chinese-English),!
n  Government: Canadian-Hansards (French-

English), Europarl (Danish, Dutch, English,
Finnish, French, German, Greek, Italian,
Portugese, Spanish, Swedish), UN Treaties
(Russian, English, Arabic, . . .)!

n  Manuals: PHP, KDE, OpenOffice (all from
OPUS, many languages)!

n  Web pages: STRAND project (Philip Resnik)!

10!

Sentence Alignment!
n  If document De is translation of document Df

how do we find the translation for each
sentence?!

n  The n-th sentence in De is not necessarily the
translation of the n-th sentence in document Df!

n  In addition to 1:1 alignments, there are also 1:0,
0:1, 1:n, and n:1 alignments!

n  Approximately 90% of the sentence alignments
are 1:1!

11!

Sentence Alignment (c’ntd)!
n  There are several sentence alignment

algorithms:!
n  Align (Gale & Church): Aligns sentences based on

their character length (shorter sentences tend to
have shorter translations then longer sentences).
Works astonishingly well!

n  Char-align: (Church): Aligns based on shared
character sequences. Works fine for similar
languages or technical domains!

n  K-Vec (Fung & Church): Induces a translation lexicon
from the parallel texts based on the distribution of
foreign-English word pairs.!

12!

Computing Translation Probabilities!
n  Given a parallel corpus we can estimate

P(e | f) The maximum likelihood estimation of
P(e | f) is: freq(e,f)/freq(f)!

n  Way too specific to get any reasonable
frequencies! Vast majority of unseen data will
have zero counts!!

n  P(e | f) could be re-defined as:!
 !
!
n  Problem: The English words maximizing !
 P(e | f) might not result in a readable sentence!

€

P(e | f) = max
eif j

∏ P(ei | f j)

13!

Computing Translation Probabilities
(c’tnd)!
n  We can account for adequacy: each foreign

word translates into its most likely English word!
n  We cannot guarantee that this will result in a

fluent English sentence!
n  Solution: transform P(e | f) with Bayes’ rule:

P(e | f) = P(e) P(f | e) / P(f)!
n  P(f | e) accounts for adequacy!
n  P(e) accounts for fluency!

14!

Decoding!
n  The decoder combines the evidence from P(e)

and P(f | e) to find the sequence e that is the
best translation:!

n  The choice of word e’ as translation of f’
depends on the translation probability P(f’ | e’)
and on the context, i.e. other English words
preceding e’!€

argmax
e

P(e | f) = argmax
e

P(f | e)P(e)

15!

Noisy Channel Model for Translation!
!
!

16!

Language Modeling!
n  Determines the probability of some English

sequence of length l!
n  P(e) is hard to estimate directly, unless l is very

small!
!
n  P(e) is normally approximated as:!
!
!
!where m is size of the context, i.e. number of
previous words that are considered, normally
m=2 (tri-gram language model!

!

€

e1
l

€

P(e1
l) = P(e1) P(eii= 2

l
∏ | e1

i−1)

€

P(e1
l) = P(e1)P(e2 | e1) P(eii= 3

l
∏ | ei−m

i−1)

17!

Translation Modeling!
n  Determines the probability that the foreign word

f is a translation of the English word e!
n  How to compute P(f | e) from a parallel corpus?!
n  Statistical approaches rely on the co-

occurrence of e and f in the parallel data: If e
and f tend to co-occur in parallel sentence pairs,
they are likely to be translations of one another!

18!

Finding Translations in a Parallel Corpus!
n  Into which foreign words f, . . . , f’ does e

translate?!
n  Commonly, four factors are used:!

n  How often do e and f co-occur? (translation)!
n  How likely is a word occurring at position i to

translate into a word occurring at position j?
(distortion) For example: English is a verb-second
language, whereas German is a verb-final language!

n  How likely is e to translate into more than one word?
(fertility) For example: defeated can translate into
eine Niederlage erleiden!

n  How likely is a foreign word to be spuriously
generated? (null translation)!

19!

Translation Steps!
 !

20!

IBM Models 1–5!
n  Model 1: Bag of words!

n  Unique local maxima!
n  Efficient EM algorithm (Model 1–2)!

n  Model 2: General alignment: !
n  Model 3: fertility: n(k | e)!

n  No full EM, count only neighbors (Model 3–5)!
n  Deficient (Model 3–4)!

n  Model 4: Relative distortion, word classes!
n  Model 5: Extra variables to avoid deficiency!

€

a(epos | f pos,elength, f length)

21!

IBM Model 1!
n  Given an English sentence e1 . . . el and a foreign sentence

f1 . . . fm!
n  We want to find the ’best’ alignment a, where a is a set pairs of

the form {(i , j), . . . , (i’, j’)}, !
 0<= i , i’ <= l and 1<= j , j’<= m!
n  Note that if (i , j), (i’, j) are in a, then i equals i’, i.e. no many-to-

one alignments are allowed!
n  Note we add a spurious NULL word to the English sentence at

position 0!
n  In total there are (l + 1)m different alignments A!
n  Allowing for many-to-many alignments results in (2l)m possible

alignments A!

22!

IBM Model 1!
n Simplest of the IBM models!
n Does not consider word order (bag-of-

words approach)!
n Does not model one-to-many alignments!
n Computationally inexpensive!
n Useful for parameter estimations that are

passed on to more elaborate models!

23!

IBM Model 1!
n  Translation probability in terms of alignments:!
!
!where:!

!
!!
!!
!and:!

€

P(f | e) = P(f ,a | e)
a∈A
∑

€

P(f ,a | e) = P(a | e) ⋅ P(f | a,e)

=
1

(l +1)m
P(f j

j=1

m

∏ | ea j
)

€

P(f | e) =
1

(l +1)m
P(f j

j=1

m

∏ | ea j
)

a∈A
∑

24!

IBM Model 1!
n We want to find the most likely alignment:!

n Since P(a | e) is the same for all a:!

n Problem: We still have to enumerate all
alignments!

argmax
a∈A

1
(l +1)m

P(f j
j=1

m

∏ | eaj)

€

argmax
a∈A

P(f j
j=1

m

∏ | ea j
)

25!

IBM Model 1!
n  Since P(fj | ei) is independent from P(fj’ | ei’) we

can find the maximum alignment by looking at
the individual translation probabilities only!

n  Let , then for each aj:!

!
n  The best alignment can computed in a

quadratic number of steps: (l+1 x m)!
!

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

€

argmax
a∈A

= (a1, ... ,am)

€

a j = argmax
0≤ i≤ l

P(f j | ei)

26!

Computing Model 1 Parameters!
n How to compute translation probabilities

for model 1 from a parallel corpus?!
n Step 1: Determine candidates. For each

English word e collect all foreign words f
that co-occur at least once with e!

n Step 2: Initialize P(f | e) uniformly, i.e. !
n  P(f | e) = 1/(no of co-occurring foreign words)!

27!

Computing Model 1 Parameters!
n  Step 3: Iteratively refine translation probablities:!
!1 for n iterations!

 2 set tc to zero!
!3 for each sentence pair (e,f) of lengths (l,m)!
!4 for j=1 to m!

 5 total=0;!
 6 for i=1 to l!
 7 total += P(fj | ei);!
 8 for i=1 to l!

!9 tc(fj | ei) += P(fj | ei)/total;!
 10 for each word e!
 11 total=0; !
 12 for each word f s.t. tc(f | e) is defined!
 13 total += tc(f | e);!
 14 for each word f s.t. tc(f | e) is defined!
 15 P(f | e) = tc(f | e)/total;!
!

28!

IBM Model 1 Example!
n  Parallel ‘corpus’:!

the dog :: le chien!
the cat :: le chat!

n  Step 1+2 (collect candidates and initialize
uniformly):!
P(le | the) = P(chien | the) = P(chat | the) = 1/3!
P(le | dog) = P(chien | dog) = P(chat | dog) = 1/3!
P(le | cat) = P(chien | cat) = P(chat | cat) = 1/3!
P(le | NULL) = P(chien | NULL) = P(chat | NULL) = 1/3!

29!

IBM Model 1 Example!
n  Step 3: Iterate!
n  NULL the dog :: le chien!

n  j=1 !
!total = P(le | NULL)+P(le | the)+P(le | dog)= 1!
!tc(le | NULL) += P(le | NULL)/1 != 0 += .333/1 = 0.333!
!tc(le | the) += P(le | the)/1 ! != 0 += .333/1 = 0.333!
!tc(le | dog) += P(le | dog)/1 ! != 0 += .333/1 = 0.333!

n  j=2!
!total = P(chien | NULL)+P(chien | the)+P(chien | dog)=1!
!tc(chien | NULL) += P(chien | NULL)/1 = 0 += .333/1 = 0.333!
!tc(chien | the) += P(chien | the)/1 ! = 0 += .333/1 = 0.333!
!tc(chien | dog) += P(chien | dog)/1 ! = 0 += .333/1 = 0.333!
! ! ! !!
! ! ! ! !

30!

IBM Model 1 Example!
n  NULL the cat :: le chat!

n  j=1 !
!total = P(le | NULL)+P(le | the)+P(le | cat)=1!
!tc(le | NULL) += P(le | NULL)/1 != 0.333 += .333/1 = 0.666!
!tc(le | the) += P(le | the)/1 != 0.333 += .333/1 = 0.666!
!tc(le | cat) += P(le | cat)/1 != 0 +=.333/1 = 0.333!

n  j=2!
!total = P(chien | NULL)+P(chien | the)+P(chien | dog)=1!
!tc(chat | NULL) += P(chat | NULL)/1 != 0 += .333/1 = 0.333!
!tc(chat | the) += P(chat | the)/1 != 0 += .333/1 = 0.333!
!tc(chat | cat) += P(chat | dog)/1 != 0 += .333/1 = 0.333!
! ! ! !!

31!

IBM Model 1 Example!
n  Re-compute translation probabilities !

n  total(the) = tc(le | the) + tc(chien | the) + tc(chat | the)!
! ! = 0.666 + 0.333 + 0.333 = 1.333!

 P(le | the) = tc(le | the)/total(the)!
! ! ! = 0.666 / 1.333 = 0.5!

 P(chien | the) = tc(chien | the)/total(the)!
! = 0.333/1.333 0.25!

 P(chat | the) = tc(chat | the)/total(the)!
! = 0.333/1.333 0.25!

n  total(dog) = tc(le | dog) + tc(chien | dog) = 0.666!
 P(le | dog) = tc(le | dog)/total(dog)!
! ! ! = 0.333 / 0.666 = 0.5!

 P(chien | dog) = tc(chien | dog)/total(dog)!
! ! ! = 0.333 / 0.666 = 0.5!
! ! ! !

32!

IBM Model 1 Example!
n  Iteration 2:!
n  NULL the dog :: le chien!

n  j=1 !
!total = P(le | NULL)+P(le | the)+P(le | dog)= 1.5!

 = 0.5 + 0.5 + 0.5 = 1.5!
!tc(le | NULL) += P(le | NULL)/1 != 0 += .5/1.5 = 0.333!
!tc(le | the) += P(le | the)/1 ! != 0 += .5/1.5 = 0.333!
!tc(le | dog) += P(le | dog)/1 ! != 0 += .5/1.5 = 0.333!

n  j=2!
!total = P(chien | NULL)+P(chien | the)+P(chien | dog)=1!

 = 0.25 + 0.25 + 0.5 = 1!
!tc(chien | NULL) += P(chien | NULL)/1 = 0 += .25/1 = 0.25!
!tc(chien | the) += P(chien | the)/1 ! = 0 += .25/1 = 0.25!
!tc(chien | dog) += P(chien | dog)/1 ! = 0 += .5/1 = 0.5!

!

33!

IBM Model 1 Example!
n  NULL the cat :: le chat!

n  j=1 !
!total = P(le | NULL)+P(le | the)+P(le | cat)= 1.5!

 = 0.5 + 0.5 + 0.5 = 1.5!
!tc(le | NULL) += P(le | NULL)/1 != 0.333 += .5/1 = 0.833!
!tc(le | the) += P(le | the)/1 ! != 0.333 += .5/1 = 0.833!
!tc(le | cat) += P(le | cat)/1 ! != 0 += .5/1 = 0.5!

n  j=2!
!total = P(chat | NULL)+P(chat | the)+P(chat | cat)=1!

 = 0.25 + 0.25 + 0.5 = 1!
!tc(chat | NULL) += P(chat | NULL)/1 = 0 += .25/1 = 0.25!
!tc(chat | the) += P(chat | the)/1 ! = 0 += .25/1 = 0.25!
!tc(chat | cat) += P(chat | cat)/1 ! = 0 += .5/1 = 0.5!

34!

IBM Model 1 Example!
n  Re-compute translations (iteration 2):!

n  total(the) = tc(le | the) + tc(chien | the) + tc(chat | the)!
! ! = .833 + 0.25 + 0.25 = 1.333!

 P(le | the) = tc(le | the)/total(the)!
! ! ! = .833 / 1.333 = 0.625!

 P(chien | the) = tc(chien | the)/total(the)!
! = 0.25/1.333 = 0.188!

 P(chat | the) = tc(chat | the)/total(the)!
! = 0.25/1.333 = 0.188!

n  total(dog) = tc(le | dog) + tc(chien | dog)!
 = 0.333 + 0.5 = 0.833!
 P(le | dog) = tc(le | dog)/total(dog)!
! ! ! = 0.333 / 0.833 = 0.4!

 P(chien | dog) = tc(chien | dog)/total(dog)!
! ! ! = 0.5 / 0.833 = 0.6!

35!

IBM Model 1Example!
n  After 5 iterations:!
 P(le | NULL) = 0.755608028335301!
 P(chien | NULL) = 0.122195985832349!
 P(chat | NULL) = 0.122195985832349!
 P(le | the) = 0.755608028335301!
 P(chien | the) = 0.122195985832349!
 P(chat | the) = 0.122195985832349!
 P(le | dog) = 0.161943319838057!
 P(chien | dog) = 0.838056680161943!
 P(le | cat) = 0.161943319838057!
 P(chat | cat) = 0.838056680161943!
!

36!

IBM Model 1 Recap!
n  IBM Model 1 allows for an efficient computation

of translation probabilities!
n  No notion of fertility, i.e., it’s possible that the

same English word is the best translation for all
foreign words!

n  No positional information, i.e., depending on the
language pair, there might be a tendency that
words occurring at the beginning of the English
sentence are more likely to align to words at the
beginning of the foreign sentence!

37!

IBM Model 3!
n  IBM Model 3 offers two additional

features compared to IBM Model 1:!
n  How likely is an English word e to align to k

foreign words (fertility)? !
n  Positional information (distortion), how likely

is a word in position i to align to a word in
position j?!

38!

IBM Model 3: Fertility!
n  The best Model 1 alignment could be that a single English

word aligns to all foreign words!
n  This is clearly not desirable and we want to constrain the

number of words an English word can align to !
n  Fertility models a probability distribution that word e aligns

to k words: n(k,e)!
n  Consequence: translation probabilities cannot be

computed independently of each other anymore!
n  IBM Model 3 has to work with full alignments, note there

are up to (l+1)m different alignments!

39!

IBM Model 1 + Model 3!
n  Iterating over all possible alignments is

computationally infeasible!
n Solution: Compute the best alignment

with Model 1 and change some of the
alignments to generate a set of likely
alignments (pegging)!

n Model 3 takes this restricted set of
alignments as input!

40!

Pegging!
n Given an alignment a we can derive

additional alignments from it by making
small changes:!
n  Changing a link (j,i) to (j,i’)!
n  Swapping a pair of links (j,i) and (j’,i’) to (j,i’)

and (j’,i) !
n The resulting set of alignments is called

the neighborhood of a!

41!

IBM Model 3: Distortion!
n  The distortion factor determines how likely it is

that an English word in position i aligns to a
foreign word in position j, given the lengths of
both sentences: !

 d(j | i, l, m)!
n  Note, positions are absolute positions!

!
 !
!

42!

Deficiency!
n  Problem with IBM Model 3: It assigns probability

mass to impossible strings!
n  Well formed string: “This is possible”!
n  Ill-formed but possible string: “This possible is”!
n  Impossible string:!

n  Impossible strings are due to distortion values
that generate different words at the same
position!

n  Impossible strings can still be filtered out in later
stages of the translation process!

43!

Limitations of IBM Models!
n  Only 1-to-N word mapping!
n  Handling fertility-zero words (difficult for

decoding)!
n  Almost no syntactic information!

n  Word classes!
n  Relative distortion!

n  Long-distance word movement!
n  Fluency of the output depends entirely on the

English language model!

44!

Decoding!
n  How to translate new sentences?!
n  A decoder uses the parameters learned on a

parallel corpus!
n  Translation probabilities!
n  Fertilities!
n  Distortions!

n  In combination with a language model the
decoder generates the most likely translation!

n  Standard algorithms can be used to explore the
search space (A*, greedy searching, …)!

n  Similar to the traveling salesman problem!

