Statistical Machine Translation

Bonnie Dorr Christof Monz

CMSC 723: Introduction to Computational Linguistics
Lecture 8

October 27, 2004

Overview

- Why MT
- Statistical vs. rule-based MT
- Computing translation probabilities from a parallel corpus
- IBM Models 1-3

A Brief History

- Machine translation was one of the first applications envisioned for computers
- Warren Weaver (1949): "I have a text in front of me which is written in Russian but I am going to pretend that it is really written in English and that it has been coded in some strange symbols. All I need to do is strip off the code in order to retrieve the information contained in the text."
- First demonstrated by IBM in 1954 with a basic word-for-word translation system

Interest in MT

- Commercial interest:
- U.S. has invested in MT for intelligence purposes
- MT is popular on the web-it is the most used of Google's special features
- EU spends more than $\$ 1$ billion on translation costs each year.
- (Semi-)automated translation could lead to huge savings

Interest in MT

- Academic interest:
- One of the most challenging problems in NLP research
- Requires knowledge from many NLP sub-areas, e.g., lexical semantics, parsing, morphological analysis, statistical modeling,...
- Being able to establish links between two languages allows for transferring resources from one language to another

Rule-Based vs. Statistical MT

- Rule-based MT:
- Hand-written transfer rules
- Rules can be based on lexical or structural transfer
- Pro: firm grip on complex translation phenomena
- Con: Often very labor-intensive -> lack of robustness
- Statistical MT
- Mainly word or phrase-based translations
- Translation are learned from actual data
- Pro: Translations are learned automatically
- Con: Difficult to model complex translation phenomena

Parallel Corpus

- Example from DE-News (8/1/1996)

English	German
Diverging opinions about planned tax reform	Unterschiedliche Meinungen zur geplanten Steuerreform
The discussion around the envisaged major tax reform continues .	Die Diskussion um die vorgesehene grosse Steuerreform dauert an .
The FDP economics expert , Graf Lambsdorff, today came out in favor of advancing the enactment of significant parts of the overhaul , currently planned for 1999.	Der FDP - Wirtschaftsexperte Graf Lambsdorff sprach sich heute dafuer aus , wesentliche Teile der fuer 1999 geplanten Reform vorzuziehen.

Word-Level Alignments

- Given a parallel sentence pair we can link (align) words or phrases that are translations of each other:

Diverging opinions about the planned tax reform

Unterschiedliche Meinungen zur geplanten Steuerreform

Parallel Resources

- Newswire: DE-News (German-English), HongKong News, Xinhua News (Chinese-English),
- Government: Canadian-Hansards (FrenchEnglish), Europarl (Danish, Dutch, English, Finnish, French, German, Greek, Italian, Portugese, Spanish, Swedish), UN Treaties (Russian, English, Arabic, . . .)
- Manuals: PHP, KDE, OpenOffice (all from OPUS, many languages)
- Web pages: STRAND project (Philip Resnik)

Sentence Alignment

- If document D_{e} is translation of document D_{f} how do we find the translation for each sentence?
- The n-th sentence in D_{e} is not necessarily the translation of the n-th sentence in document D_{f}
- In addition to 1:1 alignments, there are also 1:0, $0: 1,1: n$, and $\mathrm{n}: 1$ alignments
- Approximately 90% of the sentence alignments are 1:1

Sentence Alignment (c’ ntd)

- There are several sentence alignment algorithms:
- Align (Gale \& Church): Aligns sentences based on their character length (shorter sentences tend to have shorter translations then longer sentences). Works astonishingly well
- Char-align: (Church): Aligns based on shared character sequences. Works fine for similar languages or technical domains
- K-Vec (Fung \& Church): Induces a translation lexicon from the parallel texts based on the distribution of foreign-English word pairs.

Computing Translation Probabilities

- Given a parallel corpus we can estimate $P(e \mid f)$ The maximum likelihood estimation of $P(e \mid f)$ is: freq(e,f)/freq(f)
- Way too specific to get any reasonable frequencies! Vast majority of unseen data will have zero counts!
- $\mathrm{P}(\mathrm{e}$ If $)$ could be re-defined as:

$$
P(e \mid f)=\prod_{f_{j}} \max _{e_{i}} P\left(e_{i} \mid f_{j}\right)
$$

- Problem: The English words maximizing $P(e \mid f)$ might not result in a readable sentence 1_{12}

Computing Translation Probabilities (c' tnd)

- We can account for adequacy: each foreign word translates into its most likely English word
- We cannot guarantee that this will result in a fluent English sentence
- Solution: transform $\mathrm{P}(\mathrm{e} \mid \mathrm{f})$ with Bayes' rule: $P(e \mid f)=P(e) P(f \mid e) / P(f)$
- $P(f \mid e)$ accounts for adequacy
- $P(e)$ accounts for fluency

Decoding

- The decoder combines the evidence from $\mathrm{P}(\mathrm{e})$ and $P(f \mid e)$ to find the sequence e that is the best translation:

$$
\arg \max P(e \mid f)=\arg \max P(f \mid e) P(e)
$$

- The choice of word e' as translation of f^{\prime} depends on the translation probability P(f' I e') and on the context, i.e. other English words preceding e'

Noisy Channel Model for Translation

Language Modeling

- Determines the probability of some English sequence e_{1} of length I
- $\mathrm{P}(\mathrm{e})$ is hard to estimate directly, unless I is very small

$$
P\left(e_{1}^{l}\right)=P\left(e_{1}\right) \prod_{i=2}^{l} P\left(e_{i} \mid e_{1}^{i-1}\right)
$$

- $\mathrm{P}(\mathrm{e})$ is normally approximated as:

$$
P\left(e_{1}^{l}\right)=P\left(e_{1}\right) P\left(e_{2} \mid e_{1}\right) \prod_{i=3}^{l} P\left(e_{i} \mid e_{i-m}^{i-1}\right)
$$

where m is size of the context, i.e. number of previous words that are considered, normally $\mathrm{m}=2$ (tri-gram language model

Translation Modeling

- Determines the probability that the foreign word f is a translation of the English word e
- How to compute $\mathrm{P}(\mathrm{f} \mid \mathrm{e})$ from a parallel corpus?
- Statistical approaches rely on the cooccurrence of e and f in the parallel data: If e and f tend to co-occur in parallel sentence pairs, they are likely to be translations of one another

Finding Translations in a Parallel Corpus

- Into which foreign words f, . . . , f' does e translate?
- Commonly, four factors are used:
- How often do e and f co-occur? (translation)
- How likely is a word occurring at position i to translate into a word occurring at position j ? (distortion) For example: English is a verb-second language, whereas German is a verb-final language
- How likely is e to translate into more than one word? (fertility) For example: defeated can translate into eine Niederlage erleiden
- How likely is a foreign word to be spuriously generated? (null translation)

Translation Steps

IBM Models 1-5

- Model 1: Bag of words
- Unique local maxima
- Efficient EM algorithm (Model 1-2)
- Model 2: General alignment: $a\left(e_{\text {pos }} \mid f_{\text {pos }}, e_{\text {lenght }}, f_{\text {length }}\right)$
- Model 3: fertility: $\mathrm{n}(\mathrm{k} \mid \mathrm{e})$
- No full EM, count only neighbors (Model 3-5)
- Deficient (Model 3-4)
- Model 4: Relative distortion, word classes
- Model 5: Extra variables to avoid deficiency

IBM Model 1

- Given an English sentence $\mathrm{e}_{1} \ldots \mathrm{e}_{\boldsymbol{l}}$ and a foreign sentence $\mathrm{f}_{1} \ldots \mathrm{f}_{\mathrm{m}}$
- We want to find the ' best' alignment a, where a is a set pairs of the form $\left\{(\mathrm{i}, \mathrm{j}), \ldots,\left(\mathrm{i}^{\prime}, \mathrm{j}\right)\right\}$, $0<=\mathrm{i}, \mathrm{i} \quad<=1$ and $1<=\mathrm{j}, \mathrm{j}<=\mathrm{m}$
- Note that if (i, j), (i ', j) are in a, then i equals i , i.e. no many-toone alignments are allowed
- Note we add a spurious NULL word to the English sentence at position 0
- In total there are $(I+1)^{m}$ different alignments A
- Allowing for many-to-many alignments results in $\left(2^{2}\right)^{m}$ possible alignments A

IBM Model 1

- Simplest of the IBM models
- Does not consider word order (bag-ofwords approach)
- Does not model one-to-many alignments
- Computationally inexpensive
- Useful for parameter estimations that are passed on to more elaborate models

IBM Model 1

- Translation probability in terms of alignments:
where:

$$
P(f \mid e)=\sum_{a \in A} P(f, a \mid e)
$$

$$
\begin{aligned}
P(f, a \mid e) & =P(a \mid e) \cdot P(f \mid a, e) \\
& =\frac{1}{(l+1)^{m}} \prod_{j=1}^{m} P\left(f_{j} \mid e_{a_{j}}\right)
\end{aligned}
$$

and:

$$
P(f \mid e)=\sum_{a \in A} \frac{1}{(l+1)^{m}} \prod_{j=1}^{m} P\left(f_{j} \mid e_{a_{j}}\right)
$$

IBM Model 1

- We want to find the most likely alignment:

$$
\underset{a \in A}{\arg \max } \frac{1}{(l+1)^{m}} \prod_{j=1}^{m} P\left(f_{j} \mid e_{a_{j}}\right)
$$

- Since $P(a \mid e)$ is the same for all a:

$$
\underset{a \in A}{\arg \max } \prod_{j=1}^{m} P\left(f_{j} \mid e_{a_{j}}\right)
$$

- Problem: We still have to enumerate all alignments

IBM Model 1

- Since $P\left(f_{j} \mid e_{i}\right)$ is independent from $P\left(f_{j^{\prime}} \mid e_{i^{\prime}}\right)$ we can find the maximum alignment by looking at the individual translation probabilities only
- Let $\underset{a \in A}{\operatorname{argmax}}=\left(a_{1}, \ldots, a_{m}\right)$, then for each a_{j} :

$$
a_{j}=\underset{0 \leq i s t}{\arg \max } P\left(f_{j} \mid e_{i}\right)
$$

- The best alignment can computed in a quadratic number of steps: ($1+1 \times \mathrm{m}$)

Computing Model 1 Parameters

- How to compute translation probabilities for model 1 from a parallel corpus?
- Step 1: Determine candidates. For each English word e collect all foreign words f that co-occur at least once with e
- Step 2: Initialize $P(f \mid e)$ uniformly, i.e.
- $P(f \mid e)=1 /(n o$ of co-occurring foreign words)

Computing Model 1 Parameters

- Step 3: Iteratively refine translation probablities:

1 for n iterations
2 set tc to zero
3 for each sentence pair (e,f) of lengths (l,m)
4 for $\mathrm{j}=1$ to m
total=0;
for $\mathrm{i}=1$ to I total $+=P\left(f_{j} \mid e_{i}\right) ;$
for $\mathrm{i}=1$ to I
$\operatorname{tc}\left(f_{j} \mid e_{i}\right)+=P\left(f_{j} \mid e_{i}\right) /$ total;
for each word e
total=0;
for each word f s.t. tc($f \mid e)$ is defined
total $+=\mathrm{tc}(\mathrm{fle} \mathrm{e})$;
for each word $f s . t$. tc($f \mid e)$ is defined
$P(f \mid e)=\operatorname{tc}(f \mid e) /$ total;

IBM Model 1 Example

- Parallel 'corpus':
the dog :: le chien
the cat :: le chat
- Step 1+2 (collect candidates and initialize uniformly):

$$
\begin{aligned}
& P(\text { le } \mid \text { the })=P(\text { chien } \mid \text { the })=P(\text { chat } \mid \text { the })=1 / 3 \\
& P(\text { le } \mid \text { dog })=P(\text { chien } \mid \text { dog })=P(\text { chat } \mid \text { dog })=1 / 3 \\
& P(\text { l } \mid \text { cat })=P(\text { chien } \mid \text { cat })=P(\text { chat } \mid \text { cat })=1 / 3 \\
& P(\text { le } \mid N U L L)=P(\text { chien } \mid N U L L)=P(\text { chat } \mid N U L L)=1 / 3
\end{aligned}
$$

IBM Model 1 Example

- Step 3: Iterate
- NULL the dog :: le chien
- $j=1$
total $=P(l e \mid N U L L)+P(l e \mid t h e)+P(l e \mid d o g)=1$

$$
\text { tc }(\mathrm{le} \mathrm{I} \text { NULL) }+=\mathrm{P}(\mathrm{le} \text { | NULL) } / 1 \quad=0+=.333 / 1=0.333
$$

$$
\text { tc }(\mathrm{le} \mid \text { the })+=\mathrm{P}(\mathrm{le} \mid \text { the }) / 1 \quad=0+=.333 / 1=0.333
$$

$$
\operatorname{tc}(\mathrm{le} \mid \mathrm{dog})+=\mathrm{P}(\mathrm{le} \mid \mathrm{dog}) / 1 \quad=0+=.333 / 1=0.333
$$

- $\mathrm{j}=2$
total $=P($ chien $I N U L L)+P($ chien I the $)+P($ chien I dog $)=1$ tc (chien I NULL) $+=P($ chien I NULL) $/ 1=0+=.333 / 1=0.333$
tc(chien I the) $+=\mathrm{P}$ (chien I the) $/ 1 \quad=0+=.333 / 1=0.333$
tc(chien I dog) $+=\mathrm{P}($ chien $\operatorname{I~dog}) / 1 \quad=0+=.333 / 1=0.333$

IBM Model 1 Example

- NULL the cat :: le chat
- $\mathrm{j}=1$
total $=P(\mathrm{le} \mid \mathrm{NULL})+\mathrm{P}(\mathrm{le} \mid$ the $)+\mathrm{P}(\mathrm{le} \mid$ cat $)=1$
tc(le | NULL) $+=\mathrm{P}(\mathrm{le} \mid \mathrm{NULL}) / 1 \quad=0.333+=.333 / 1=0.666$
tc(le | the) $+=\mathrm{P}(\mathrm{le} \mid$ the $) / 1 \quad=0.333+=.333 / 1=0.666$
tc(le | cat) $+=\mathrm{P}($ le \mid cat $) / 1 \quad=0 \quad+=.333 / 1=0.333$
- $\mathrm{j}=2$
total $=P($ chien \mid NULL $)+P($ chien \mid the $)+P($ chien \mid dog $)=1$
tc(chat | NULL) $+=\mathrm{P}($ chat $\mid \mathrm{NULL}) / 1 \quad=0+=.333 / 1=0.333$
tc(chat | the) $+=P($ chat \mid the $) / 1 \quad=0+=.333 / 1=0.333$
tc(chat I cat) $+=P($ chat I dog $) / 1 \quad=0+=.333 / 1=0.333$

IBM Model 1 Example

- Re-compute translation probabilities
- total(the) $=\mathrm{tc}(\mathrm{le} \mid$ the $)+\mathrm{tc}($ chien I the $)+\mathrm{tc}($ chat I the $)$

$$
=0.666+0.333+0.333=1.333
$$

$\mathrm{P}(\mathrm{le} \mid$ the $)=\mathrm{tc}(\mathrm{le} \mid$ the $) /$ total(the $)$

$$
=0.666 / 1.333=0.5
$$

P (chien I the) $=\mathrm{tc}($ chien I the)/total(the)

$$
=0.333 / 1.3330 .25
$$

$\mathrm{P}($ chat I the $)=\mathrm{tc}($ chat I the) $/$ total $($ the $)$

$$
=0.333 / 1.3330 .25
$$

- $\operatorname{total}(\mathrm{dog})=\mathrm{tc}(\mathrm{le} \mid \operatorname{dog})+\mathrm{tc}($ chien I dog $)=0.666$

$$
\text { P(le I dog) = tc (le I dog }) / \text { total }(\text { dog })
$$

$$
=0.333 / 0.666=0.5
$$

$\mathrm{P}($ chien I dog $)=\mathrm{tc}($ chien I dog $) /$ total $($ dog $)$

$$
=0.333 / 0.666=0.5
$$

IBM Model 1 Example

- Iteration 2 :
- NULL the dog :: le chien
- $\mathrm{j}=1$

$$
\begin{aligned}
\text { total } & =P(\mathrm{le} \mid \mathrm{NULL})+\mathrm{P}(\mathrm{le} \mid \text { the })+\mathrm{P}(\mathrm{le} \mid \mathrm{dog})=1.5 \\
& =0.5+0.5+0.5=1.5 \\
\text { tc }(\mathrm{le} \mid \mathrm{NULL})+=\mathrm{P}(\mathrm{le} \mid \mathrm{NULL}) / 1 & \\
\text { tc }(\mathrm{le} \mid \text { the })+=\mathrm{P}(\mathrm{le} \mid \text { the }) / 1 & =0+=.5 / 1.5=0.333 \\
\text { tc }(\mathrm{le} \mid \text { dog })+=\mathrm{P}(\mathrm{le} \mid \mathrm{dog}) / 1 & =0+=.5 / 1.5=0.333
\end{aligned}
$$

- $\mathrm{j}=2$

$$
\left.\begin{array}{rl}
\text { total } & =P(\text { chien } I \text { NULL })+P(\text { chien } \mid \text { the })+P(\text { chien } \mid \text { dog })=1 \\
& =0.25+0.25+0.5=1
\end{array}\right] \begin{array}{ll}
\text { tc }(\text { chien I NULL) }+=P(\text { chien I NULL }) / 1 & =0+=.25 / 1=0.25 \\
\text { tc }(\text { chien I the })+=P(\text { chien I the }) / 1 & =0+=.25 / 1=0.25 \\
\text { tc }(\text { chien I dog })+=P(\text { chien I dog }) / 1 & =0+=.5 / 1=0.5
\end{array}
$$

IBM Model 1 Example

- NULL the cat :: le chat
- $\mathrm{j}=1$
total $=P(\mathrm{le} \mid \mathrm{NULL})+\mathrm{P}(\mathrm{le} \mid$ the $)+\mathrm{P}(\mathrm{le} \mid$ cat $)=1.5$

$$
=0.5+0.5+0.5=1.5
$$

$$
\text { tc(le | NULL) }+=\mathrm{P}(\mathrm{le} \mid \mathrm{NULL}) / 1 \quad=0.333+=.5 / 1=0.833
$$

$$
\text { tc(le | the) }+=\mathrm{P}(\mathrm{le} \mid \text { the }) / 1 \quad=0.333+=.5 / 1=0.833
$$

$$
\text { tc (le | cat })+=\mathrm{P}(\text { le } \mid \text { cat }) / 1 \quad=0 \quad+=.5 / 1=0.5
$$

- $\mathrm{j}=2$

$$
\begin{aligned}
& \text { total }=P(\text { chat } \mid \text { NULL })+\mathrm{P}(\text { chat } \mid \text { the })+\mathrm{P}(\text { chat } \mid \text { cat })=1 \\
& \quad=0.25+0.25+0.5=1
\end{aligned} \begin{array}{ll}
\\
\begin{array}{ll}
\text { tc }(\text { chat } \mid \mathrm{NULL})+=\mathrm{P}(\text { chat } \mid \mathrm{NULL}) / 1 & =0+=.25 / 1=0.25 \\
\text { tc }(\text { chat } \mid \text { the })+=\mathrm{P}(\text { chat } \mid \text { the }) / 1 & =0+=.25 / 1=0.25 \\
\text { tc }(\text { chat } \mid \text { cat })+=P(\text { chat } \mid \text { cat }) / 1 & =0+=.5 / 1=0.5
\end{array}
\end{array}
$$

IBM Model 1 Example

- Re-compute translations (iteration 2):
- total(the) $=\mathrm{tc}(\mathrm{le}$ I the $)+\mathrm{tc}($ chien l the $)+\mathrm{tc}($ chat \mid the $)$

$$
=.833+0.25+0.25=1.333
$$

$\mathrm{P}(\mathrm{le} \mid$ the $)=\mathrm{tc}(\mathrm{le} \mid$ the $) /$ total $($ the $)$

$$
=.833 / 1.333=0.625
$$

$\mathrm{P}($ chien l the $)=\mathrm{tc}($ chien \mid the $) /$ total $($ the $)$

$$
=0.25 / 1.333=0.188
$$

P (chat I the) $=\mathrm{tc}($ chat I the)/total(the)

$$
=0.25 / 1.333=0.188
$$

- total $(\mathrm{dog})=\mathrm{tc}(\mathrm{le} \mid \mathrm{dog})+\mathrm{tc}($ chien I dog $)$

$$
=0.333+0.5=0.833
$$

P(le I dog) = tc(le I dog)/total(dog)

$$
=0.333 / 0.833=0.4
$$

$\mathrm{P}($ chien I dog $)=\mathrm{tc}($ chien I dog $) /$ total (dog)

$$
=0.5 / 0.833=0.6
$$

IBM Model 1Example

- After 5 iterations:

P(le I NULL) $=0.755608028335301$
P (chien I NULL) $=0.122195985832349$
P(chat I NULL) $=0.122195985832349$
$P($ le I the $)=0.755608028335301$
$\mathrm{P}($ chien I the $)=0.122195985832349$
$P($ chat I the $)=0.122195985832349$
$\mathrm{P}(\mathrm{le} \mid \mathrm{dog})=0.161943319838057$
$\mathrm{P}($ chien I dog $)=0.838056680161943$
$P($ le \mid cat $)=0.161943319838057$
$P($ chat I cat $)=0.838056680161943$

IBM Model 1 Recap

- IBM Model 1 allows for an efficient computation of translation probabilities
- No notion of fertility, i.e., it's possible that the same English word is the best translation for all foreign words
- No positional information, i.e., depending on the language pair, there might be a tendency that words occurring at the beginning of the English sentence are more likely to align to words at the beginning of the foreign sentence

IBM Model 3

- IBM Model 3 offers two additional features compared to IBM Model 1:
- How likely is an English word e to align to k foreign words (fertility)?
- Positional information (distortion), how likely is a word in position i to align to a word in position j?

IBM Model 3: Fertility

- The best Model 1 alignment could be that a single English word aligns to all foreign words
- This is clearly not desirable and we want to constrain the number of words an English word can align to
- Fertility models a probability distribution that word e aligns to k words: $n(k, e)$
- Consequence: translation probabilities cannot be computed independently of each other anymore
- IBM Model 3 has to work with full alignments, note there are up to $(l+1)^{\mathrm{m}}$ different alignments

IBM Model 1 + Model 3

- Iterating over all possible alignments is computationally infeasible
- Solution: Compute the best alignment with Model 1 and change some of the alignments to generate a set of likely alignments (pegging)
- Model 3 takes this restricted set of alignments as input

Pegging

- Given an alignment a we can derive additional alignments from it by making small changes:
- Changing a link (j,i) to (j,i')
- Swapping a pair of links (j,i) and (j', i') to (j,i') and (j' ,i)
- The resulting set of alignments is called the neighborhood of a

IBM Model 3: Distortion

- The distortion factor determines how likely it is that an English word in position i aligns to a foreign word in position j , given the lengths of both sentences:

$$
d(\mathrm{j} I \mathrm{i}, \mathrm{I}, \mathrm{~m})
$$

- Note, positions are absolute positions

Deficiency

- Problem with IBM Model 3: It assigns probability mass to impossible strings
- Well formed string: "This is possible"
- III-formed but possible string: "This possible is"
- Impossible string: is pøemble
- Impossible strings are due to distortion values that generate different words at the same position
- Impossible strings can still be filtered out in later stages of the translation process

Limitations of IBM Models

- Only 1-to-N word mapping
- Handling fertility-zero words (difficult for decoding)
- Almost no syntactic information
- Word classes
- Relative distortion
- Long-distance word movement
- Fluency of the output depends entirely on the English language model

Decoding

- How to translate new sentences?
- A decoder uses the parameters learned on a parallel corpus
- Translation probabilities
- Fertilities
- Distortions
- In combination with a language model the decoder generates the most likely translation
- Standard algorithms can be used to explore the search space (A*, greedy searching, ...)
- Similar to the traveling salesman problem

