Language Technology

CUNY Graduate Center, Fall 2014

Unit I:Sequence Models

(CS: automata; Math: prob.; Ling: morphology, phonology)
Lecture 2: Finite-State Acceptors/Transducers

Liang Huang

This Week: Finite-State Machines

- Finite-State Acceptors and Languages
- DFAs (deterministic)
- NFAs (non-deterministic)
- Finite-State Transducers
- Applications in Language Processing
- part-of-speech tagging, morphology, text-to-sound
- word alignment (machine translation)
- Next Week: putting probabilities into FSMs

Languages and Machines

- QI: how to formally define a language?
- a language is a set of strings
- could be finite, but often infinite (due to recursion)
- $L=\{a a, a b, a c, \ldots, b a, b b, \ldots, z z\} \quad$ (finite)
- English is the set of grammatical English sentences
- variable names in C is set of alphanumeric strings
- Q2: how to describe a (possibly infinite) language?
- use a finite (but recursive) representation
- finite-state acceptors (FSAs) or regular-expressions

English Adjective Morphology

Figure 3.4 An FSA for a fragment of English adjective morphology: Antworth's Proposal \#1.

exceptions?

Finite-State Acceptors

- $L I=\{a a, a b, a c, \ldots, b a, b b, \ldots, z z\}$ (finite)
- start state, final states
- $\mathrm{L} 2=\{$ all letter sequences $\}$ (infinite)
- recursion (cycle)
- L3 $=$ \{ all alphanumeric strings $\}$

More Examples

- $\mathrm{L} 4=\{$ all letter strings with at least a vowel $\}$
- L5 $=\{$ all letter strings with vowels in order $\}$
- $\mathrm{L} 6=\{$ all 01 strings with even number of 0's and even number of I's \}

English Adjective Morphology

Figure 3.4 An FSA for a fragment of English adjective morphology: Antworth's Proposal \#1.

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth's Proposal \#2.

More English Morphology

Figure 3.6 An FSA for another fragment of English derivational morphology.

Membership and Complement

- deterministic FSA: iff no state has two exiting transitions with the same label. (DFA)
- the language L of a DFA $D: L=L(D)$

- how to check if a string w is in $L(D)$? (membership)
- linear-time: follow transitions, check finality at the end
- no transition for a char means "into a trap state"
- how to construct complement DFA? $L\left(D^{\prime}\right)=\neg L(D)$
- super easy: just reverse the finality of states :)
- note that "trap states" also become final states

Intersection

- construct D s.t. $L(D)=L\left(D_{1}\right) \cap L\left(D_{2}\right)$
- state-pair ("cross-product") construction - intersected DFA: $|\mathrm{Q}|=\left|\mathrm{Q}_{1}\right| \times\left|\mathrm{Q}_{2}\right|$

Linguistic Example

- DFA A: all interpretations of "he hopes that this works"

- DFA B: all legal English category sequences (simplified)

what do these states mean?
what will $A \cap B$ mean?

Linguistic Example

- intersection by state-pair ("product") construction

- cleanup: he hopes that this works

- this is part-of-speech tagging! (with a bigram model)

Union

- easy, via De Morgan's Law: $L_{1} \cup L_{2}=\neg\left(\neg L_{1} \cap \neg L_{2}\right)$
- or, directly, from the product construction again
- what are the final states?
- could end in either language: $\mathrm{Q}_{2} \times \mathrm{F}_{1} \cup \mathrm{Q}_{1} \times \mathrm{F}_{2}$
- same De Morgan: $\neg\left(\left(\mathrm{Q}_{\|} \backslash \mathrm{F}_{1}\right) \cap\left(\mathrm{Q}_{2} \mid \mathrm{F}_{2}\right)\right)=\neg\left(\neg \mathrm{F}_{1} \cap \neg \mathrm{~F}_{2}\right)$

Non-Deterministic FSAs

- $L=\{$ all strings of repeated instances of $a b$ or $a b a\}$
- hard to do with a deterministic FSA!
- e.g., abababaababa
- epsilon transition (no symbol)

- there is algorithm to determinize a DFA
- blow up the state-space exponentially

Determinization Example

- determinization by subset construction (2^{n})

Minimization and Equivalence

- each DFA (and NFA) can be reduced to an equivalent DFA with minimal number of states
- based on "state-pair equivalence test"
- start from two groups: final vs. non-final, and divide...
- can be used to test the equivalence of DFAs/NFAs

Advantages of Non-Determinism

- union (and intersection also?)
- concatenation: $L_{1} L_{2}=\left\{x y \mid x\right.$ in L_{1}, y in $\left.L_{2}\right\}$
- membership problem
- much harder: exp. time => rather determinize first
- complement problem (similarly harder)
- but is NFA more expressive than DFA?
- NO, because you can always determinize an NFA
- NFA: more "intuitive" representation of a language
- mDFA:"compact (but less intuitive) encoding"

FSAs vs. Regular Expressions

- RE operators: $R^{*}, R_{1}+R_{2}, R_{1} R_{2}$
- RE => NFA (by recursive translation; easy)
- NFA => RE (by state removal; more involved)

- RE <=> NFA <=> DFA <=> mDFA

Wrap-up

- machineries: (infinite) languages, DFAs, NFAs, REs
- why and when non-determinism is useful
- constructions/algorithms
- state-pair construction: intersection and union
- quadratic time/space
- subset construction: determinization
- exponential time/space
- briefly mentioned: minimization and RE <=> NFA
- see Hopcroft et al textbook for details

Quick Review

- how to detect if a DFA accepts any string at all?
- how about empty string?
- how about all strings?
- how about an NFA?
- how to design a reversal of a DFA/NFA?

Finite-State Transducers

- FSAs are "acceptors" (set of strings as a language)
- FSTs are "converters"
- compactly encoding set of string pairs as a relation
- capitalizer: \{<cat, CAT>, <dog, DOG>, ...\}
- pluralizer: $\{<c a t$, cats>, <fly, flies>, <hero, heroes>...\}

Formal Definition

- a finite-state transducer T is a tuple $(Q, \Sigma, \Gamma, I, F, \delta)$ such that:
- Q is a finite set, the set of states;
- Σ is a finite set, called the input alphabet;
- 「 is a finite set, called the output alphabet;
- lis a subset of Q, the set of initial states;
- F is a subset of Q, the set of final states; and
- $\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times(\Gamma \cup\{\epsilon\}) \times Q$ is the transition relation.

Examples

- text-to-sound: \{<cat, K AE T>, <dog, D AW G>, <bear, B EH R>, <bare, B EH R>...\}
- (easy for Spanish/Italian, medium for French, hard for English!)
- POS tagger: $\{<l$ saw the cat, PRO V DT $N>, \ldots\}$

- translator: $\{$ <he is in the house, el está en la casa>, <he is in the house, está en la casa>,...\}
- notice the many-to-many relation (not a function)
- but is this real translation? NO, there are no reorderings!
- FSMs are best for morphology; we need CFGs for syntax

Non-Determinism in FSTs

- ambiguity


```
charectr " }\textrm{C}\mathrm{ "
pronounced as either
K sound or S sound
```

- optionality

- important because in/out often have different lengths
- delayed decision via epsilon transition

Central Operation: Composition

- language processing is often in cascades
- often easier to tackle small problems separately
- each step: $T(A)$ is the relation (set of string pairs) by A
- $\left\langle x, y>\right.$ in $T(A)$ means $x \sim_{A} y$
- compose $(\mathrm{A}, \mathrm{B})=\mathrm{C}$
- $\langle x, y>$ in $T(C)$ iff. $\exists \mathrm{z}:<x, z>$ in $T(A)$ and $\langle z, y>$ in $T(B)$
- pluralizer + capitalizer

FST B capitalizes:

FST compose (A, B) does both:

$$
\underset{\substack{0 \\ 0_{c: C}}}{\substack{a: A \\ t: T}} \xrightarrow{\text { ken:S }}
$$

How to do composition?

How to do composition?

composition is like intersection?

- both use cross-product ("state-pair") construction
- indeed: intersection is a special case of composition
- FSA is a special FST with identity output! ($a=>a: a)$
- $A \cap B=\operatorname{proj}_{j i n}(\operatorname{ld}(A) \cdot \operatorname{ld}(B))$
- what about FSAs composed with FSTs?
- FSA • FST --- get output(s) from certain input(s)
- $\langle x, z>: \exists$ y s.t. $\langle x, y>$ in $T(\operatorname{ld}(A))$ and $\langle y, z>$ in $T(B)$
- but $y=x=><x, z>: x$ in $L(A)$ and $\langle x, z>$ in $T(B)$
- FST • FSA --- get input(s) for certain output(s)

Get Output
e．f．，pluralize＂cat＂

$$
A:>0 \xrightarrow{c: c} 0 \stackrel{a: a}{\longrightarrow} 0 \xrightarrow{t: t} \text { (0) }\{\text { 〈cat, cat〉\}}
$$

$B: \xrightarrow{Q_{c: c}^{1}} \underset{\sim}{a: a} 0 \xrightarrow{\text { nen }: s} 0$
\｛〈cat，cats〉， ＜act，acts＞，

$$
\cdots\}
$$

Compose (A, B) includes $\langle x, y\rangle$ if $\exists z:\langle x, z\rangle \in A \&\langle z, y\rangle \in B$

Get Input

- morphological analysis (e.g. what is "acts" made from)

B:

compose (B, C)

$$
>0 \xrightarrow{a} 0 \xrightarrow{c} 0 \xrightarrow{t} 0 \xrightarrow{* e^{*}} \text { (0) } \quad\{a c t\}
$$

Multiple Outputs

Multiple outputr

Multiple inputs \& outpots

- text-to-sound: \{<cat, K AE T>, <dog, D AW G>, <bear, B EH R>, <bare, B EH R>...\}
- translator: $\{<$ he is in the house, el está en la casa>, <he is in the house, está en la casa>, ...\}

POS Tagging Revisited

- he hopes that this works

$$
a_{P R O} a_{1} b_{1} b_{2} a_{1} b_{3} \text { a, } b_{4} a_{1} b_{3} \text { a,b6}
$$

Redo POS Tagging via composition

FST A: sentence

FST B: lexicon

FST C: POS bigram LM

$\operatorname{proj}_{\text {out }}(\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C})=$

Q : how about $A \cdot(B \cdot C)$? what is $B \cdot C$?

