Language Technology

CUNY Graduate Center, Fall 2014

Unit 1: Sequence Models

(CS: automata; Math: prob.; Ling: morphology, phonology)

Lecture 2: Finite-State Acceptors/Transducers

Liang Huang

This Week: Finite-State Machines

- Finite-State Acceptors and Languages
 - DFAs (deterministic)
 - NFAs (non-deterministic)
- Finite-State Transducers
- Applications in Language Processing
 - part-of-speech tagging, morphology, text-to-sound
 - word alignment (machine translation)
- Next Week: putting probabilities into FSMs

Languages and Machines

- QI: how to formally define a language?
- a language is a set of strings
 - could be finite, but often infinite (due to recursion)
 - L = { aa, ab, ac, ..., ba, bb, ..., zz } (finite)
 - English is the set of grammatical English sentences
 - variable names in C is set of alphanumeric strings
- Q2: how to describe a (possibly infinite) language?
 - use a finite (but recursive) representation
 - finite-state acceptors (FSAs) or regular-expressions

English Adjective Morphology

Figure 3.4 An FSA for a fragment of English adjective morphology: Antworth's Proposal #1.

exceptions?

Finite-State Acceptors

- LI = { aa, ab, ac, ..., ba, bb, ..., zz } (finite)
 - start state, final states

- L2 = { all letter sequences } (infinite)
 - recursion (cycle)

L3 = { all alphanumeric strings }

More Examples

L4 = { all letter strings with at least a vowel }

• L5 = { all letter strings with vowels in order }

L6 = { all 0 | strings with even number of 0's and even number of 1's }

English Adjective Morphology

Figure 3.4 An FSA for a fragment of English adjective morphology: Antworth's Proposal #1.

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth's Proposal #2.

More English Morphology

Figure 3.6 An FSA for another fragment of English derivational morphology.

Membership and Complement

- deterministic FSA: iff no state has two exiting transitions with the same label. (DFA)
- the language L of a DFA D: L = L(D)
- how to check if a string w is in L(D)? (membership)
 - linear-time: follow transitions, check finality at the end
 - no transition for a char means "into a trap state"
- how to construct complement DFA? $L(D') = \neg L(D)$
 - super easy: just reverse the finality of states :)
 - note that "trap states" also become final states

Intersection

- construct D s.t. $L(D) = L(D_1) \cap L(D_2)$
- state-pair ("cross-product") construction
 - intersected DFA: $|Q| = |Q_1| \times |Q_2|$

Linguistic Example

DFA A: all interpretations of "he hopes that this works"

DFA B: all legal English category sequences (simplified)

what do these states mean?

what will $A \cap B$ mean?

CS 562 - Lec 3-4: FSAs/FSTs

Linguistic Example

intersection by state-pair ("product") construction

cleanup: he hopes that this works

• this is part-of-speech tagging! (with a bigram model)

Union

- easy, via De Morgan's Law: $L_1 \cup L_2 = \neg (\neg L_1 \cap \neg L_2)$
- or, directly, from the product construction again
- what are the final states?
 - could end in either language: $Q_2 \times F_1 \cup Q_1 \times F_2$
 - same De Morgan: $\neg ((Q_1 \backslash F_1) \cap (Q_2 \backslash F_2)) = \neg (\neg F_1 \cap \neg F_2)$

Non-Deterministic FSAs

- L = { all strings of repeated instances of ab or aba }
 - hard to do with a deterministic FSA!
 - e.g., abababaababa

- there is algorithm to determinize a DFA
 - blow up the state-space exponentially

Determinization Example

determinization by subset construction (2ⁿ)

Minimization and Equivalence

- each DFA (and NFA) can be reduced to an equivalent DFA with minimal number of states
 - based on "state-pair equivalence test"
 - start from two groups: final vs. non-final, and divide...
 - can be used to test the equivalence of DFAs/NFAs

Advantages of Non-Determinism

- union (and intersection also?)
- concatenation: $L_1L_2 = \{ xy \mid x \text{ in } L_1, y \text{ in } L_2 \}$
- membership problem
 - much harder: exp. time => rather determinize first
- complement problem (similarly harder)
- but is NFA more expressive than DFA?
 - NO, because you can always determinize an NFA
- NFA: more "intuitive" representation of a language
- mDFA: "compact (but less intuitive) encoding"

FSAs vs. Regular Expressions

- RE operators: R^* , R_1+R_2 , R_1R_2
- RE => NFA (by recursive translation; easy)

NFA => RE (by state removal; more involved)

RE <=> NFA <=> DFA <=> mDFA

Wrap-up

- machineries: (infinite) languages, DFAs, NFAs, REs
 - why and when non-determinism is useful
- constructions/algorithms
 - state-pair construction: intersection and union
 - quadratic time/space
 - subset construction: determinization
 - exponential time/space
 - briefly mentioned: minimization and RE <=> NFA
 - see Hopcroft et al textbook for details

Quick Review

- how to detect if a DFA accepts any string at all?
 - how about empty string?
 - how about all strings?
- how about an NFA?
- how to design a reversal of a DFA/NFA?

Finite-State Transducers

- FSAs are "acceptors" (set of strings as a language)
- FSTs are "converters"
 - compactly encoding set of string pairs as a relation
- capitalizer: { <cat, CAT>, <dog, DOG>, ...}
- pluralizer: {<cat, cats>, <fly, flies>, <hero, heroes>...}

Formal Definition

- a finite-state transducer T is a tuple $(Q, \Sigma, \Gamma, I, F, \delta)$ such that:
- Q is a <u>finite set</u>, the set of *states*;
- Σ is a finite set, called the *input alphabet*;
- Γ is a finite set, called the *output alphabet*;
- I is a <u>subset</u> of Q, the set of *initial states*;
- *F* is a subset of *Q*, the set of *final states*; and
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \times Q$ is the *transition relation*.

Examples

- - (easy for Spanish/Italian, medium for French, hard for English!)
- POS tagger: {<I saw the cat, PRO V DT N>, ...}
- transliterator: { <b u s h, 布什>, <o b a m a, 奥巴马>, ...}

 bu shi

 ao ba ma
- translator: { <he is in the house, el está en la casa>,
 he is in the house, está en la casa>, ... }
- notice the many-to-many relation (not a function)
- but is this real translation? NO, there are no reorderings!
 - FSMs are best for morphology; we need CFGs for syntax

Non-Determinism in FSTs

ambiguity

pronounced as either K sound or S sound

optionality

- important because in/out often have different lengths
- delayed decision via epsilon transition

Central Operation: Composition

- language processing is often in cascades
 - often easier to tackle small problems separately
- each step: T(A) is the relation (set of string pairs) by A
 - $\langle x, y \rangle$ in T(A) means $x \sim_A y$
- compose (A, B) = C
 - $\langle x, y \rangle$ in T(C) iff. $\exists z: \langle x, z \rangle$ in T(A) and $\langle z, y \rangle$ in T(B)

Simple Example

pluralizer + capitalizer

FST compose (A, B) does both:

How to do composition?

How to do composition?

composition is like intersection?

- both use cross-product ("state-pair") construction
- indeed: intersection is a special case of composition
 - FSA is a special FST with identity output! (a => a:a)
 - $A \cap B = \text{proj}_{\text{in}} (\text{Id}(A) \cdot \text{Id}(B))$
- what about FSAs composed with FSTs?
 - FSA · FST --- get output(s) from certain input(s)
 - $\langle x, z \rangle$: $\exists y s.t. \langle x, y \rangle in T(Id(A)) and <math>\langle y, z \rangle in T(B)$
 - but $y=x => \langle x, z \rangle$: x in L(A) and $\langle x,z \rangle$ in T(B)
 - FST FSA --- get input(s) for certain output(s)

Get Output

```
e.g., pluralize "cat"
                                                     { <cat, cat>}
                                                    Compose (A, B) includes <x,y> if \( \frac{1}{2} : \langle x, \( \frac{1}{2} \right) \in A & \langle 2, \( \frac{1}{2} \right) \) \( \text{B} \)
                                       £: #9# + ±: ±
                                        throw away input tabels
```

Get Input

morphological analysis (e.g. what is "acts" made from)

Multiple Outputs

Multiple outputs

- translator: { <he is in the house, el está en la casa>,
 he is in the house, está en la casa>, ... }

POS Tagging Revisited

he hopes that this works

Redo POS Tagging via composition

FST A: sentence

FST C: POS bigram LM

FST B: lexicon

$$proj_{out}(A \cdot B \cdot C) =$$

Q: how about $A \cdot (B \cdot C)$? what is $B \cdot C$?