
Natural Language Processing, Spring 2017, HW 3

Prof. Liang Huang

Due Monday 5/15 Tuesday 5/16 at 11:59pm on Canvas (each group only submits one copy)

In HW2, we did POS tagging, English pronunciation and spelling, and Katakana-to-English backtranslit-
eration, all using Carmel. In this HW, you will implement the famous Viterbi algorithm used by Carmel for
all these decodings; in doing so, you will implicitly implement “composition” as well. In other words, you
can view this HW as the “under-the-hood” version of HW2.

You will need again all the files we provided for HW2:

eword.wfsa a unigram WFSA of English word sequences
epron.wfsa a trigram WFSA of English phoneme sequences

eword-epron.data an online dictionary of English words and their phoneme sequences
eword-epron.wfst a WFST from English words to English phoneme sequences
epron-eword.wfst inverse transducer; the result of carmel -v eword-epron.wfst

epron-espell.wfst a WFST from English phoneme sequences to English letter sequences

epron-jpron.data a database of aligned English/Japanese phoneme sequence pairs
jprons.txt a short list of Japanese Katakana sounds to decode
epron.probs a human-readable version of epron.wfsa.

In addition, you will also need epron-jpron.probs and epron-jpron.wfst from your HW2 submission.
But in case you didn’t get everything correctly, we have provided our reference solutions in

http://classes.engr.oregonstate.edu/eecs/spring2017/cs519-001/hw3/hw3-data.tgz.

(Note that all expected outputs are in the 5-bests, and only in a few cases the 1-bests are confused with
similar-sounding words e.g., SHEET vs. SEAT, SAVING vs. SHAVING, MAKE BOOK vs. MAC BOOK, etc.).

1 Part-of-Speech Tagging (10 pts)

Redo the POS tagging examples by implementing a bigram Viterbi algorithm (name it tagging.py) that
would output the most probable POS tag sequence (and its probability) for an input sentence. Verify your
results with Carmel outputs from HW2. UPDATE: After finishing bigram tagging, it is highly recommended
you work on trigram tagging, which paves the way for Part 2.

2 Decoding Katakana to English Phonemes (35 pts)

Now implement your own Viterbi decoding in Python for HW2 Question 3.5 (jprons to eprons). Your
command-line should be:

echo -e 'P I A N O\nN A I T O' | ./decode.py epron.probs epron-jpron.probs

with the result like: (note the input represents the Japanese katakana PI A NO, not the English word!)

P IY AA N OW # 1.489806e-08

N AY T # 8.824983e-06

1

http://classes.engr.oregonstate.edu/eecs/spring2017/cs519-001/hw3/hw3-data.tgz

For your convenience, we have converted epron.wfsa into a human-readable epron.probs, in the same
format as epron-jpron.probs above, e.g.:

T S : </s> # 0.774355

T S : AH # 0.0333625

T S : Z # 2.92651e-07

which correspond to our intuition that sounds T S (words with -ts) are very likely to end a sentence or a
word, and sounds T S AH are much less likely (but still noticeable in words like WATSON and BOTSON), but
T S Z is (almost) completely unheard of (with a tiny prob here due to smoothing).

You only need to print the 1-best solution and its probability. Please

1. Describe your algorithm in English first.

2. Define the subproblem and recurrence relations.

3. Analyse its complexity.

4. Implement it in Python. Your grade will depend on both correctness and efficiency.

Note that each English phoneme corresponds to one to three Japanese phonemes (the PIANO example
is 1-1 and is too simple, and the NIGHT/KNIGHT example is more interesting), so the Viterbi algorithm
from the slides needs to be extended a little bit.

Compare your 1-best results with carmel’s. Try your best to match them. Include a side-by-side com-
parison (hint: diff -y).

Hint: if you want to make sure your program is 100% correct with respect to Carmel, you can compare
their results by:

cat jprons.txt | ./decode.py epron.probs epron-jpron.probs > results.my

cat jprons.txt | carmel -bsriIEQk 1 epron.wfsa epron-jpron.wfst 2>/dev/null \

| awk '{for (i=1;i<NF;i++) printf("%s ", $i); printf("# %e\n", $NF)}' \

> results.carmel

diff -b results.my results.carmel

You should see no output if you did everything correctly. To generate a side-by-side comparison, re-
place diff -b by diff -by.

FYI, my not-very-optimized implementation is 60 lines of Python, and uses about 4x 2x time compared
to Carmel. Your implementation will be graded in terms of both correctness and efficiency.

3 K-Best Output (15 pts) (kbest.py)

Now extend your Viterbi algorithm to output k-best sequences (and their corresponding probabilities).
Implement it on POS tagging and Katakana-to-English. Verify the results with Carmel using the diff

method above (kbest.py should agree with Carmel output for k=1..10). Efficiency is part of the grade.
Hint: see Huang and Chiang (2005). Algorithm 2 is enough to receive full credit for this part.

4 Extra Credit: Decode Katakana to English WORDS (30 pts)

(Do NOT attempt this problem until you finish everything else. This is the hardest problem in this course.)
Now if you are to decode with HW2 approach using eword.wfsa and eword-epron.wfsa and epron-jpron.wfsa.

1. Describe your algorithm in English first.

2. Define the subproblem and recurrence relations.

3. Analyse its complexity.

4. Implement decode_word.py.

echo -e 'P I A N O N A I T O' | ./decode_word.py eword.probs eword-epron.data epron-jpron.probs

PIANO NIGHT # 1.856048e-11

Here eword.probs is just a human-readable format of eword.wfsa. Verify your results with Carmel on
jprons.txt. Just 1-best is more than enough! UPDATE: My code is orders of magnitude faster than
Carmel, thanks to the trie. (one diff: BABYSITTER is in eword-epron.data but not in eword-epron.wfst)

2

	Part-of-Speech Tagging (10 pts)
	Decoding Katakana to English Phonemes (35 pts)
	K-Best Output (15 pts) (kbest.py)
	Extra Credit: Decode Katakana to English WORDS (30 pts)

