
Natural Language Processing

Spring 2017

Unit 1: Sequence Models
Lecture 2: Finite-State Acceptors/Transducers

Liang Huang

CS 562 - Lec 3-4: FSAs/FSTs

This Week: Finite-State Machines

• Finite-State Acceptors and Languages

• DFAs (deterministic)

• NFAs (non-deterministic)

• Finite-State Transducers

• Applications in Language Processing

• part-of-speech tagging, morphology, text-to-sound

• word alignment (machine translation)

• Next Week: putting probabilities into FSMs

2

CS 562 - Lec 3-4: FSAs/FSTs

Languages and Machines

• Q1: how to formally define a language?

• a language is a set of strings

• could be finite, but often infinite (due to recursion)

• L = { aa, ab, ac, ..., ba, bb, ..., zz } (finite)

• English is the set of grammatical English sentences

• variable names in C is set of alphanumeric strings

• Q2: how to describe a (possibly infinite) language?

• use a finite (but recursive) representation

• finite-state acceptors (FSAs) or regular-expressions
3

CS 562 - Lec 3-4: FSAs/FSTs

English Adjective Morphology

4

exceptions?

CS 562 - Lec 3-4: FSAs/FSTs

Finite-State Acceptors

• L1 = { aa, ab, ac, ..., ba, bb, ..., zz } (finite)

• start state, final states

• L2 = { all letter sequences } (infinite)

• recursion (cycle)

• L3 = { all alphanumeric strings }

5

CS 562 - Lec 3-4: FSAs/FSTs

More Examples

• L4 = { all letter strings with at least a vowel }

• L5 = { all letter strings with vowels in order }

• L6 = { all 01 strings with even number of 0’s
and even number of 1’s }

6

CS 562 - Lec 3-4: FSAs/FSTs

English Adjective Morphology

7

CS 562 - Lec 3-4: FSAs/FSTs

More English Morphology

8

CS 562 - Lec 3-4: FSAs/FSTs

Membership and Complement

• deterministic FSA: iff no state has two exiting
transitions with the same label. (DFA)

• the language L of a DFA D: L = L (D)

• how to check if a string w is in L(D) ? (membership)

• linear-time: follow transitions, check finality at the end

• no transition for a char means “into a trap state”

• how to construct complement DFA? L(D’) = ¬L(D)

• super easy: just reverse the finality of states :)

• note that “trap states” also become final states

9

CS 562 - Lec 3-4: FSAs/FSTs

Intersection

• construct D s.t. L(D) = L(D1) ∩ L(D2)

• state-pair (“cross-product”) construction

• intersected DFA: |Q| = |Q1| x |Q2|

10

CS 562 - Lec 3-4: FSAs/FSTs

Linguistic Example

11

• DFA A: all interpretations of “he hopes that this works”

• DFA B: all legal English category sequences (simplified)

what do these states mean?

what will A ∩ B mean?

CS 562 - Lec 3-4: FSAs/FSTs

Linguistic Example
• intersection by state-pair (“product”) construction

• cleanup: he hopes that this works

• this is part-of-speech tagging! (with a bigram model)
12

CS 562 - Lec 3-4: FSAs/FSTs

Union

• easy, via De Morgan’s Law: L1 ∪ L2 = ¬ (¬L1 ∩ ¬L2)

• or, directly, from the product construction again

• what are the final states?

• could end in either language: Q2 x F1 ∪ Q1 x F2

• same De Morgan: ¬ ((Q1\F1)∩(Q2\F2)) = ¬ (¬F1 ∩ ¬F2)

13

CS 562 - Lec 3-4: FSAs/FSTs

Non-Deterministic FSAs

• L = { all strings of repeated instances of ab or aba }

• hard to do with a deterministic FSA!

• e.g., abababaababa

• epsilon transition (no symbol)

• there is algorithm to determinize a DFA

• blow up the state-space exponentially
14

CS 562 - Lec 3-4: FSAs/FSTs

Determinization Example

• determinization by subset construction (2n)

15

CS 562 - Lec 3-4: FSAs/FSTs

Minimization and Equivalence

• each DFA (and NFA) can be reduced to an
equivalent DFA with minimal number of states

• based on “state-pair equivalence test”

• can be used to test the equivalence of DFAs/NFAs

16

CS 562 - Lec 3-4: FSAs/FSTs

Advantages of Non-Determinism

• union (and intersection also?)

• concatenation: L1L2 = { xy | x in L1, y in L2}

• membership problem

• much harder: exp. time => rather determinize first

• complement problem (similarly harder)

• but is NFA more expressive than DFA?

• NO, because you can always determinize an NFA

• NFA: more “intuitive” representation of a language

• mDFA: “compact (but less intuitive) encoding”
17

CS 562 - Lec 3-4: FSAs/FSTs

FSAs vs. Regular Expressions
• RE operators: R*, R1+R2, R1R2

• RE => NFA (by recursive translation; easy)

• NFA => RE (by state removal; more involved)

18• RE <=> NFA <=> DFA <=> mDFA

CS 562 - Lec 3-4: FSAs/FSTs

Wrap-up

• machineries: (infinite) languages, DFAs, NFAs, REs

• why and when non-determinism is useful

• constructions/algorithms

• state-pair construction: intersection and union

• quadratic time/space

• subset construction: determinization

• exponential time/space

• briefly mentioned: minimization and RE <=> NFA

• see Hopcroft et al textbook for details

19

CS 562 - Lec 3-4: FSAs/FSTs

Quick Review

• how to detect if a DFA accepts any string at all?

• how about empty string?

• how about all strings?

• how about an NFA?

• how to design a reversal of a DFA/NFA?

20

CS 562 - Lec 3-4: FSAs/FSTs

Finite-State Transducers

• FSAs are “acceptors” (set of strings as a language)

• FSTs are “converters”

• compactly encoding set of string pairs as a relation

• capitalizer: { <c a t, C A T>, <d o g, D O G>, ...}

• pluralizer: {<c a t, c a t s>, <f l y, f l i e s>, <h e r o, h e r o e s>...}

21

CS 562 - Lec 3-4: FSAs/FSTs

Formal Definition
• a finite-state transducer T is a tuple (Q, Σ, Γ, I, F, δ) such that:

! ▪! Q is a finite set, the set of states;
$ ▪$ Σ is a finite set, called the input alphabet;
$ ▪$ Γ is a finite set, called the output alphabet;
! ▪! I is a subset of Q, the set of initial states;
! ▪! F is a subset of Q, the set of final states; and
$ ▪$ is the transition relation.

22

http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Subset

CS 562 - Lec 3-4: FSAs/FSTs

Examples
• text-to-sound: {<c a t, K AE T>, <d o g, D AW G>,

 <b e a r, B EH R>, <b a r e, B EH R>...}

• (easy for Spanish/Italian, medium for French, hard for English!)

• POS tagger: {<I saw the cat, PRO V DT N>, ...}

• transliterator: { <b u s h, 布 什>, <o b a m a, 奥 巴 马>, ...}
 bu shi ao ba ma

• translator: { <he is in the house, el está en la casa>,
 <he is in the house, está en la casa>, ... }

• notice the many-to-many relation (not a function)

• but is this real translation? NO, there are no reorderings!

• FSMs are best for morphology; we need CFGs for syntax
23

CS 562 - Lec 3-4: FSAs/FSTs

Non-Determinism in FSTs

• ambiguity

• optionality

• important because in/out often have different lengths

• delayed decision via epsilon transition

24

CS 562 - Lec 3-4: FSAs/FSTs

Central Operation: Composition

• language processing is often in cascades

• often easier to tackle small problems separately

• each step: T(A) is the relation (set of string pairs) by A

• <x, y> in T(A) means x ~A y

• compose (A, B) = C

• <x, y> in T(C) iff. ∃ z: <x, z> in T(A) and <z, y> in T(B)

25

CS 562 - Lec 3-4: FSAs/FSTs

Simple Example

• pluralizer + capitalizer

26

CS 562 - Lec 3-4: FSAs/FSTs

How to do composition?

27

CS 562 - Lec 3-4: FSAs/FSTs

How to do composition?

28

CS 562 - Lec 3-4: FSAs/FSTs

composition is like intersection?

• both use cross-product (“state-pair”) construction

• indeed: intersection is a special case of composition

• FSA is a special FST with identity output! (a => a:a)

• A ∩ B = projin (Id(A) ⋄ Id(B))

• what about FSAs composed with FSTs?

• FSA ⋄ FST --- get output(s) from certain input(s)

• <x, z>: ∃ y s.t. <x, y> in T(Id(A)) and <y,z> in T(B)

• but y=x => <x, z>: x in L(A) and <x,z> in T(B)

• FST ⋄ FSA --- get input(s) for certain output(s)
29

CS 562 - Lec 3-4: FSAs/FSTs

Get Output

30

CS 562 - Lec 3-4: FSAs/FSTs

Get Input

• morphological analysis (e.g. what is “acts” made from)

31

CS 562 - Lec 3-4: FSAs/FSTs

Multiple Outputs

32

• text-to-sound: {<c a t, K AE T>, <d o g, D AW G>,
 <b e a r, B EH R>, <b a r e, B EH R>...}

• translator: { <he is in the house, el está en la casa>,
 <he is in the house, está en la casa>, ... }

cat/cut

CS 562 - Lec 3-4: FSAs/FSTs

POS Tagging Revisited

• he hopes that this works

33

CS 562 - Lec 3-4: FSAs/FSTs

Redo POS Tagging via composition

34

he hopes that this works

FST A: sentence

FST C: POS bigram LM

projout (A ⋄ B ⋄ C) =

Q: how about A⋄(B⋄C)? what is B⋄C ?

0

he:PRO

hopes:N

hopes:V

that: CONJ
that: PRO

that: DT

...

FST B: lexicon

