# Natural Language Processing

#### Spring 2017

#### Unit I: Sequence Models

Lecture 2: Finite-State Acceptors/Transducers



Liang Huang

#### This Week: Finite-State Machines

- Finite-State Acceptors and Languages
  - DFAs (deterministic)
  - NFAs (non-deterministic)
- Finite-State Transducers
- Applications in Language Processing
  - part-of-speech tagging, morphology, text-to-sound
  - word alignment (machine translation)
- Next Week: putting probabilities into FSMs

# Languages and Machines

- QI: how to formally define a *language*?
- a language is a set of strings
  - could be finite, but often infinite (due to recursion)
  - L = { aa, ab, ac, ..., ba, bb, ..., zz } (finite)
  - English is the set of grammatical English sentences
  - variable names in C is set of alphanumeric strings
- Q2: how to describe a (possibly infinite) language?
  - use a finite (but recursive) representation
- finite-state acceptors (FSAs) or regular-expressions
   CS 562 Lec 3-4: FSAs/FSTs

3

# **English Adjective Morphology**



exceptions?

#### Finite-State Acceptors

- LI = { aa, ab, ac, ..., ba, bb, ..., zz } (finite)
  - start state, final states

- L2 = { all letter sequences } (infinite)
  - recursion (cycle)

• L3 = { all alphanumeric strings }

#### More Examples

• L4 = { all letter strings with at least a vowel }

#### • L5 = { all letter strings with vowels in order }



# **English Adjective Morphology**





# More English Morphology



#### Membership and Complement

- deterministic FSA: iff no state has two exiting transitions with the same label. (DFA)
- the language L of a DFA D: L = L(D)



- how to check if a string w is in L(D) ? (membership)
  - Inear-time: follow transitions, check finality at the end
  - no transition for a char means "into a trap state"
- how to construct complement DFA?  $L(D') = \neg L(D)$ 
  - super easy: just reverse the finality of states :)
  - note that "trap states" also become final states

#### Intersection

- construct D s.t.  $L(D) = L(D_1) \cap L(D_2)$
- state-pair ("cross-product") construction
  - intersected DFA:  $|Q| = |Q_1| \times |Q_2|$









### Linguistic Example

• DFA A: all interpretations of "he hopes that this works"



• DFA B: all legal English category sequences (simplified)



what do these states mean?

what will  $A \cap B$  mean?

## Linguistic Example



#### Union

- easy, via De Morgan's Law:  $L_1 \cup L_2 = \neg (\neg L_1 \cap \neg L_2)$
- or, directly, from the product construction again
- what are the final states?
  - could end in either language:  $Q_2 \times F_1 \cup Q_1 \times F_2$
  - same De Morgan:  $\neg ((Q_1 \setminus F_1) \cap (Q_2 \setminus F_2)) = \neg (\neg F_1 \cap \neg F_2)$

#### 14

#### Non-Deterministic FSAs

- L = { all strings of repeated instances of ab or aba }
  - hard to do with a deterministic FSA!
  - e.g., abababaababa

epsilon transition (no symbol)

water



blow up the state-space exponentially
 CS 562 - Lec 3-4: FSAs/FSTs



#### **Determinization Example**

• determinization by subset construction (2<sup>n</sup>)



#### Minimization and Equivalence

- each DFA (and NFA) can be reduced to an equivalent DFA with minimal number of states
  - based on "state-pair equivalence test"
  - can be used to test the equivalence of DFAs/NFAs





# Advantages of Non-Determinism

- union (and intersection also?)
- concatenation:  $L_1L_2 = \{xy \mid x \text{ in } L_1, y \text{ in } L_2\}$
- membership problem
  - much harder: exp. time => rather determinize first
- complement problem (similarly harder)
- but is NFA more expressive than DFA?
  - NO, because you can always determinize an NFA
- NFA: more "intuitive" representation of a language
- mDFA: "compact (but less intuitive) encoding"
   CS 562 Lec 3-4: FSAs/FSTs

## FSAs vs. Regular Expressions

- RE operators:  $R^*$ ,  $R_1 + R_2$ ,  $R_1R_2$
- RE => NFA (by recursive translation; easy)
- NFA => RE (by state removal; more involved)



# Wrap-up

- machineries: (infinite) languages, DFAs, NFAs, REs
  - why and when non-determinism is useful
- constructions/algorithms
  - state-pair construction: intersection and union
    - quadratic time/space
  - subset construction: determinization
    - exponential time/space
  - briefly mentioned: minimization and RE <=> NFA
    - see Hopcroft et al textbook for details

CS 562 - Lec 3-4: FSAs/FSTs



- how to detect if a DFA accepts any string at all?
  - how about empty string?
  - how about all strings?
- how about an NFA?
- how to design a reversal of a DFA/NFA?

#### Finite-State Transducers

- FSAs are "acceptors" (set of strings as a language)
- FSTs are "converters"
  - compactly encoding set of string pairs as a relation
- capitalizer: { <cat, CAT>, <dog, DOG>, ...}
- opluralizer: {<cat, cats>, <fly, flies>, <hero, heroes>...}

#### Formal Definition

- a finite-state transducer T is a tuple (Q,  $\Sigma$ ,  $\Gamma$ , I, F,  $\delta$ ) such that:
- *Q* is a <u>finite set</u>, the set of *states*;
- Σ is a finite set, called the *input alphabet*;
- Γ is a finite set, called the *output alphabet*;
- *I* is a <u>subset</u> of *Q*, the set of *initial states*;
- *F* is a subset of *Q*, the set of *final states*; and
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \times Q$  is the *transition relation*.





# Examples

- text-to-sound: {<cat, K AE T>, <dog, D AW G>,
   <bear, B EH R>, <bare, B EH R>...}
  - (easy for Spanish/Italian, medium for French, hard for English!)
- POS tagger: {<I saw the cat, PRO V DT N>, ...}
- transliterator: { <b u s h, 布 什>, <o b a m a, 奥 巴 马>, ...}
   bu shi
   bu shi
- translator: { <he is in the house, el está en la casa>,
   <he is in the house, está en la casa>, ... }
- notice the many-to-many relation (not a function)
- but is this real translation? NO, there are no reorderings!

FSMs are best for morphology; we need CFGs for syntax
 CS 562 - Lec 3-4: FSAs/FSTs

#### Non-Determinism in FSTs

ambiguity



character "c" pronovneed as either K sound or S sound

optionality



- important because in/out often have different lengths
- delayed decision via epsilon transition



CS 562 - Lec 3-4: FSAs/FSTs

#### **Central Operation: Composition**



- language processing is often in cascades
  - often easier to tackle small problems separately
- each step: T(A) is the relation (set of string pairs) by A

• 
$$\langle x, y \rangle$$
 in T(A) means  $x \sim_A y$ 

- compose (A, B) = C
  - $\langle x, y \rangle$  in T(C) iff.  $\exists z: \langle x, z \rangle$  in T(A) and  $\langle z, y \rangle$  in T(B)

## Simple Example

• pluralizer + capitalizer



#### How to do composition?





#### How to do composition?



#### composition is like intersection?

- both use cross-product ("state-pair") construction
- indeed: intersection is a special case of composition
  - FSA is a special FST with identity output! (a => a:a)
  - $A \cap B = \operatorname{proj}_{in} (\operatorname{Id}(A) \cdot \operatorname{Id}(B))$
- what about FSAs composed with FSTs?
  - FSA FST --- get output(s) from certain input(s)
    - < <x, z>: ∃ y s.t. <x, y> in T(Id(A)) and <y,z> in T(B)

but y=x => <x, z>: x in L(A) and <x,z> in T(B)

FST · FSA --- get input(s) for certain output(s)
 CS 562 - Lec 3-4: FSAs/FSTs

#### Get Output

e.g., pluralize "cat"



compose (A, B) includes < x, y> if Iz: < x, z> EA & < 2, y> EB



30

# Get Input

morphological analysis (e.g. what is "acts" made from)



$$Compose(B,C)$$

$$2a:a \quad C:C \quad t:t \quad *ex:s \quad ({act, acts})$$

$$+ throw away output labels$$

$$70 \quad c \quad t \quad *ex \quad (act)$$

CS 562 - Lec 3-4: FSAs/FSTs

# Multiple Outputs



text-to-sound: {<cat, K AE T>, <dog, D AW G>,
 <bear, B EH R>, <bare, B EH R>...}

translator: { <he is in the house, el está en la casa>,
 <he is in the house, está en la casa>, ... }
 CS 562 - Lec 3-4: FSAs/FSTs

# **POS** Tagging Revisited



CS 562 - Lec 3-4: FSAs/FSTs

# Redo POS Tagging via composition

FSTA: sentence

FST B: lexicon



FST C: POS bigram LM





 $\operatorname{proj}_{\operatorname{out}}(A \circ B \circ C) =$ 



Q: how about  $A \cdot (B \cdot C)$ ? what is  $B \cdot C$ ?