
CSE 399-005 Python Programming, Spring 2006

Homework 2

March 25, 2006

Instructions

1. This assignment is due on Tuesday March 28 at 11:59 PM.

2. You may discuss this HW in a high level with another student, but you
should write your partner’s name in debrief.txt. High-level discus-
sions include algorithmic design (but not how to implement them), in-
put/output specifications, etc.

3. The other instructions are the same as HW 1.

Problems

In contrast to HW 1, you may submit multiple .py files for each problem. But
make sure your main programs be named as specified.

Problem 1 - Word Frequencies Revisited (15 points)

Main program: word.py

In HW 1, Problem 3 asked you to count word frequencies and sort them. Now,
with the introdcution of dictionaries, sets, and the built-in sort function, life
is much easier. So you are to rewrite your solution using these new techniques
and produce code that is not only more elegant, but also more efficient than
your code in HW 1.

The input/output specifications remain unchanged:
cat word.in | python word.py > myword.out

Problem 2 - Interleaving (20 points)

Main program: interleave.py

An interleaving of two lists contains all elements from both lists, with the
constraint that any two items from the same list are still in the same order.
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A parallel interleaving is a special case where the items from the two lists
alternate in the sequence, i.e., [ a[0], b[0], a[1], b[1], ... ].

Your are to write a program that implements functions inter(a, b) and
allinter(a, b), where a and b are two lists, and the former returns the list of
parallel interleaving while the latter returns a list containing all interleavings.

Note:

1. the two input lists may or may not be of equal length.

2. you may not use any global variable.

3. your code should be no longer than 20 lines.

Example (in the Python interactive shell):

>>> from interleave import *

>>> inter([1,2], [3,4,5])

[1, 3, 2, 4, 5]

>>> allinter([1,2], [3,4])

[[1, 2, 3, 4], [1, 3, 2, 4], [1, 3, 4, 2], [3, 1, 2, 4], [3, 1, 4, 2], [3, 4, 1, 2]]

For easy debugging, it is recommended that you have the following code in
your interleave.py:

if __name__ == ’__main__’:

print inter ([1,2], [3,4,5])

print allinter ([1,2], [3,4])

Now, you can run it in the terminal to test:
python interleave.py

It should output the same thing as in the interactive shell. As a larger
example, you will get 15 interleavings for

allinter([1,’a’], [’b’, 3, 3, ’a’])

Problem 3 - Trie (55 points)

Main program: trie.py

Trie is a special tree structure for efficient manipulation of dictionaries (not in
the Python sense). The basic idea is to share the storage of common prefixes.
It is similar but faster than binary search trees (BSTs). See the following page
for an introdcution.

http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic7/

Here is an example trie, which encodes a dictionary of five words: then,

them, those, toss, ball. Notice that in trie’s internal representation, every
word ends with a special symbol $. This is to make sure that the trie correctly
handles the case when one word is a prefix of another word, e.g., ball and
ballet (assuming $ never occurs in an English word).
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Now you are to use the Python dictionaries to implement a trie. Your
program should support the following functions:

1. search(trie, word) which returns True if word is found in trie and
False if otherwise.

2. insert(trie, word) which inserts word into trie if it is not already
there. (otherwise it does nothing)

3. remove(trie, word) which removes word from trie if it is there. (oth-
erwise it does nothing)

4. pp(trie) which pretty-prints the trie with indentations. See the example
for details.

For testing, you might want to have the following code in your trie.py.

if __name__ == "__main__":

trie = {}

insert(trie, ’ball’)

insert(trie, ’then’)

insert(trie, ’them’)

insert(trie, ’those’)

insert(trie, ’toss’)

insert(trie, ’ballet’)

pp(trie)

print search(trie, "toss")

print search(trie, "those")

print search(trie, "these")

print search(trie, "ballon")

remove(trie, ’ballet’); pp(trie)

If you run your program in the terminal, it will output the following:
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root

| b

| | a

| | | l

| | | | l

| | | | | $

| | | | | e

| | | | | | t

| | | | | | | $

| t

| | h

| | | e

| | | | m

| | | | | $

| | | | n

| | | | | $

| | | o

| | | | s

| | | | | e

| | | | | | $

| | o

| | | s

| | | | s

| | | | | $

True

True

False

False

root

| b

| | a

| | | l

| | | | l

| | | | | $

| t

| | h

| | | e

| | | | m

| | | | | $

| | | | n

| | | | | $

| | | o

| | | | s

| | | | | e

| | | | | | $

| | o

| | | s

| | | | s

| | | | | $
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Note:

1. The pretty-print of a trie starts with a single line of root, and each level
adds an indentation of | .

2. The entries in pretty-print should be in lexicographical order, which im-
plies that the output of pp(trie) is unique. However, Python dictionaries
do not ensure this if you simply do:

for letter in trie:

So you should use the following to iterate over keys in a sorted order:

for letter in sorted(trie):

3. The special symbol $ is present in the internal representation and pretty-
print, but the word argument in functions insert, search, and remove

do not have this symbol.

4. The second pretty-print of trie corresponds exactly to the example tree
in the figure.

Total: 90 (problems) + 10 (styles) = 100 points.

Debriefing

Please answer these questions in debrief.txt and submit it along with the
programs. There will be 5 points off if you didn’t submit this part. If you
realized that you forget this part after the deadline, you can just email your
debrief.txt to TA Bill (kandylas@cis).

1. How many hours did you spend on this assignment?

2. Would you rate it as easy, moderate, or difficult?

3. Are the lectures too fast, too slow, or just in the right pace?

4. Any other comments?

5. If you discussed this HW in a high-level with somebody else, who is your
partner?
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