
Basic Python Syntax

Numbers and Strings

• like Java, Python has built-in (atomic) types

• numbers (int, float), bool, string, list, etc.

• numeric operators: + - * / ** %

19

>>> a = 5
>>> b = 3
>>> type (5)
<type 'int'>
>>> a += 4
>>> a
9

>>> c = 1.5
>>> 5/2
2
>>> 5/2.
2.5
>>> 5 ** 2
25

no i++ or ++i

>>> s = “hey”
>>> s + “ guys”
'hey guys'
>>> len(s)
3
>>> s[0]
'h'
>>> s[-1]
'y'>>> from __future__ import division

>>> 5/2
2.5 recommended!

Assignments and Comparisons

20

>>> a = b = 0
>>> a
0
>>> b
0

>>> a, b = 3, 5
>>> a + b
8
>>> (a, b) = (3, 5)
>>> a + b
>>> 8
>>> a, b = b, a
(swap)

>>> a = b = 0
>>> a == b
True
>>> type (3 == 5)
<type 'bool'>
>>> "my" == 'my'
True

>>> (1, 2) == (1, 2)
True

>>> 1, 2 == 1, 2
???
(1, False, 2)

for loops and range()

21

>>> sum = 0
>>> for i in range(10):
... sum += i
...
>>> print sum
45

>>> for word in ["welcome", "to", "python"]:
... print word,
...
welcome to python

>>> range(5), range(4,6), range(1,7,2)
([0, 1, 2, 3, 4], [4, 5], [1, 3, 5])

Java 1.5
foreach (String word : words)
! System.out.println(word)

• for always iterates through a list or sequence

while loops

22

>>> a, b = 0, 1
>>> while b <= 5:
... print b
... a, b = b, a+b
...
1
1
2
3
5

• very similar to while in Java and C

• but be careful

• in behaves differently in for and while

• break statement, same as in Java/C

fibonacci series

simultaneous
assignment

Conditionals

23

>>> if 4 > 5:
... print "foo"
... else:
... print "bar"
...
bar

>>> if x < 10 and x >= 0:
... print x, "is a digit"
...
>>> False and False or True
True
>>> not True
False

>>> print “foo” if 4 > 5 else “bar”
...
>>> bar

printf((4>5)? ”foo” : “bar”);C/Java

conditional expr since Python 2.5

if ... elif ... else

24

>>> if a in ...:
... print ...
... elif a in ...:
... print ...
... else:
... print ...

switch (a) {
! case “blue”:
! case “yellow”:
! case “red”:
! ! print ...; break;
! case “US”:
! case “China”:
! ! print ...; break;
! else:
! ! print ...;
}
! !

>>> a = "foo"
>>> if a in ["blue", "yellow", "red"]:
... print a + " is a color"
... else:
...! ! if a in ["US", "China"]:
... !! ! print a + " is a country"
... ! ! else:
...! ! ! ! print "I don't know what”, a, “is!"
...
I don't know what foo is!

C/Java

break, continue and else
• break and continue borrowed from C/Java

• special else in loops

• when loop terminated normally (i.e., not by break)

• very handy in testing a set of properties

25

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... break
... else:
... print n,
...

prime numbers

for (n=2; n<10; n++) {
! good = true;
! for (x=2; x<n; x++)
! ! if (n % x == 0) {
! ! ! good = false;
! ! ! break;
! ! }
! if (good)
! ! printf(“%d “, n);
}

C/Java
if (x==n)

|| func(n)

Defining a Function def

• no type declarations needed! wow!

• Python will figure it out at run-time

• you get a run-time error for type violation

• well, Python does not have a compile-error at all

26

>>> def fact(n):
... if n == 0:
... return 1
... else:
... return n * fact(n-1)
...
>>> fact(4)
24

Fibonacci Revisited

27

>>> a, b = 0, 1
>>> while b <= 5:
... print b
... a, b = b, a+b
...
1
1
2
3
5

def fib(n):
! if n <= 1:
! ! return n
! else:
! ! return fib (n-1) + fib (n-2)

>>> fib(5)
5
>>> fib(6)
8

conceptually cleaner, but much slower!

Default Values

28

>>> def add(a, L=[]):
... return L + [a]
...
>>> add(1)
[1]

>>> add(1,1)
error!

>>> add(add(1))
[[1]]

>>> add(add(1), add(1))
???
[1, [1]]

lists are heterogenous!

Approaches to Typing
✓ strongly typed: types are strictly enforced. no implicit

type conversion

- weakly typed: not strictly enforced

- statically typed: type-checking done at compile-time

✓ dynamically typed: types are inferred at runtime

29

weak strong

static

dynamic

C, C++ Java, Pascal

Perl, VB Python, OCaml

Lists

heterogeneous variable-sized array
a = [1,'python', [2,'4']]

Basic List Operations

• length, subscript, and slicing

31

>>> a = [1,'python', [2,'4']]
>>> len(a)
3
>>> a[2][1]
'4'
>>> a[3]
IndexError!
>>> a[-2]
'python'
>>> a[1:2]
['python']

>>> a[0:3:2]
[1, [2, '4']]

>>> a[:-1]
[1, 'python']

>>> a[0:3:]
[1, 'python', [2, '4']]

>>> a[0::2]
[1, [2, '4']]

>>> a[::]
[1, 'python', [2, '4']]

>>> a[:]
[1, 'python', [2, '4']]

+, extend, +=, append

32

>>> a = [1,'python', [2,'4']]
>>> a + [2]
[1, 'python', [2, '4'], 2]
>>> a.extend([2, 3])
>>> a
[1, 'python', [2, '4'], 2, 3]

same as a += [2, 3]

>>> a.append('5')
>>> a
[1, 'python', [2, '4'], 2, 3, '5']
>>> a[2].append('xtra')
>>> a
[1, 'python', [2, '4', 'xtra'], 2, 3, '5']

• extend (+=) and append mutates the list!

Comparison and Reference
• as in Java, comparing built-in types is by value

• by contrast, comparing objects is by reference

33

>>> [1, '2'] == [1, '2']
True
>>> a = b = [1, '2']
>>> a == b
True
>>> a is b
True
>>> b [1] = 5
>>> a
[1, 5]
>>> a = 4
>>> b
[1, 5]
>>> a is b
>>> False

>>> c = b [:]
>>> c
[1, 5]
>>> c == b
True
>>> c is b
False

>>> b[:0] = [2]
>>> b
[2, 1, 5]
>>> b[1:3]=[]
>>> b
[2]

insertion

deletion

slicing gets
a shallow copy

>>> a = b
>>> b += [1]
>>> a is b
True

a += b means
a.extend(b)

NOT
a = a + b !!

List Comprehension

34

>>> a = [1, 5, 2, 3, 4 , 6]
>>> [x*2 for x in a]
[2, 10, 4, 6, 8, 12]

>>> [x for x in a if \
... len([y for y in a if y < x]) == 3]
[4]

>>> a = range(2,10)
>>> [x*x for x in a if \
... [y for y in a if y < x and (x % y == 0)] == []]
???
[4, 9, 25, 49] square of prime numbers

4th smallest element

List Comprehensions

35

>>> vec = [2, 4, 6]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]

>>> [x, x**2 for x in vec]
SyntaxError: invalid syntax

>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]

>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]

>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]

>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

(cross product)

(dot product)

should use zip instead!

Strings

sequence of characters

Basic String Operations
• join, split, strip

• upper(), lower()

37

>>> s = " this is a python course. \n"
>>> words = s.split()
>>> words
['this', 'is', 'a', 'python', 'course.']
>>> s.strip()
'this is a python course.'
>>> " ".join(words)
'this is a python course.'
>>> "; ".join(words).split("; ")
['this', 'is', 'a', 'python', 'course.']
>>> s.upper()
' THIS IS A PYTHON COURSE. \n'

http://docs.python.org/lib/string-methods.html

Basic Search/Replace in String

38

>>> "this is a course".find("is")
2
>>> "this is a course".find("is a")
5
>>> "this is a course".find("is at")
-1

>>> "this is a course".replace("is", "was")
'thwas was a course'
>>> "this is a course".replace(" is", " was")
'this was a course'
>>> "this is a course".replace("was", "were")
'this is a course'

these operations are much faster than regexps!

String Formatting

39

>>> print “%.2f%%” % 97.2363
97.24%

>>> s = '%s has %03d quote types.' % ("Python", 2)
>>> print s
Python has 002 quote types.

