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ABSTRACT
One of the key difficulties in cooperative coevolutionary al-
gorithms is solving the credit assignment problem. Given
the performance of a team of agents, it is difficult to de-
termine the effectiveness of each agent in the system. One
solution to solving the credit assignment problem is the dif-
ference evaluation function, which has produced excellent
results in many multiagent coordination domains, and ex-
hibits the desirable theoretical properties of alignment and
sensitivity. However, to date, there has been no prescriptive
theoretical analysis deriving conditions under which differ-
ence evaluations improve the probability of selecting optimal
actions. In this paper, we derive such conditions. Further,
we prove that difference evaluations do not alter the Nash
equilibria locations or the relative ordering of fitness val-
ues for each action, meaning that difference evaluations do
not typically harm converged system performance in cases
where the conditions are not met. We then demonstrate the
theoretical findings using an empirical basins of attraction
analysis.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence
—Distributed Artificial Intelligence —Multiagent systems

1. INTRODUCTION
Coordinating multiple agents to achieve a system objec-

tive is a key step in addressing many real world problems
including distributed sensor network and distributed mobile
robot control [4]. One approach to developing policies for
multiagent systems is the use of Cooperative Coevolutionary
Algorithms (CCEAs), where multiple populations evolve in
parallel, with each population evolving a policy for a par-
ticular agent or set of agents. One of the key difficulties
of CCEAs is the credit assignment problem: given the per-
formance of a team of agents, how does one assign fitness
values reflecting each agent’s individual performance?
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In a CCEA, fitness assignment is context dependent and
subjective, because the fitness of an agent is not only a func-
tion of the agent’s policy, but also the selection and policies
of its collaborating agents. In multiagent settings, this leads
to the promotion of agents which perform well with a wide
variety of collaborators, rather than agents which perform
optimally with a particular set of collaborators. Thus, the
credit assignment problem changes the problem subtly, and
often leads to robust, rather than optimal, solutions [8].

In order to promote good system performance while using
CCEAs, the credit assignment problem is addressed through
fitness function shaping. One approach to assigning fitness is
the difference evaluation function, which approximates each
agent’s individual contribution to the overall system per-
formance [1]. Difference evaluation functions have provided
tangible benefits in a variety of domains [1, 4].

However, to date, there has been no prescriptive theo-
retical analysis deriving conditions under which difference
evaluations are expected to improve the probability of select-
ing optimal actions, limiting their applicability. This paper
conducts a theoretical analysis of difference evaluations as
fitness assignment operators in CCEAs, using an evolution-
ary game theoretic framework. The specific contributions of
this paper are to:

1. Prove difference evaluations improve the probability
of selecting best response actions when the expected
payoffs of those actions are relatively low (Section 5.1).

2. Prove that difference evaluations do not alter the Nash
equilibria locations in the system (Section 5.2).

3. Prove that difference evaluations do not alter the or-
dering of expected payoffs for each action (Section 5.2).

4. Provide an empirical basins of attraction analysis which
showcases the results of the theorems (Section 7).

Although there have been multiple studies involving the
performance benefits of difference evaluation functions, this
paper provides the first prescriptive theoretical analysis of
difference evaluation functions, proving conditions under which
they improve the probabilities of each agent to select its
best response action. The rest of this paper is organized as
follows. Section 2 provides details on background informa-
tion and related work, Section 3 demonstrates how difference
evaluations are incorporated into an evolutionary game the-
oretic model, Section 4 derives normalized fitness values for
the evolutionary game theoretic model, Section 5 contains
the proofs of our theorems, Section 6 provides an empirical
demonstration of the implications of the theorems, Section
7 provides an empirical basins of attraction analysis of the
proved theorems, and Section 8 concludes the paper.



2. BACKGROUND
The following sections introduce cooperative coevolution-

ary algorithms, difference evaluation functions, and the evo-
lutionary game theoretic model for cooperative coevolution.

2.1 Cooperative Coevolutionary Algorithms
Evolutionary algorithms (EAs) are a class of stochastic

search algorithms, which have been shown to work well in
complex domains where gradient information is not readily
available. EAs typically contain two basic mechanisms: mu-
tation and selection [12]. These mechanisms act on an initial
set of candidate solutions in order to generate new solutions
and to retain solutions which show improvement as evolu-
tionary time progresses. Coevolutionary algorithms are an
extension of EAs in which multiple populations evolve in
parallel, and are well suited for multiagent domains [5, 15].
In a coevolutionary algorithm, the fitness of an agent de-
pends on the interactions it has with other agents. Thus,
assessing the fitness of each agent is context-sensitive and
subjective [8]. We focus on Cooperative Coevolutionary Al-
gorithms (CCEAs), where a group of agents succeed or fail
as a team.

One key issue with CCEAs is that they tend to favor sta-
ble, rather than optimal, solutions [2, 8]. As agents are
paired with multiple different sets of collaborators in CCEAs
during different evolutionary time steps, agents which learn
to coordinate with a wide variety of teammates tend to re-
ceive higher fitness values than agents which learn to coor-
dinate optimally with a specific set of collaborators [8]. For
example, if an optimal agent only performs well with a spe-
cific set of collaborators, then that agent will likely receive a
low fitness value during evolution, and be removed from the
population. The difference evaluation function aims to ad-
dress the subjective nature of fitness assignments associated
with CCEAs, by determining agent-specific fitness values
based on the value of a particular agent’s policy.

2.2 Difference Evaluation Functions
The agent-specific difference evaluation function Di(z) is

defined as [1]:

Di(z) = G(z)−G(z−i + ci) (1)

where G(z) is the global evaluation function, and G(z−i+ci)
is the global evaluation function without the effects of agent
i. The term ci is the counterfactual, which is used to replace
agent i, and must not depend on the actions of agent i. In
general, the counterfactual term is chosen to either remove
the agent from the system or to replace the agent with an
“average” agent. We demonstrate how a counterfactual may
be chosen in Section 3. Intuitively, the difference evaluation
function gives the impact of agent i on the global evaluation
function, because the second term removes the portions of
the global evaluation function not dependent on agent i.

Difference evaluations have two key theoretical properties
which allow for improved system performance. First, any
action which increases Di(z) also increases G(z). This prop-
erty is termed alignment [1]. Second, as the second term in
the difference evaluation removes the effects of all agents
other than agent i, the difference evaluation provides a feed-
back signal with much less noise than G(z). This property
is termed sensitivity [1].

Although difference evaluations have produced excellent
empirical results and exhibit the desirable theoretical prop-

erties of alignment and sensitivity, the theoretical advan-
tages of difference evaluations have not been well devel-
oped. To date, there has been no prescriptive theoretical
analysis which determines under what conditions difference
evaluations are expected to improve system performance.
This paper addresses these theoretical questions by analyz-
ing difference evaluations using an evolutionary game theo-
retic framework.

2.3 EGT Model for Cooperative Coevolution
This section introduces the Evolutionary Game Theoretic

(EGT) model we use for our analysis. EGT is well suited as
a model of cooperative coevolutionary algorithms, and thus
provides a theoretical framework in which we can analyze
the effects of different fitness assignment operators [6, 9, 10,
11, 13, 14]. This analysis is restricted to cooperative coevo-
lutionary algorithms with two agents learning in stateless
domains, and each agent having a finite number of actions.
The model assumes that the populations are infinite, and
that the proportions of individuals in the populations are
computed at each time step during evolution. If the first
agent has a finite number of n distinct actions it can take,
then its population at each generation is an element of the
unit simplex ∆n = {x ∈ [0, 1]n|

∑n
i=1 xi = 1}. A higher

value xi corresponds to a higher probability that the agent
selects action i. If the second agent has m actions to choose
from, then its population at each generation is an element
of the unit simplex ∆m = {y ∈ [0, 1]m|

∑n
j=1 yj = 1}. The

EGT model for CCEAs we use is the discrete time replica-
tor dynamics with fitness proportional selection, defined as
in [8, 13]:
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Where:

• u
(t),c
i is the fitness of agent 1 taking action i at time t,

while using the global payoff matrix.

• w
(t),c
j is the fitness of agent 2 taking action j at time

t, while using the global payoff matrix.

• x
(t)
i is the probability agent 1 takes action i at time t.

• y
(t)
j is the probability agent 2 takes action j at time t.

• x
(t+1),c
i is the updated probability agent 1 takes action

i at time t+1, when the update is completed using the
global payoff matrix.

• y
(t+1),c
j is the updated probability agent 2 takes action

j at time t + 1, when the update is completed using
the global payoff matrix.

Note that the fitness values of each action are simply the
expected payoffs of taking each action, given the collaborat-
ing agent’s probability distribution for action selection. For
this analysis, we make the following assumptions:



A1) All elements of the payoff matrix are non-negative. If
there are negative terms in a payoff matrix, a posi-
tive constant is added to each element to ensure each
element is non-negative.

A2) There are at least two distinct elements in the payoff
matrix (not all elements have the same value).

Assumption A1 is a common assumption in evolutionary
game theory; non-negative payoff matrix elements ensure
that the system remains invariant in the simplex [7, 14].
Assumption A2 is needed in the proofs, but it is worth noting
that if this assumption does not hold, then we have a trivial
payoff matrix where every element has equal value.

3. DIFFERENCE PAYOFF MATRICES
We now demonstrate how difference evaluation functions

are incorporated into the EGT model. Suppose that each
agent is given agent-specific feedback rather than global
feedback. We can directly apply the difference evaluation
function from Equation 1 to the global payoff matrix C,
creating the agent-specific difference payoff matrices D1 and
D2, which are defined as:

d1ij = cij −
1

n

n∑
k=1

ckj + cmax (6)

d2ij = cij −
1

m

m∑
k=1

cik + cmax (7)

Note that to compute the counterfactual term, we calcu-
late the average payoff for an agent across all of its poten-
tial actions, given the action of the collaborating agent. In
general, it is desirable to choose a counterfactual which ef-
fectively removes an agent from the system. However, in a
game-theoretic setting, agents cannot be removed, because
each agent must select an action to find a joint payoff. So,
rather than removing the agent from the system, the coun-
terfactual term in the difference payoff matrices replace the
agent with an average agent with a uniform random policy.
The term cmax is added to ensure that all elements of the
difference payoff matrix are non-negative, where:

cmax = maxij {|cij |}

The fitness assignment operators from the EGT model (Equa-
tions 2 and 3) are altered by directly incorporating the dif-
ference payoff matrices from Equations 6 and 7. The EGT
model for CCEAs with difference evaluations is thus:
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Where:

• u
(t),d
i is the fitness of agent 1 taking action i at time t,

while using the difference payoff matrix.

• w
(t),d
j is the fitness of agent 2 taking action j at time

t, while using the difference payoff matrix.

• x
(t+1),d
i is the updated probability agent 1 takes action

i at time t+1, when the update is completed using the
difference payoff matrix.

• y
(t+1),d
j is the updated probability agent 2 takes action

j at time t + 1, when the update is completed using
the difference payoff matrix.

Note that the only difference between the traditional EGT
model and the EGT model incorporating difference evalua-
tions occurs in the fitness assignment stage. Rather than
using the global payoff matrix to assign fitness, we use the
difference payoff matrices.

4. NORMALIZED FITNESS VALUES
As the difference evaluation function alters the elements

of the payoff matrix, we must normalize fitness values in
order to compare performance when using difference payoff
matrices versus the global payoff matrix. In the following
sections we derive normalized fitness values for agents using
both global and difference evaluation functions.

4.1 Global Evaluation Function
Fitness values for each agent using the global payoff ma-

trix are defined in Equations 2 and 3. We normalize these

fitness values such that
∑n

i=1 ū
(t),c
i = 1 and

∑m
j=1 w̄

(t),c
j = 1.

The normalized expected payoff for the first agent taking ac-
tion i and using the global evaluation function at time t is:
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A similar derivation for the second agent yields:
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4.2 Difference Evaluation Function
We now define the fitness for an agent using the difference

payoff matrices in terms of the global payoff matrix. The
fitness for the first agent taking the action i while using the
difference evaluation function at time t is:

u
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The normalized fitness for the first agent taking action i



while using the difference evaluation at time t is:
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A similar derivation yields the normalized fitness for the
second agent taking action j and using the difference evalu-
ation at time t:

w̄
(t),d
j =

w
(t),c
j − 1

m

∑m
k=1 w

(t),c
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m · cmax
(23)

5. DIFFERENCE EVALUATIONS THEORY
In the following sections, we derive the conditions under

which difference evaluations improve the probability of se-
lecting best response actions. We then prove that in cases
where these conditions are not met, difference evaluations
do not negatively affect the game.

5.1 Optimal Payoff Theory
We define the joint expected system payoff at time t as:

E
(t)
tot[C] =

n∑
i=1

m∑
j=1

cijx
(t)
i y

(t)
j (24)

We now prove that in cases where the optimal action (corre-
sponding to the optimal Nash equilibrium) has a relatively
low expected payoff, difference evaluations result in higher
probabilities of selecting best response actions compared to
the global evaluation.

Theorem 1. If the fitness values for the best response ac-
tions i∗ and j∗ are less than the joint expected system payoff,
then difference evaluations result in higher probabilities of
selecting the best response actions as compared to the global
evaluation function.
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Proof. Starting with Equation 25, we have that:
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We now multiply both sides of the inequality by a positive
constant A:
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toring of terms, yielding:
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We now focus on the term A from Equation 26. Recall that:
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We thus define A as:
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Note that A is strictly positive by assumptions A1 and A2
from Section 2.3. With this definition of A, we have that:

u
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Combining Equations 26 and 27 yields:
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Note that the terms in the inequality from Equation 28 are
equivalent to the coefficients in the population update rules
from Equations 4 and 10. We thus have:

x
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A similar derivation for the second agent yields:
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Thus, if the fitness values for the optimal actions i∗ and j∗

are less than the joint expected system payoff (i.e. the ex-
pected payoff of the optimal actions is relatively low), then
difference evaluations result in higher probabilities of se-
lecting the optimal actions than the global evaluation func-
tion does. Equations 25 and 30 prescribe conditions under
which difference evaluations will result in better system per-
formance than the global evaluation function. For clarity,
Section 6 provides a numerical example demonstrating the
results of this theorem.

5.2 Game Characteristics Theory
In Section 5.1, we proved that in cases where the expected

payoffs of the optimal actions are relatively low, difference
evaluations increase the probability of selecting the optimal
actions compared to global evaluations. However, this also
means that agents using difference evaluations have lower
probabilities of selecting optimal actions in cases where the
expected payoff of the optimal actions are relatively high.
Even though this is the case, difference evaluations typically
do not harm converged system performance when the pre-
scribed condition from Theorem 1 does not hold. We now
provide two theorems which give the intuition for why this
is the case.

We first prove that all Nash equilibria in the game when
using the global payoff matrix remain Nash equilibria when
using difference payoff matrices. This theorem demonstrates
that attractor points in the population space are not altered
when applying difference evaluation functions.

Theorem 2. All Nash equilibria remain Nash equilibria
when agents use difference payoff matrices for feedback.

Proof. A Nash equilibrium (i∗, j∗) in a symmetric game
with a payoff matrix C is defined as:

ci∗j∗ > cij∗ ∀ i 6= i∗ (31)

ci∗j∗ > ci∗j ∀ j 6= j∗ (32)

When agents are using difference evaluations, the game is
not symmetric, so a Nash equilibrium (i∗, j∗) is defined as:

d1i∗j∗ > d1ij∗ ∀ i 6= i∗ (33)

d2i∗j∗ > d2i∗j ∀ j 6= j∗ (34)

Suppose we have a Nash equilibrium (i∗, j∗) that satisfies
Equations 31 and 32. We now demonstrate that this implies
that Equations 33 and 34 are also satisfied. We begin with
Equation 31, and add − 1

n
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k=1 ckj∗ + cmax to both sides of

the inequality:
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Noting that d1ij = cij − 1
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d1i∗j∗ > d1ij∗ ∀i 6= i∗

We can similarly start from Equation 32 and derive that:

d2i∗j∗ > d2i∗j ∀j 6= j∗

So, difference evaluations do not alter the location of Nash
equilibria from the original game using global evaluations.

Thus, difference evaluations do not alter the location of at-
tractor points in the population space.

We now prove that the relative ordering of fitness values is
identical whether difference or global evaluations are used.

Theorem 3. If:
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Noting that d1ij = cij − 1
n

∑n
k=1 ckj + cmax, we have that:
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We can conduct a similar proof for the second agent, yield-
ing:

w(t),c
a > w

(t),c
a′ ⇒ w(t),d

a > w
(t),d
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Thus, if an action a has a higher fitness than action a′ when
using the global evaluation, then a also has a higher fitness
than a′ when using the difference evaluation.

From Theorem 1, we know that in cases where the opti-
mal action has a low expected payoff, then difference eval-
uations improve system performance. When the conditions
from Theorem 1 are not satisfied (i.e. the optimal actions
have relatively high payoffs), Theorems 2 and 3 imply that
difference evaluations will not alter the location of the op-
timal Nash equilibrium, and that the optimal actions will
still have relatively high payoffs when using difference eval-
uations. Thus, in cases where the conditions from Theorem
1 do not hold, then difference evaluations should not nega-
tively impact system performance.

6. PAYOFF MATRIX ANALYSIS
In Section 5.1, we proved that difference evaluations in-

crease the probability of selecting the optimal action if the
expected payoff of the optimal action is lower than the joint
expected system payoff. To illustrate the effects of the differ-
ence evaluation on the dynamics of a coordination game, we
will analyze how difference evaluations impact the penalty
game, a game with a variable parameter which can alter the



risk associated with the optimal Nash equilibria [3, 8]. The
penalty game is defined by the joint payoff matrix:

C =

 10 0 p
0 2 0
p 0 10

 (36)

where p ∈ (−∞, 10). The penalty game has three Nash
equilibria: (1, 1), (2, 2), and (3, 3). The (2, 2) Nash equi-
librium is suboptimal, but may be less risky depending on
the value of the penalty term p. For example, if p = −10,
then the (2, 2) Nash equilibrium is more forgiving if one
agent deviates from its strategy. As p becomes smaller, the
risk associated with the optimal Nash equilibria increases.
Conversely, as p approaches 10, the risk associated with the
optimal Nash equilibrium is minimized.

We can vary the value of p to alter whether or not the
prescriptive conditions from Theorem 1 hold, as low values
of p result in low expected payoffs for the optimal actions.
We assume the agents have just started to learn and have
no knowledge about the payoff matrix. As such, we assume
the agents initially select their actions by sampling from a
uniform random distribution. Further, we assume that the
penalty term p is defined as p = −10. Thus, the fitness
values for each action the first agent may take are:

u(t),c
a1

=
10 + 0− 10 + 30

3
= 10.0 (37)

u(t),c
a2

=
0 + 2 + 0 + 30

3
= 10.67 (38)

u(t),c
a3

=
−10 + 0 + 10 + 30

3
= 10.0 (39)

Note that 10 is added to each element of the payoff matrix to
ensure all values are non-negative. This ensures that under
fitness proportional selection, the populations will remain
invariant in the unit simplex. We now find the joint expected
system payoff using the fitness values (expected payoffs for
each action) found above:

E
(t)
tot =

3∑
i=1

3∑
j=1

cijxiyj

=

3∑
i=1

10.0 + 10.67 + 10.0

3

= 10.22

We see that u
(t),c
a1 < E

(t)
tot, so from Theorem 1, we know

that difference evaluations will lead to a higher probability
of selecting the optimal action than global evaluations will.
The optimal action has a relatively low fitness, because as
y1 = y3 we have the optimal Nash equilibrium payoff and
penalty term canceling each other out when computing the
expected payoff of the optimal action. In cases such as this
where the optimal action has a low expected payoff, we know
that difference evaluations increase the probability of select-
ing the optimal action. The normalized fitness values for the
first agent taking each action are:

ū(t),c
a1

=
10.0

10.0 + 10.67 + 10.0
= 0.326 (40)

ū(t),c
a2

=
10.67

10.0 + 10.67 + 10.0
= 0.348 (41)

ū(t),c
a3

=
10.0

10.0 + 10.67 + 10.0
= 0.326 (42)

The difference payoff matrix for the first agent playing the
penalty game is found by applying Equation 6 to the penalty
game payoff matrix:

D1 =

 30 19.33 10
20 21.33 20
10 19.33 30

 (43)

Retaining the assumption that each agent plays a uniform
random strategy, the fitness values for each action that may
be taken by the first agent are:

u(t),d
a1

=
30 + 19.33 + 10

3
= 19.78 (44)

u(t),d
a2

=
20 + 21.33 + 20

3
= 20.44 (45)

u(t),d
a3

=
10 + 19.33 + 30

3
= 19.78 (46)

In this case, the normalized fitness values for the first agent
taking each action are:

ū(t),d
a1

=
19.78

19.78 + 20.44 + 19.78
= 0.330 (47)

ū(t),d
a2

=
20.44

19.78 + 20.44 + 19.78
= 0.340 (48)

ū(t),d
a3

=
19.78

19.78 + 20.44 + 19.78
= 0.330 (49)

From Theorem 1, we know that in the above example, dif-
ference evaluations result in a higher probability of select-
ing optimal actions. Comparing Equations 40-42 and 47-49,
we see that the fitness values for the optimal actions are
higher when the agent uses difference evaluation functions.
Although the difference between these values is relatively
small, it is of note that these differences occur after only one
iteration of the EGT model. As seen in the next Section,
these differences in fitness do lead to difference evaluations
resulting in better performance than global evaluations.

7. EMPIRICAL RESULTS
In this section, we analyze the basins of attraction created

by difference and global evaluations in the penalty game
with varying values of p. We simulate the EGT model for
global evaluations using Equations 2-5, and the EGT model
for difference evaluations using Equations 8-11. We run 5000
simulations, using different initial population vectors (uni-
formly distributed across joint population space) for each
simulation. Simulations are run for either 5000 generations
or until the probability of selecting an action exceeds 0.995.
As fitness proportional selection requires individuals to have
non-negative fitness values, we add a constant term in the
payoff matrix C to ensure all payoffs are non-negative.

We use the technique developed in [9] to visualize the
basins of attraction. The simplex for each population is
projected onto a one dimensional line segment. The line
contains six regions, where all points in a given region have
the same ordering of genotype proportion (1s are more com-
mon than 2s, which are more common than 3s, for example).
Combining all six of these regions provides a one dimensional
representation of the unit simplex. A cartesian product of
two of these simplex projections provides a two dimensional
representation of a two agent population space, as shown in
Figure 1. Within this two dimensional space, we can visual-
ize the basins of attraction for agents using either difference
or global evaluation functions. For clarity, we have labeled
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Figure 1: Visualization of the cartesian product of
two simplexes, for visualing basins of attraction.

each region of the space from regions R1 to R9. See [9] for
more details on the visualization process.

We analyze the basins of attraction for the penalty game
when p = −50 and when p = 0. When p = −50, the risk as-
sociated with the optimal Nash equilibria is very high, which
makes reaching the optimal Nash equilibria difficult, because
both agents must consistently coordinate in order to avoid
the large penalty. When p = 0, the optimal Nash equilibria
are not difficult to reach, because there is no risk associated
with the optimal actions. The values of p = −50 and p = 0
were chosen because they demonstrate three distinct cases
in which difference evaluations improve system performance
in the penalty game. Figure 2 shows the basins of attrac-
tion when agents use either global or difference evaluation
functions and p = −50. Figure 3 shows the basins of attrac-
tion when agents use either global or difference evaluation
functions and p = 0.

In Figures 2 and 3, gray areas indicate the basins of at-
traction around the optimal Nash equilibria for agents using
either global or difference evaluation functions. Black areas
indicate the regions where agents using difference evalua-
tions converge to optimal Nash equilibria, while agents using
global evaluations converge to the suboptimal Nash equilib-
rium. The white area indicates the basin of attraction for
the suboptimal Nash equilibria (2, 2) for agents using either
difference or global evaluations.

As seen in Figures 2 and 3, difference evaluations improve
system performance by expanding the basins of attraction
around optimal Nash equilibria in three types of situations.
The first case is seen in regions R2, R4, R6, and R8 of Figure
2. In this case, one agent is likely to select the suboptimal
action (action 2), while the collaborating agent is likely to
select an optimal action (action 1 or 3). When one agent
selects the optimal action, the other agent is unlikely to do
so, resulting in a poor expected payoff for the optimal action.
This first case exists when p = −50, but not when p = 0.
When p = 0, there is no penalty for an agent deviating from
the optimal Nash equilibrium, meaning that the expected
payoff of the optimal action is not significantly decreased.

The second case where difference evaluations are benefi-
cial is seen in regions R3 and R7 of Figure 2. Here, one agent
is likely to select an optimal action, while the collaborating
agent is likely to select the mismatched optimal action. In
this case, the expected payoff of the optimal action is low,

Figure 2: Basins of attraction for penalty game when
p = −50. Gray areas: both difference and global
evaluations lead to optimal Nash equilibria. Black
areas: difference evaluations lead to optimal Nash
equilibria, but global evaluations do not. White ar-
eas: neither difference or global evaluations lead to
optimal Nash equilibra

Figure 3: Basins of attraction for penalty game when
p = 0. Gray, black, and white areas are defined as in
Figure 2.

because the expected payoff of the optimal action is domi-
nated by the penalty term. As in the first case, this case only
appears when p = −50, not when p = 0. This is because
when p = 0, the penalty term for deviating from the optimal
Nash equilibria is no worse than the penalty for deviating
from the suboptimal Nash equilibrium, so the penalty does
not push agents towards suboptimal solutions.

The third case where difference evaluations are beneficial
is seen in region R5 of Figure 3. In this case, both agents
are likely to select the suboptimal action 2. Here, the ex-
pected payoffs of the optimal actions are low, because they
are dominated by the 0 terms in the payoff matrix. This
improvement is not seen when p = −50, because the large
penalty dramatically increases the risk associated with leav-
ing the (2, 2) suboptimal Nash equilibrium.

In all three cases where difference evaluations improve
system performance by expanding the basins of attraction
around the optimal Nash equilibria, we see that the fitness



(expected payoff) associated with the optimal action is low,
which is consistent with Theorem 1. We also see that in cases
where the expected payoff of the optimal action is not rel-
atively low, both difference and global evaluation functions
lead to converging to the optimal Nash equilibria, which is
consistent with Theorems 2 and 3. These results demon-
strate that in cases where the optimal Nash equilibrium is
deceptive, difference evaluations improve the probability of
selecting optimal actions, allowing agents using difference
evaluations to reach the optimal Nash equilibria while agents
using global evaluations converge to a suboptimal Nash equi-
librium. In cases where the optimal Nash equilibria are not
deceptive, agents will converge to optimal policies whether
they use difference evaluations or global evaluations. We
see that in some cases difference evaluations improve system
performance, but they never harm system performance.

8. DISCUSSION AND CONCLUSION
Difference evaluations are effective fitness assignment op-

erators in cooperative coevolutionary algorithms, as they
provide agent-specific feedback related to the agent’s impact
on the overall system performance. Difference evaluations
have been shown to provide superior results in a variety of
multiagent coordination domains. However, to date, there
has been no prescriptive theoretical analysis which derives
conditions under which difference evaluations are expected
to improve the probability of selecting optimal actions.

In this paper, we prove that if the fitness of the opti-
mal action is lower than the joint expected system payoff,
then difference evaluations improve the probability of select-
ing optimal actions. Thus, in cases where the optimal Nash
equilibrium is deceptive, then difference evaluations improve
system performance. Next, we proved that in cases where
this condition is not met, difference evaluations do not nega-
tively impact system performance, because they do not alter
the locations of the Nash equilibria, or the relative ordering
of the fitness values for each action. This means that in
games where the optimal Nash equilibrium is not deceptive,
then both difference and global evaluations resulting in high
fitnesses for optimal actions, meaning that both fitness as-
signment operators promote the optimal action.

We simulated the evolutionary game theoretic model in
the penalty game, and showed that the basins of attrac-
tion around optimal Nash equilibria are expanded when the
conditions from Theorem 1 hold, and that difference evalu-
ations do not negatively affect converged performance when
the conditions from Theorem 1 do not hold. We find that in
cases where the optimal Nash equilibria are deceptive, dif-
ference evaluations are helpful; in cases where the optimal
Nash equilibria are not deceptive, difference evaluations do
not harm system performance.

Future work involves extending this theory to more than
two agents. The EGT framework easily extends to these
cases, and early analysis shows Theorems 1-3 hold for three
or more agents. We also plan on performing a theoretical
analysis for multiagent reinforcement learning systems, as
well as investigating different sets of replicator dynamics.
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