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ABSTRACT
Coevolution is a natural approach to evolve teams of agents
which must cooperate to achieve some system objective.
However, in many coevolutionary approaches, credit assign-
ment is often subjective and context dependent, as the fit-
ness of an individual agent strongly depends on the actions
of the agents with which it collaborates. In order to allevi-
ate this problem, we introduce a cooperative coevolutionary
algorithm which biases the evolutionary search as well as
shapes agent fitness functions to reward behavior that bene-
fits the system. More specifically, we bias the search using a
hall of fame approximation of optimal collaborators, and we
shape the agent fitness using the difference evaluation func-
tion. Our results show that shaping agent fitness with the
difference evaluation improves system performance by up to
50%, and adding an additional fitness bias can improve per-
formance by up to 75%.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems

General Terms
Algorithms, Experimentation

Keywords
Co-evolution, Multiagent learning

1. INTRODUCTION
Coordinating multiple agents in order to achieve some sys-

tem objective is an important area of research, and is critical
in many domains including rover coordinaton, air traffic con-
trol, search and rescue, and unmanned aerial vehicle coordi-
nation[1, 16]. One approach to achieving coordination is the
use of Cooperative Coevolutionary Algorithms (CCEAs),
which involve evolving multiple populations simultaneously
and evaluating the fitness of individuals based on the in-
dividual’s interactions with other agents in the system [9].
By evolving multiple populations at once, CCEAs project
the search space into multiple, smaller, search spaces. Each
coevolving population in the CCEA searches through one
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of these projected spaces, resulting in a large amount of in-
formation available to agents being lost. Coevolving agents
have only a fraction of the total state space available to
them, and their fitness assignment is dependent upon how
they perform when combined with agents from the other co-
evolving populations. Thus, CCEAs have the tendency to
create agents which are capable of performing adequately
with a wide range of collaborators, rather than specializing
to perform well with the best set of collaborators; in other
words, CCEAs often produce stable, rather than optimal so-
lutions [2, 3, 10]. In order to make CCEAs a viable option
for coordinating multiagent systems, it is critical that steps
be taken to achieve optimal coordination policies.

There have been multiple approaches to address the issues
of suboptimal stable policies. One approach involves shap-
ing local fitness functions to align with the system evaluation
function. Proper shaping of these fitness functions leads to
faster learning and more optimal policies [1, 7]. Another
approach is to bias searches based on the notion of optimal
teammates [10], which involves estimating agent utilities as
if they were paired with optimal collaborators. Although
these biased searches generally increase the effectiveness of
CCEAs, an issue with this approach is that in complex do-
mains, estimating system evaluations as if optimal collabo-
rators were present is exceedingly difficult. Other methods
involve altering the evolutionary mechanisms in CEAs in or-
der to optimize CEA performance, such as lenient learners
or hall of fame methods [11, 13].

In this work we address the suboptimal solutions created
by CCEAs by shaping fitness functions and approximating
optimal collaborators. To test whether these problems are
addressed adequately, two test domains are used. First, a
scatter domain, which involves agents moving in a two di-
mensional plane in order to become as “spread out” as pos-
sible. Secondly, a rover domain involving robots gathering
data from points of interest was utilized in order to test the
algorithms on a more real-world problem.

The contribution of this paper is a CCEA which:

• Shapes fitness functions using the Difference Utility

• Biases search with optimal collaborators using a hall
of fame approach, which is much less complex than ap-
proximating optimal collaborators in an ad-hoc man-
ner

In our experiments, this algorithm outperformed a CCEA
using the system evaluation to assign fitness by an average
of 48.7%. The remainder of this paper is organized as fol-
lows: section 2 describes related work and background infor-



mation. Section 3 describes the domains analyzed. Section
4 describes the algorithms used in this research. Section 5
gives the experimental results. Finally, Section 6 discusses
the results and potential areas for future research.

2. BACKGROUND
Evolutionary Algorithms (EAs) are a class of stochastic

search algorithms which often outperform classical optimiza-
tion techniques, particularly in complex domains where gra-
dient information is not available [5]. An evolutionary al-
gorithm typically contains three basic mechanisms: solution
generation, mutation, and selection. These mechanisms are
used on an initial set of candidate solutions, or a population
to generate new solutions and retain solutions that show im-
provement. Simple EAs are excellent tools, but need to be
modified to be applicable to large multiagent search prob-
lems. One such modification is coevolution, where multiple
populations evolve simultaneously in order to develop poli-
cies for interacting agents. The following sections introduce
coevolutionary algorithms, and approaches to optimize the
output of these algorithms.

2.1 Coevolution
Coevolutionary Algorithms (CEAs) are an extension of

evolutionary algorithms and are often well-suited for multi-
agent domains [4]. In a CEA, the fitness of an individual
is based on its interactions with other agents it collaborates
with. Thus, assessing the fitness of each agent is context-
sensitive and subjective [9]. In competitive coevolution, in-
dividuals benefit when other agents fail. In cooperative co-
evolution, individuals succeed or fail as a team. This pa-
per is focused on Cooperative Coevolutionary Algorithms
(CCEAs). One of the advantages to coevolution is that the
algorithm only needs to search subspaces of the state space,
rather than the entire state space. This reduced state space
often makes the learning process simpler for the cooperat-
ing agents. However, these simpler subspaces represent a
large loss in information; the consequence of this is that
the policies obtained by using these state projections are
strongly influenced by other populations. The result is that
agents evolve to partner well with a broad range of other
agents, rather than evolving to form optimal partnerships
[10]. Thus, in addition to trying to decrease the complex-
ity of the learning process, research in coevolution aims to
achieve optimal policies rather than stable ones.

2.2 Cooperative Coevolutionary Algorithms
CCEAs are a natural approach in domains where agents

succeed or fail as a team [12]. In CCEAs, distinct popu-
lations evolve simultaneously, and agents from these pop-
ulations collaborate to reach good system solutions. One
issue with CCEAs is that they tend to favor stable solu-
tions, rather than optimal solutions [17]. This phenomena
occurs because the different evolving populations adapt to
each other, rather than adapting to form an optimal pol-
icy. Another issue that arises with CCEAs is the problem
of credit assignment. Since the agents succeed or fail as
a team, the fitness of each agent becomes subjective and
context-dependent (e.g. an agent might be a “good” agent,
but the agents it collaborates with are “bad,” and the ob-
jective isn’t reached. In this case, the “good” agent may
be perceived as “bad”) [17]. Generally speaking, research in
CCEAs involves either making a more computationally ef-

ficient algorithm or reaching better solutions (avoiding sub-
optimal equilibria) [1]. The following sections outline some
methods that have been developed to mitigate problems as-
sociated with CCEAs.

Biasing Coevolutionary Search
Panait et al.[10] biased the evolutionary search in order to
find optimal solutions, rather than becoming stuck in local
minima. In standard coevolution, a single agent is rated on
how well the team does as a whole; every agent in the team
gets equal credit. This results in an unfavorable signal-to-
noise ratio, as each agent is unaware of its individual contri-
bution to the team’s performance. In a Biased Cooperative
Coevolutionary Algorithm (BCCEA), the fitness of an indi-
vidual is based partly on its interactions with other agents
(as in usual CCEAs), and partly on an estimate of the best
possible fitness for that individual if it is partnered with op-
timal collaborators. By biasing the coevolutionary search
in this manner, the algorithm is better able to search for
optimal policies, rather than stable policies, because each
agent receives feedback related to its performance, rather
than solely the team’s performance. One issue with this
approach is that estimating how an agent would perform
with optimal collaborators is a nontrivial task, and becomes
increasingly difficult in complex domains.

Fitness Function Shaping
Hoen and De Jong shaped the utilities of the agents so as
to contribute to the system evaluation, such that an agent
maximizing its individual utility would act to increase the
system evaluation. By shaping agent fitnesses, the learning
process is sped up considerably [7]. This work is similar to
that of Agogino and Tumer, and Knudson and Tumer, who
utilized difference evaluations as fitness functions to evolve
coordination in multiagent systems [1, 8]. The Difference
Evaluation is defined as:

Di ≡ G(z)−G(z−i + ci) (1)

where G(z) is the total system evaluation, z−i are all the
states on which agent i has no effect, and ci is the counter-
factual term, which is a fixed vector to replace the effects
of agent i. Intuitively, the second term in Equation 1 eval-
uates the fitness of the system without the effects of agent
i, so the difference evaluation gives agent i’s contribution
to the system evaluation [1]. By shaping fitness functions
such that each agent’s fitness is related to the individual’s
contribution to team performance, the signal-to-noise ratio
is improved considerably.

Evolving Teams
Coevolution is frequently a good algorithm to use in mul-
tiagent systems with heterogeneous agents. Haynes et al.
used genetic algorithms to evolve teams of predators [6].
Rather than evolving single predators, one member of the
population consisted of four predators. In this manner, the
predators can evolve to cooperate. By evolving teams rather
than individual agents, communication is not required in the
domain; in place of communication, the team of predators
evolves to act as if they know the other agents’ future ac-
tions based on the state of the system [15] Though effective,
these approaches are designed for small teams, and become
slow to converge when scaled to large multiagent systems.



Hall of Fame
Rosin and Belew[13] introduced the concept of the Hall of
Fame for competitive coevolution, in which top individuals
are saved in order to test against in later generations. There
are two reasons why it is beneficial to save these top indi-
viduals. First, keeping top individuals contributes genetic
information to later generations, which is imperative when
conducting any evolutionary algorithm. Secondly, by keep-
ing top individuals, new individuals in later generations may
be tested against the hall of fame members. This concept
can be extended to CCEAs by keeping hall of fame teams,
rather than hall of fame individuals. In this manner, desir-
able genotypes won’t be lost if they perform poorly for a few
generations due to stochasticity.

Leniency
Panait et al.[11] introduced the concept of lenient learners
in coevolutionary algorithms, which are agents which forgive
possible mismatched teammate actions that result in poor
team performance. Using lenient learners in coevolution is
shown to provide learners with more accurate information
about their policies, which increases the likelihood of con-
verging to an optimal solution. Leniency is achieved by pair-
ing agents with multiple sets of collaborators, and taking the
highest team fitness achieved from all runs. This lowers the
likelihood that a learning agent will receive poor feedback
simply because it was paired with suboptimal teammates.

3. EVALUATION DOMAINS
In this section, we introduce the two problems analyzed in

this work, and provide a detailed explanation of the system
dynamics and evaluation functions used in each domain.

3.1 Scatter Domain
The scatter domain used in this paper is a variant of the

mixing problem [14]. In the scatter domain, a team of agents
on a two dimensional plane aim to move around and config-
ure themselves to be as “spread out” as possible (Figure 1).
The world is continuous, as are the actions of each agent.
Each agent calculates the distance between itself and the
closest teammate using the standard Euclidian distance. So,
if there are N agents, each agent calculates how far away the
closest agent is at any time t using:

δi(t) = min
j

{√
(xi,t − xj,t)2 + (yi,t − yj,t)2

∣∣∣∣i 6= j

}
(2)

where {xi,t, yi,t} is agent i’s x and y position in the world at
time t, and j is used to index all agents other than agent i.
The total state of the system z is the set of all agent positions
in the world. At each time step in an episode, an agent
takes two actions ∆x and ∆y, corresponding to its x and y
movements, respectively. The magnitude of these actions are
bounded by some upper limit ∆max, which requires that the
agents take multiple actions over multiple time steps in order
to traverse the domain. The system evaluation function for
the scatter domain with N agents is the average minimum
distance between agents, given by:

G
(
z(t)

)
=

∑N
i=1 δi(t)

N
(3)

Thus, maximizing the average minimum distance between
agents will result in maximizing the system evaluation.

Figure 1: Scatter Domain Representation. Each
agent i calculates the distance from itself to the clos-
est agent as δi. The global utility is the average of
all of these distances. The goal in this domain is for
the agents to be as “spread out” as possible.

3.2 Rover Domain

Figure 2: Rover Domain Representation. Each
rover senses the closest rover and POI from each
of its four sensing quadrants. The rovers must co-
ordinate in order to effectively observe the POIs.

In the rover problem, a collective of rovers on a two di-
mensional plane aim to observe points of interest (POIs)
scattered across the domain (Figure 2). Each POI has an
associated value, and each observation of a POI made by a
rover yields an observation value which is inversely propor-
tional to the distance that the rover is from the POI. The
distance metric used in this domain is the squared Euclidian
norm, bounded by a minimum observation value:

δ(x, y) = min
{
||x− y||2, δ2min

}
(4)

The objective of the rovers is to maximize the observation
values of the POIs over the course of an episode, and the
system evaluation is calculated as:

G =
∑
t

∑
j

Vj

miniδ(Lj , Li,t)
(5)

where Vj is the value associated with POI j, Lj is the lo-
cation of POI j, and Li,t is the location of the ith rover at
time t.

Although any rover may observe any POI, the system eval-
uation only takes into account the closest observation made
for each POI. In this instantiation of the rover domain, the



POI locations are static throughout each experiment. The
rovers have eight total sensors, two sensors per quadrant.
The rovers sense the closest POI and rover in each of the four
quadrants, and these eight readings compose the controller
inputs. The rovers must coordinate in order to achieve high
POI coverage. An increasing system evaluation corresponds
to better observation coverage of the POIs. As in the scat-
ter domain problem, at each time step the rovers take two
actions ∆x and ∆y, corresponding to their x and y move-
ments; the magnitude of these actions are bounded by some
value ∆max.

4. ALGORITHMS
In this section we provide detailed explanations of the four

algorithms investigated in this research, which are:

1. Standard CCEA using system evaluation

2. CCEA using the difference evaluation

3. CCEA using lenient learners and the difference evalu-
ation

4. CCEA using the hall of fame and the difference evalu-
ation

The standard CCEA using the system evaluation is a “stan-
dard” CCEA algorithm we use a baseline to assess perfor-
mance. The second and third algorithms are modifications
of existing algorithms which address the problems of subop-
timal convergence. The final algorithm is a modification of
the hall of fame algorithm combined with the difference eval-
uation, which also aims to address suboptimal convergence
and is the main contribution of this paper.

4.1 Standard CCEA
In the standard CCEA, N coevolving populations of neu-

ral networks are utilized to form teams comprised of M
agents. In the most general case, M is equal to N . One
member of each population is extracted, and these agents
are combined to form a team which operate in the problem
domain. Each population is initially comprised of k neural
networks, randomly initialized. At each generation, k suc-
cessor networks are generated in each population, which are
mutated versions of the parent networks. Then, 2k teams
of M agents are formed by taking agents from each popula-
tion and placing these agents into a team. The performance
of each of the teams is then evaluated in the domain, and
the fitness of every agent in the team is set according to the
team’s performance. Next, k networks from each population
are selected to proceed to the next generation, with the fit-
ness of a network influencing its selection probability. This
process is repeated for a set number of generations. The
standard CCEA is detailed in Algorithm 1.

In the standard CCEA, each member of a team receives
equal credit for that team’s performance. This form of credit
assignment results in agents’ fitness values to be heavily de-
pendent upon the performance of teammates, because each
member of the team receives equal credit for the team’s per-
formance. The standard CCEA is used as the baseline algo-
rithmm, and serves as a comparison for the other algorithms
considered.

Initialize N populations of k neural networks
foreach Generation do

foreach Population do
produce k successor solutions
mutate successor solutions

end
for i = 1→ 2k do

randomly select one agent from each population
add agents to team Ti

simulate Ti in domain
assign fitness to each agent in Ti using G(z)

end
foreach Population do

select k networks using ε-greedy
end

end
Algorithm 1: Standard CCEA (See Section 5 for param-
eters)

4.2 CCEA with the Difference Evaluation
The CCEA with the difference evaluation is carried out in

a similar manner to the standard CCEA, except that when
a team of agents is evaluated, the fitness of each agent is cal-
culated with the difference evaluation, rather than the sys-
tem evaluation. Thus, the fitness of each agent of a team is
calculated as that agents’s contribution to the team’s perfor-
mance, rather than the system evaluation itself. The CCEA
with the difference evaluation is equivalent to the CCEA
detailed in Algorithm 1, except at the fitness assignment
stage, the fitness of each agent is calculated with the differ-
ence evaluation rather than the system evaluation.

Thus, the key difference between the CCEA using the dif-
ference evaluation and the standard CCEA is credit assign-
ment for the agents. By utilizing the difference evaluation to
assign fitness, the fitness of each agent becomes less depen-
dent upon the actions of its teammates. Below, we derive
the difference evaluation for the two domains used in this
work.

Scatter Domain.
Directly computing the different evaluation using Equa-

tion 1 corresponds to simply leaving out agent j from the
computation:

Dj(z, t) =

∑
i6=j δi(t)

N − 1
(6)

However, this evaluation always increases the system evalua-
tion, because of the nature of the system evaluation function.
As the goal in this domain is to maximize average distance
between agents, removing any agent will always have a posi-
tive effect on the system evaluation. As such agents will need
to distinguish between very small positive variations, mak-
ing the evaluation function in Equation 6 a poor choice for
agent fitness function. Instead, in this work, we introduce a
default agent effect. To compute agent j’s fitness then, we
replace agent j with this default agent, which yields:

Dj =

∑
i 6=j δi(t) + δdef (t)

N
(7)

where δdef (t) is a distance associated with the default agent.
This distance is set at the beginning of an experiment, and
remains constant for each individual calculation of the dif-



ference evaluation. This default agent distance corresponds
to the ci (counterfactual) term in Equation 1.

Rover Domain.
For the rover problem, the difference evaluation is calcu-

lated by directly applying Equation 1 to Equation 5:

Di(L) =
∑
t

∑
j

Ij,i,t(z)

[
Vj

δ(Lj , Li,t)
− Vj

δ(Lj , Lkj ,t)

]
(8)

where kj is the second closest rover to POI j, and Ij,i,t(z) is
an indicator function which returns 1.0 if and only if rover
i is the closest rover to POI j at time t. If rover i is not the
closest rover to any POI at time t, then its difference eval-
uation is zero, indicating that the rover is not contributing
to the system utility at time t.

4.3 CCEA with Lenient Learners and Differ-
ence Evaluation

The CCEA with lenient learners and the difference eval-
uation is carried out in a similar manner to the CCEA with
the difference evaluation, except that each agent is tested
with multiple sets of collaborators (i.e. the agent will be
placed in multiple teams), and the highest fitness achieved
is the fitness assigned to that agent. As the algorithm pro-
gresses, agents become less lenient learners; that is, they are
tested against fewer sets of collaborators. The CCEA with
lenient learners and the difference evaluation is detailed in
Algorithm 2.

Initialize N populations of k neural networks
foreach Generation do

foreach Population do
produce k successor solutions
mutate successor solutions

end
for i = 1→ 2k ·m do

randomly select one agent from each population
add agents to team Ti

simulate Ti in domain
assign fitness to each agent in Ti using D(z)

end
foreach Population do

foreach Member do
fitness ← maximum fitness attained

end

end
foreach Population do

select k networks using ε-greedy
end

end
Algorithm 2: Lenient CCEA using Difference Evaluation
(See Section 5 for parameters)

It is important to note that in Algorithm 2, each member
of each population is selected exactly m times, and the value
of m is decreased as the algorithm progresses. This corre-
sponds to agents being lenient in the early stages of evolu-
tion, and becoming less and less lenient as evolutionary time
passes. By incorporating leniency and the difference evalua-
tion into the CCEA, the effects of an agent’s teammates on
the fitness of that agent are minimized.

4.4 CCEA with Hall of Fame and Difference
Evaluation

As noted in Section 2.2, CCEAs have been shown to pro-
vide better solutions when the fitness of an individual is
based partly on how it performs with its team, and partly on
how it would perform if it were paired with optimal collab-
orators. However, estimating the fitness of an agent paired
with optimal collaborators is a difficult task, especially in
complex domains. Rather than estimating what optimal col-
laborators would be for a particular agent, the hall of fame
method is altered to estimate the behavior of optimal col-
laborators. The CCEA with the hall of fame and difference
evaluation is carried out in a similar manner to the CCEA
with the difference evaluation, except that the fitness assign-
ment is altered. At the end of each generation, the team that
achieves the highest system evaluation is compared against
the hall of fame members. If that team achieved a higher
system evaluation than all of the hall of fame members, then
that team is added to the hall of fame. When assigning fit-
ness to each agent of a team, the difference evaluation of
that agent is calculated, as well as the difference utility of
that agent when it replaces an agent from the best hall of
fame team. The performance of the best hall of fame team
is nondecreasing with respect to evolutionary time, so this
team approaches the optimal team as the CCEA progresses.
The difference evaluation of an agent when compared with
the hall of fame team is calculated as:

DHOF,i = GHOF+i −GHOF (9)

where GHOF+i is the system evaluation of the best hall of
fame team when agent i replaces the corresponding member
of the hall of fame team, and GHOF is the system evaluation
of the best hall of fame team. So, in the CCEA with the hall
of fame and difference evaluation, the fitness of an agent is
calculated as:

F (i) = α ·Di + (1− α) ·DHOF,i (10)

where Di is the difference evaluation of agent i when col-
laborating with its team, DHOF,i is the agent’s difference
evaluation when paired with the best hall of fame team as
in Equation 9, and α ∈ [0, 1] is a weight corresponding to
the relative importance of the difference evaluation and the
difference evaluation with estimated optimal collaborators.
The CCEA with the hall of fame and difference evaluation
is detailed in Algorithm 3.

By assuming that the best hall of fame team is the set
of optimal collaborators for any agent, the complexities of
estimating what a set of optimal collaborators would be are
eliminated. The CCEA using the difference evaluation and
the hall of fame includes shaped fitness functions to tell
agents what their individual contributions to team perfor-
mance are, as well as biasing the fitness functions using the
concept of estimated optimal collaborators via the hall of
fame. This approach modifies the hall of fame algorithm in
two ways. First, the hall of fame is now comprised of teams,
rather than individuals. Secondly, the hall of fame is now
utilized in cooperative coevolution, rather than competitive
coevolution.

5. EXPERIMENTAL RESULTS
The algorithms outlined in section 4 were all tested in the

scatter domain and the rover domain, with team sizes vary-
ing from 10 to 100 agents. For experiments with 10 agent



Initialize N populations of k neural networks
foreach Generation do

foreach Population do
produce k successor solutions
mutate successor solutions

end
for i = 1→ 2k ·m do

randomly select one agent from each population
add agents to team Ti

simulate Ti in domain
assign fitness to each agent with Eq. 10

end
foreach Team Ti do

if G(z|Ti) > G(z|HOFbest) then
add Ti to HOF

end

end
foreach Population do

select k networks using ε-greedy
end

end
Algorithm 3: CCEA using Difference Evaluation and Hall
of Fame (See Section 5 for parameters)

teams, 10 coevolving populations of 200 members each were
used. For experiments with 100 agent teams, 100 coevolv-
ing populations of 25 members each were utilized. For the
standard CCEA, Equation 3 with a default agent distance
of 1.0 was used to assign fitness in the scatter domain and
Equation 5 was used in the rover domain. For the CCEA al-
gorithm with the difference evaluation, Equation 7 was used
to assign fitness for the scatter domain and Equation 8 for
the rover domain. For the CCEA with lenient learners and
the difference evaluation, the same fitness equations were
used as in the CCEA with the difference evaluation experi-
ments. The leniency value m was initially set to 10, and de-
creased by 1 every 200 generations, resulting in no leniency
after 2000 generations. The CCEA with the hall of fame and
difference evaluation had the same fitness assignments as in
the CCEA with the difference utility. When calculating the
fitness from equation 9, α was set to 0.5. For all experi-
ments, network mutation was carried out by adding values
drawn from a Gaussian distribution to network weights. In
the beginning of the evolution, one weight per network was
mutated with a standard deviation of 1.0. At the end of the
evolution, each network weight was mutated with a standard
deviation of 0.1. These mutation parameters were varied lin-
early throughout the evolutionary process. For each experi-
ment, 100 statistical runs were completed, with the standard
error in the mean (σ/

√
N) being reported. The experiment

details and results are given in the following sections.

5.1 Scatter Domain
First, we applied each of the four CCEA algorithms to

the scatter domain. For the 10 agent experiment, the world
was set to a 10 by 10 plane world and run for 10 time steps,
and ∆max was set to 1.0. For the 100 agent experiment,
the world was set to a 31.6 by 31.6 plane world and run
for 10 time steps, and ∆max was set to 3.16. These values
were chosen such that the plane area to number of agents
ratio was constant for each experiment, and the agents could
traverse the world in the same number of time steps. At
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Figure 3: Performance of each algorithm in the scat-
ter domain, with 10 agents. The CCEA with the
difference evaluation and hall of fame biasing out-
performs all other methods tested.
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Figure 4: Performance of each algorithm in the scat-
ter domain, with 100 agents. The CCEA with the
difference evaluation and hall of fame biasing out-
performs all other methods tested.

the beginning of each experiment, the agents all started at
the center of the plane worlds. Figure 3 shows the learning
curve for the 10 agent problem. Figure 4 shows the learning
curve for the 100 agent problem. Finally, Figure 5 shows the
scaling properties of each algorithm in the scatter domain.

All three algorithms using the different evaluation func-
tion outperformed the standard CCEA in this domain. This
is not surprising, because credit assignment in this algorithm
is highly subjective, and the fitness of each agent was greatly
influenced by its teammates. The CCEA with the difference
evaluation and the CCEA with leniency and the difference
utility performed almost identically in the 10 agent case, but
the addition of leniency provided improved performance in
the 100 agent case. This is an interesting result, and gives
insight to the properties of leniency. Leniency and the differ-
ence utility both perform similar functions. Leniency aims
to reduce the subjectiveness of credit assignments in CCEAs
by partnering agents with multiple sets of collaborators. By
testing an agent with multiple teams and taking the high-
est fitness achieved, the likelihood that an agent’s fitness
is too strongly biased by its teammates is minimized. The
difference utility also reduces the subjectiveness of credit as-
signment, by isolating an agent’s individual contribution to
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Figure 5: Scaling Performance in Scatter Domain.
The CCEA with the difference evaluation and hall of
fame biasing outperforms all other methods tested,
and this difference in performance increases with
team size. The addition of leniency does not sig-
nificantly help when there are a small number of
agents, but as the team size goes up, leniency be-
comes increasingly useful.

its team’s performance. Thus, leniency and the difference
evaluation achieve a similar goal, although in different man-
ners. However, as the problem becomes more complex by
increasing the team size, coupling both approaches provided
benefits, as seen in Figure 5. As the team size is increased,
the performance of the CCEA with the difference evalua-
tion and lenient learners outperforms the CCEA with the
difference reward by larger and larger margins.

The CCEA with the hall of fame and difference evalua-
tion performed the best out of all of the algorithms tested.
The goal of introducing the hall of fame was to approximate
optimal collaborators, in order to bias the CCEA toward
optimal solutions. The scatter domain results show that
approximating optimal collaborators with the best known
team is an acceptable approach to bias the CCEA. The hall
of fame approach has the benefit that it is much simpler to
implement than an ad hoc estimate of optimal collaborators,
and is a more attractive alternative as the domain becomes
more complex, because such an ad hoc estimate becomes
increasingly difficult to develop as the domain complexifies.
As seen in Figure 5, this approach becomes better compared
to the other approaches as the number of agents increases.

5.2 Rover Domain
Finally, we applied each of the four CCEA algorithms to

the rover domain. At the beginning of each experiment, n
POIs were placed randomly in the domain, and their posi-
tions remained constant throughout each experiment, where
n is equivalent to the number of agents in the domain. The
minimum observation distance δmin was set to 0.1. The
simulations were carried out in a 10 by 10 world for 25 time
steps, and ∆max was set to 1.0. At the beginning of each
simulation, each rover started in the center of the world.
Each algorithm was tested over 50 statistical runs. Figure
6 shows the results for 10 agent teams, Figure 7 shows the
results for 100 agent teams, and Figure 8 shows the scaling
results for the rover domain.

As in the scatter domain experiments, all three algorithms
using the different evaluation function outperformed the stan-
dard CCEA in the rover domain. This can be attributed to
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Figure 6: Performance of each algorithm in the rover
domain, with 10 agents and 10 POIs. The CCEA
with the difference evaluation and hall of fame bias-
ing outperforms all other methods tested.
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Figure 7: Performance of each algorithm in the rover
domain, with 100 agents. The CCEA with the differ-
ence evaluation and hall of fame biasing outperforms
all other methods tested.

the fact that the system evaluation does not give an agent
good feedback on its individual contribution to the team’s
performance, and the agent thus has a difficult time learning
an optimal policy. In the scatter domain, the CCEA with
the difference evaluation and the CCEA with lenient learn-
ers and the difference utility performed nearly identically
with 10 agent teams, but leniency became more important
as the team size went up. In the more complex rover do-
main, the CCEA with lenient learners and the difference
evaluation performed slightly better than the CCEA with
the difference reward, and this difference also increased with
the team size. This indicates that although leniency and the
difference utility have similar effects on the learning process,
leniency may become more beneficial in CCEAs as the do-
main becomes more complex or the number of cooperating
agents increases.

As in the scatter domain, the CCEA with the hall of fame
and difference evaluation performed the best out of all al-
gorithms tested. This further supports the conclusion that
biasing the CCEA with hall of fame teams approximating
optimal collaborators, as well as shaping the fitness func-
tions, helps guide the search towards better solutions. As
seen in Figure 8, the difference in performance between the
CCEA with the difference evaluation and hall of fame and
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Figure 8: Scaling Performance in Rover Domain.
The CCEA with the difference evaluation and hall
of fame biasing outperforms all other methods, and
the gap in performance increases with team size.

the CCEA with the global reward increases with team size,
indicating that for increasingly complex systems, this new
algorithm becomes more and more useful. In all the ex-
periments that were conducted, the CCEA with the hall
of fame and difference evaluation significantly outperformed
all other algorithms, and was able to easily estimate opti-
mal collaborators in order to bias the fitness. This fitness
biasing, in addition to shaping the fitness values with the
difference evaluation, contributed to significantly better per-
formance than any other algorithm tested.

6. DISCUSSION
This paper presented three CCEA algorithms where le-

niency and hall of fame methods were used in combination
with fitness shaping. Combining hall of fame and difference
evaluation outperformed all other algorithms in two differ-
ent domains. It is known that shaping fitness functions can
greatly improve the efficacy of a CCEA [7], but this often
isn’t enough to obtain optimal performance. It has also
been shown that biasing a CCEA with an estimate optimal
collaborators results in a more effective search for optimal
policies, but this estimate is problematic because it is an
ad hoc, domain dependent estimate. Our algorithm circum-
vents the problem of estimating optimal collaborators, so
the CCEA search is easily biased in a domain independent
fashion. Furthermore, the algorithm shapes agent fitnesses
in order to provide each agent a measure of its individual
contribution to the system objective.

A particularly interesting result was that in the simpler
scatter domain, using the difference evaluation to shape the
fitness functions performed equivalently to a method which
used lenient learners and the difference utility for 10 agent
teams. Intuitively, the difference utility and lenient learn-
ers both aim to achieve the same goal, which is to isolate
an agent’s individual contribution to the system evaluation.
This is one key reason their performance was similar in the
simpler domains. However, with larger teams or a more
complicated domain, leniency in addition to the difference
evaluation performed better than the difference evaluation
alone. Our current research focuses in two directions: (i)
investigating the theoretical relationship between leniency
and difference evaluation functions, including determining
when adding leniency to fitness shaping is desirable; and

(ii) the impact of biasing the search while using difference
evaluation functions, including alternative biasing methods.
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