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Abstract

Extraterrestrial exploration missions are extremely difficult due to a
number of factors. In particular, there exists high uncertainty in space
environments, light-time delays, and high mission costs. Artificial intel-
ligence based multiagent systems can address these concerns by creating
autonomous multi-robot teams. Agents which can act autonomously in
uncertain environments improve science returns on missions, and mini-
mize the effects of light-time delays causing downtime while agents wait
for instruction from Earth. A multi-robot system is also inherently ro-
bust, because the failure of a single robot will not cause total system
failure; this robustness becomes especially critical as mission costs rise.
In this work, we present a novel human in the loop cooperative coevo-
lutionary algorithm to train a multi-robot system exploring an unknown
environment. Autonomous agents learn to make low-level control deci-
sions to maximize a science return, while human scientists on Earth can
change high-level mission tasks to encourage different behavior. Results
demonstrate that our algorithm reduces the number of robots needed for a
particular performance level tenfold compared to traditional cooperative
coevolutionary algorithms, resulting in significantly lower mission costs.
Further, the trained multi-robot system is extremely robust to noise, and
10% sensor and actuator noise does not alter system performance in a
statistically significant manner. Finally, the system is extremely robust
to agent failures. When 10% of the robots in the system fail, the overall
system performance is reduced by less than 10%.

1 Introduction

By their nature, extraterrestrial exploration missions (to planets, moons, comets,
or asteroids) push the limits of technology and automation. To date, such
exploration missions have been undertaken using a single monolithic explorer



(with the notable exception of Spirit/ Opportunity, which only shared a fraction
of their ground-based human resources [29]) which not only limits the science
return, but also introduces a single, and very expensive point of failure. In
addition, the vast distances and speed-of-light communications difficulties can
lead to laboriously slow operation. Finally, such missions have relied of a high
human-to-rover ratio. Curiosity, for example, relied on a team of 200 engi-
neers and 400 scientists working on Martian time to perform all the necessary
Earth-bound functions to operate at full capacity [42].

Autonomous multi-robot missions offer a compelling alternative to this paradigm,
fundamentally addressing many of the difficulties of space exploration. Simply
spreading the cost of a mission across multiple rovers removes the single point
of full investment loss; a fatal error to one rover only decays the team’s perfor-
mance instead of becoming a complete loss. This allows for more risk taking on
the part of individual robots, as well as the construction of each individual robot
from cheaper parts. It also provides new capabilities: temporally-synchronized,
but spatially-separated measurements can be taken to measure ephemeral phe-
nomena that simply could not be captured by a single monolithic rover [12].
Cooperating surface and orbital vehicles can even observe the same phenom-
ena simultaneously [9]. Multiple rovers can cooperate on complex tasks like
construction, surpassing even the most capable single rover. Teams of less so-
phisticated rovers can even share long-range communications resources [8].

At first glance it might appear that this would simply multiply the problems
of the ground-based human team: instead of a single rover for which to plan,
optimize and operate, the team must now deal with IV separate rovers, each in
unique positions with unique needs that must be addressed. This is a difficult
task even in ideal situations with perfect communication. Compounded by
the speed of light communication delay and restrictions and the task becomes
impossible for a human crew to keep up with.

However, these issues can be alleviated by an increase in autonomous capa-
bility of the rovers. Autonomy is very good at a specific subset of tasks that are
currently subsidized by the Earth based human team of scientists and engineers,
but not all of them. Thankfully the types of tasks that autonomy can perform
are those that require the quickest feedback (navigation and coordination), and
the tasks that uniquely require human expertise are ones that can be performed
on a longer timescale (reconfiguring system-wide objectives); this circumvents
the bottleneck resulting from speed-of-light communications delay. In this work
we propose a novel human-in-the-loop multiagent learning system to address
many of the difficulties found in the robotic extraterrestrial exploration. We
consider a domain in which sensors are noisy, unreliable, and have a very lim-
ited range; actuators are noisy and may fail entirely; and whole rovers may cease
functioning. Specifically, we focus on a mission profile that will incorporate a
fully autonomous team of rovers made up of light ”scouts” and heavier scientific
"payload” platforms working simultaneously, which communicate with human
decision makers only to modify/change goals on a longer time scale. Based on
initial orbital surveillance, an Earth-based human team has identified a prelim-
inary, incomplete set of ”Points of Interest” (POIs). Once the team is deployed,



a series of "scout” vehicles (which could be lightweight, efficient rovers or small
airborne vehicles like quadrotors) explore the area around the team, and send
their initial photographs to a human team standing by on Earth. After some
delay, the human team can process this initial low-resolution data and identify
additional POIs. Simultaneously, the ”payload” rovers use the most up-to-date
list of POIs available to them and can analyze the POIs thoroughly with their
more capable suite of scientific instruments. The team as a whole seeks to ob-
serve as many POIs as possible with the greatest possible detail, while providing
graceful failure modes in the face of the harsh and unforgiving environment of
space travel. This entire process is carried out in various different environments,
so that the rovers are not simply learning a memorized path that they should
execute, but their policies instead are broadly applicable to a wide variety of
situations in which they may find themselves; thus, a small deviation from a
modeled environment does not lead to a catastrophic failure, and the team will
perform well even in highly uncertain environments. The contributions of this
work are to:

e Provide a novel human-in-the-loop learning algorithm that allows humans
to specify changing high-level mission objectives, while delegating low-
level control tasks and coordination to the autonomous learning agents.

e Provide a difference-evaluation-based framework for structural credit as-
signment to encourage implicit coordination between agents.

e Demonstrate agents are robust to sensor and actuator noise and failure of
other agents, while providing and reliable performance in a simulated ex-
traterrestrial exploration domain in which difference evaluations increase
team-wide performance by up to 33.5% over global evaluation functions.

The remainder of this work is organized as follows: Section 2 provides the nec-
essary background and related work. Section 3 thoroughly describes the exper-
imental setting and domain. Section 4 provides the details of our implemented
algorithm. Section 5 provides the results of our experiments, and a discussion
of the broader impact of these results. Finally, Section 6 concludes the paper.

2 Background and Related Work

In this section we provide the necessary background information on space ex-
ploration (Section 2.1), autonomous multiagent systems (Section 2.2), and the
classic continuous rover problem (Section 2.3).

2.1 Space Exploration

Space exploration is fundamentally one of the most challenging domains that
humans have ever tried to explore. The cost of transporting systems to another
celestial body is high. The distances are vast. The environments are harsh, un-
forgiving, and difficult to fully observe. Each of these factors combines to makes



space exploration a unique challenge for robotic exploration missions: the high
cost requires that a mission be carried out in a robust manner; the harsh envi-
ronment requires careful observation and planning; and the long distances and
speed-of-light communication restrictions makes the use of human intelligence
to ensure the safe and reliable operation of these missions prohibitively slow [39].

However, the current state-of-the-art has defaulted to using human intelli-
gence to thoroughly plan the day-to-day operations of the a rover. This allows
for safe and robust operation, at the cost of hundreds of humans being required
to operate a single rover, sometimes disrupting their lives for months at a time
to operate based on the day/night cycle of the rover. While this is a solution
that does provide for the ability to operate rovers on the surface of another
planet, even with all of these efforts, the exploration accomplished by the rover
is still painfully slow. Spirit, for example, travelled less than 8 kilometers over 6
years of operation. This all results from the speed-of-light communication delay,
which requires that only a short series of commands be sent to the rover at a
time.

However, the requirement that robust mission operation requires extremely
safe and cautious maneuvering is mostly due to the fact that each mission con-
ducted to date consists of a single, monolithic rover, and any single failure on
the rover could end the mission [5]. Consider, for a moment, an alternative
strategy: what if, instead of a single rover, a team of simpler rovers was sent,
each with lesser capabilities than the single monolithic rover. As a team, they
could cooperate to have capabilities that are greater than those of the mono-
lithic rover. Because they could be built with some redundancy, the loss of a
single rover would no longer end the mission as a whole, and instead would just
decay the capabilities of the team as a whole.

This strategy would then remove the need for a vast team of human ex-
perts to plan each rover’s individual day-to-day operations, and would delegate
the planning on this level to an autonomous controller. This then becomes a
multiagent system, with properties that we discuss in the following section.

However, there are certain aspects of this system that humans are still supe-
rior at to current autonomous technology. Defining the actual mission param-
eters as new discoveries are made and mission parameters change is a complex
extrapolation problem that is beyond the current capabilities of autonomous
systems. This process, however, can be conducted on a much longer time scale
that will not be limited as harshly by the speed-of-light communication delay.
In this manner, the human experts can still be a part of the overall mission, ex-
amining preliminary data and returning new mission parameters to the robotic
team, which can incorporate these new priorities into their autonomous planning
process.

Furthermore, the team of rovers doesn’t necessarily need to be homogeneous.
Different rovers with different capabilities could be used for different parts of
the task. Initial investigations could be carried out by light rovers or even flying
autonomous drones, which could then relay their low-resolution imagery back
to Earth for processing. After identifying potentially interesting locations from
those images, heavier rovers with a full suite of scientific instruments can then



thoroughly observe those points.

This creates a complex, heterogeneous multiagent system that has to coor-
dinate its activities such that each rover is acting to achieve the overall team’s
mission. This type of a multiagent system creates many technical issues that
must be addressed to achieve good performance, which are discussed in the
following section.

2.2 Autonomous Multiagent Systems

With multiple agents (rovers) trying to work in tandem, the coordination of
these agents becomes of paramount importance. No longer is a single agent
trying to achieve all of the mission goals, but each individual agent is trying to
perform tasks that will be lead to mission success. Sometimes it can be difficult
to determine how each agent’s actions will affect the overall mission’s success,
for a variety of reasons. First, actions taken “now” can have a strong effect
on actions that can or should be taken a period of time later (temporal credit
assignment), and second, actions taken by an agent A can affect the actions
that agent B should take (structural credit assignment). For example, if agent
B performs the exact same actions as agent A, its efforts are all for naught,
because the observations made by rover A make the observations made by rover
B redundant. This is the case even though if agent B was doing those exact
same actions in a different context, they could be quite beneficial. Structural
credit assignment is discussed in the following section.

As the number of rovers increases, it becomes less obvious to human intu-
ition exactly what each rover should be doing to forward the goals of the team,
making this an ideal situation for autonomy to determine the policies that each
agent should follow. Adaptive agents can try out a number of different policies,
and determine which ones are better suited to meeting the team’s needs. There
are a wide variety of techniques for doing this. In this work we focus on Evolu-
tionary Algorithms (EAs) which in this team-based setting become Cooperative
Coevolutionary Algorithms (CCEAs). These two concepts are discussed below.

An implicit advantage that is gained through the use of a multi-rover system
is robustness to failure. The failure of a single component can, in the worst case,
completely disable a single rover, while leaving the remainder of the rovers to
complete the mission and achieve high team-wide performance. In a monolithic
single-rover system, such a failure could lead to mission termination. In this
way, simply by conducting a multi-rover mission, robustness to failure can be
achieved. In addition, the team can also recover some system performance
by continuing to adapt their policies through the CCEA, and in doing so will
marginally compensate for the absence of the failed rover.

2.2.1 Structural Credit Assignment

When developing functions to evaluate specific agent performance in a multi-
agent learning system, there are two critical properties to consider: alignment



and sensitivity. An agent feedback function is said to be aligned with the sys-
tem evaluation function if an agent acting to increase the feedback function also
acts to increase the system evaluation function. An agent feedback function
is said to be sensitive if it has a favorable signal to noise ratio based on the
agent’s actions; in other words, if a feedback function is a strong function of an
agent’s actions (and a weak function of other agent’s actions), then it is sensi-
tive. We now consider three structural credit assignment schemes, and analyze
their alignment and sensitivity properties.

One question that quickly stands out is how exactly we can calculate what
“better suited to meeting the team’s needs” actually means in practice. Does
this mean that each rover should try to acquire as much scientific data itself
as possible? This is known as a local evaluation (L;) scheme, and can lead
to rovers failing to cooperate for the good of the team. In the example above,
both rovers A and B would receive high local evaluations, because they are both
making high-quality observations. However, the second identical set of observa-
tions does not provide any additional scientific value, and does not increase the
value of the system evaluation function. In this case, the local evaluations are
not aligned with the system evaluation function, but they are highly sensitive
to the actions of each agent.

So then, should we simply score the team of rovers as a whole, giving them
feedback based on the amount of scientific data that the entire team collected?
This is known as a global evaluation (G) scheme, and has the drawback of
not giving specific, personalized feedback to each rover. In our example above,
either rover A or rover B choosing to remain stationary through the entire run
would lead to no change in the global evaluation, and the rover that contributed
nothing to the team would receive the same evaluation as the rover who was
efficiently forwarding the team’s efforts. Thus, the global evaluation scheme has
low sensitivity to an individual agent’s actions. However, it is perfectly aligned.

Ideally, a scheme should provide an individualized evaluation that is both
aligned with the system-level reward, as well as sensitive to the actions of the
individual agents. One scheme that is proven to be aligned, and shown to be
sensitive is known as the difference evaluation (D;) scheme, which calculates
agent i’s incremental contribution each agent has toward the system’s perfor-
mance. It is calculated as [2]:

Di(z) = G(z) — G(z—; + ¢;) (1)

where z is the system’s state, D;(z) is the difference evaluation of agent i, G(z)
is the global evaluation, and G(z_; + ¢;) is the global evaluation without agent
1 is removed from the system and replaced with a counterfactual agent ¢;. Note
that:

0G(z)  0Dy(2) 2)

Bai o 8ai
where a; is the action of agent i. Thus, difference evaluations are perfectly
aligned, and any action which increases the value of D;(z) also increases the




value of G(z) [2, 41, 43]. Analyzing the second term in the difference evalua-
tion, we see that it removes all portions of the system evaluation function not
dependent on agent i. This dramatically improves the signal to noise ratio of
difference evaluations, making them extremely sensitive to an agent’s actions

[1, 2, 40].

2.2.2 Cooperative Coevolutionary Algorithms

Evolutionary algorithms are a biologically-inspired class of stochastic search al-
gorithms which often outperform classical optimization techniques, particularly,
in complex domains where gradient information about the system evaluation
function is unavailable [6, 16]. An evolutionary algorithm typically contains
three basic mechanisms inspired by biological evolution: solution generation,
mutation, and selection. These mechanisms are used on an initial set of candi-
date solutions (a population) to generate new solutions and to retain solutions
which show improvement over time. Evolutionary algorithms have been success-
ful in a wide variety of optimization problems, rocket guidance [18], helicoptor
autopilot [21], autonomous robotics [31], market modeling [45], and previ-
ous studies on space exploration [38]. Although EAs are excellent tools, they
need to be modified for implementation in large multiagent systems. One such
modification is coevolution, where multiple populations evolve simultaneously
to develop policies for interacting agents.

Coevolutionary Algorithms (CEAs) are an extension of evolutionary algo-
rithms and are often well-suited for multiagent domains [14]. In a CEA, the
fitness of an individual is based on its interactions with other agents. Thus,
assessing the fitness of each agent is context-sensitive and subjective [34]. In
competitive coevolution, individuals benefit when other agents fail. In cooper-
ative coevolution, individuals succeed or fail as a team. This paper is focused
on Cooperative Coevolutionary Algorithms (CCEAs), described in the following
paragraph.

CCEAs are a natural approach in domains where agents succeed or fail as
a team [37]. In CCEAs, distinct populations evolve simultaneously, and agents
from these populations collaborate to reach good system solutions. One issue
with CCEAs is that they tend to favor stable solutions, rather than optimal so-
lutions [35]. This phenomena occurs because the different evolving populations
adapt to each other, rather than adapting to form an optimal policy. Another
issue that arises with CCEAs is the problem of credit assignment. Since the
agents succeed or fail as a team, it becomes difficult to assign fitness to each
individual agent in the system, as it is unclear how one particular agent affected
the overall system performance. The credit assignment problem is typically ad-
dressed with fitness function shaping, such as use of local, global, or difference
evaluation functions described in the previous section.

Cooperative Coevolutionary Algorithms are a multiagent implementation
of Evolutionary Algorithms. In the case of CCEAs, each agent maintains a
population of policies independent of each of the others, and runs an EA in
parallel. The only change is the evaluation step, in which each agent is evaluated



based on how well the team performs. Thus, agents that not only achieve highly
themselves, but also encourage other agents to achieve highly receive a high
evaluation and are likely to move on to the next generation.

However, it is known that CCEAs tend toward stable, rather than optimal
solutions [35]. Because each agent’s fitness is a function of the agent with
which it is paired, this evaluation is context-dependent. Agents that cooperate
reasonably well with a wide variety of agents are highly likely to survive no
matter which agents in the other populations they are paired with, encouraging
stability. An agent that, with certain collaborators, actually forms the optimal
solution to the problem might not survive if its actions were not compatible
with a wide variety of other collaborators.

2.2.3 Neural Network Control

Neural networks are valuable tools for storing control policies, for three key
reasons. First, neural networks have the ability to approximate any function
to arbitrary accuracy, meaning they have the representational ability to en-
code any control policy [23]. Second, neural networks interpolate between data
points well, which is useful in continuous state domains when novel states are
encountered [24]. Finally, neural network controllers are capable of encoding
effective control policies that only require a coarse representation of the system
state [24]. In this work we use neural networks as policies to map inputs to
outputs. They are useful for a wide variety of applications including:pattern
recognition [3], fingerprint classification[44], robotic control [15], and multia-
gent systems [7, 22].

A neural network controller typically takes the current state (as measured by
sensors) as an input, and returns an action to execute as its output. Training a
neural network involves setting network weights to encode a control policy which
returns actions that maximize a particular utility function. In this work neural
networks are trained using CCEAs, where the fitness functions used to evaluate
networks are either difference or global evaluation functions. In general, the
specific evaluation function used to assign fitness to coevolving controllers can
dramatically impact converged system performance.

2.3 Classic Continuous Rover Domain

In this work we use a modified version of the Continuous Rover Problem (CRP).
The original domain [2] consists of a team of rovers that strive to observe a set
of previously-defined POIs on a two-dimensional Euclidian plane. A POI p has
a defined, static location L, and a static scalar value Vj,. The value of the
observed information from a particular POI is a function of the value V,, and
the inverse-square Euclidian distance at which it is being observed (§), which is
bounded by a minimum observation distance d;,;»:

8(z,y) = min(||a® — y?||, dmin) (3)



Figure 1: A team of rovers exploring an unknown extraterrestrial en-
vironment.

where z and y are two locations on the Euclidian plane. The global value that
the team of rover seeks to maximize is calculated as the sum of the observations

of all POls: VO
pYp
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where V,, is the value of POI p, O, returns 1 if any rover is within dy,q. and 0
otherwise, L, is the location of POI p and L; is the location of rover .

Rover Sensor Model The rovers have a total of 8 sensory inputs which they
map to two outputs which represent the distance they will move forward, and
left /right. These 8 sensory inputs consist of 4 “rover” sensors and 4 “POI”
sensors, each of which sense the relative distance-dependent density of objects
within a particular quadrant, which rotates with the rover as the rover moves
through the space (See Figure 2).

The POI sensor for quadrant ¢ returns the function:

Vo
S1,q,8 = Z (5)
pel, 5(LIJ7L1')

where I, is the set of observable POIs in the quadrant. The second sensor
returns the sum of square distances from a rover to all the other rovers in the
quadrant:

1
s 2 ST ©
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where IV, is the set of rovers in quadrant g. The eight sensors provide the rover
with a representation of their world based on the locations of POIs and other
rovers. Note that this is an coarse representation of the world, as the location
and number of rovers and POIs in each quadrant is reduced to an average
number. Analyzing Equations 5 and 6, we see that the state variables are large
if either (i) there are many POIs/rovers in a quadrant, or (ii) POIs/rovers in a



quadrant are close to the agent. This coarse representation is chosen in order
to maintain a constant dimension for the state space; regardless of the number
of POIs or rovers in the system, an agent’s state is comprised of 8 values. This
allows for the number of POIs or rovers to be easily scaled without affecting the
learning algorithm.

Points of Interest

g Sensor
1% _\\_%:‘:,/ﬂ/_ ______
e gis N

@O

Rover Sensor

Figure 2: Diagram of a Rover’s Sensor Inputs. The world is broken up
into four quadrants relative to rover’s position. In each quadrant one sensor
senses points of interests, while the other sensor senses other rovers.

Rover Motion Model The two outputs of the neural network, {dz, dy}, indi-
cate how far left /right and forward/backward the rover should move (Figure 2).
This represents a local waypoint that the rover will navigate toward, which in
practice can then be passed to a low-level navigation algorithm that will find a
safe route to the waypoint [19].

Figure 3: Diagram of a Rover’s Motion Model. The rovers outputs indicate
how far forward and to the side it will move. The rover’s orientation for the
next time step is in the direction of the vector {dz, dy}

Rover Evaluation Functions Here, we discuss the incorporation of the
credit assignment schemes discussed in Section 2.2.1. Previous work has shown

10



that the local evaluation leads to extremely poor performance (in both this do-
main and other domains of various sorts), so in this work we omit consideration
of the local evaluation.

To train the team of rovers using the global evaluation, every rover partici-
pating on a team directly receives Equation 14 as its evaluation. To train the
team of rovers using the difference evaluation (in experiments that are com-
pletely independent from those where the team is trained using the global eval-
uation) we directly apply Equation 1 to Equation 14, resulting in:

V,0 v, 0
D, = p~'p _ PP
’ zp: min;6(Ly, L;)  ming z;(Ly, L) (™)

Note that each portion of D; is only non-zero in the case where rover ¢ collected
the closest observation of POI p. The second term of the D; is equal to the
value of all the information collected if rover ¢ were not in the system.

Shortcomings This implementation of the continuous rover domain is very
valuable as a testing ground for multiagent coordination: to achieve highly, a
team of agents has to either explicitly or implicitly coordinate such that their
actions better the team as a whole, rather than some individual concerns. How-
ever, as a domain for developing algorithms that could be actually implemented,
there are a number of shortcomings. The pattern in these shortcomings is that
too much information is available to the rover team.

In actual space exploration, the environment is very uncertain, and commu-
nication is very limited [33]. In addition, mission priorities are often not set
in stone before the mission begins, resulting in dynamically changing mission
objectives. To address these shortcomings, in this work we introduce the novel
Human-in-the-loop Limited Continuous Rover Domain (HLCRD).

3 Human-in-the-loop Limited Continuous Rover
Domain

The HLCRD functions on the same basic mechanisms and dynamics of the CRD
described above, but adds a few mechanics to the system, including:

(i) Sensor noise
(ii) Actuator noise
(iii) Limited sensor distance
(iv) Heterogeneous scout/payload rovers

We discuss each of these in turn. Sensor noise (i) is implemented by adding
a random number drawn from a normal distribution to the sensor reading:

VnVqVi: s{n,qi} =N (s{n,q,i}, ST(L)W) ®)
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where N (i, o) returns a random number drawn from a normal distribution with
mean p and standard deviation o. In this case, sensor noise has a standard
deviation equivalent to 10% of the maximum sensing distance s,,q,. In other
words, sensor noise has a 68% probability of being 10% or less and a 95%
probability of being 20% or less.

Actuator noise (ii) is implemented by adding a random number drawn from
a normal distribution to each rover’s chosen motion vector:

Vi{dz;,dy;} = {dz; + N (dx;, dlﬂ) dy; + N (dy;, dyl"(*)“ )} (9)

Similar to sensor noise, actuator noise is drawn from a normal distribution
with a standard deviation equal to 10% of the maximum distance that a rover
can travel in one time step.

The limited sensor range (iii) means that at a distance S;,qs, the rovers’
sensors fail to register readings. This means that each of the sensors is calculated
with an indicator function S(i,p), which indicates whether a payload rover or
POI is within sensory range (S(¢,p) < 1) or not (S(i,p) < 0):

S1,qi = ZSzp L L) (10)

The heterogeneous scout /payload rover implementation (iv) bears additional
explanation. We assume that an initial set of POIs exists that have been iden-
tified from initial orbital surveillance. The pre-identified POIs are marked with
an Fj; value that is always set as 1. The other POIs are marked with an F}
value that is set to 0 until the scout rovers pass close to the POI, send that
imagery back to Earth, and the team receives a response from the Earth-based
human team, at which point the F}, value for that POI is changed to 1. We
assume that communication (inbound or outbound) can happen every C' = 10
time steps.

To clarify, we consider 3 of POlIs, p,, py, and p.. p, was pre-identified as a
POI, and functions entirely like a POI for the entirety of the simulation, with
Fy >0 = 1. If the communication time step C' = 4, and a scout passes within
the discovery distance of p, at time step 3, then the imagery is sent to Earth
on time step 4. At time step 8, F}, ;>g = 1. In parallel, if a scout passes within
the discovery distance of p. at time step 5, the imagery is sent to Earth on time
step 8, and subsequently returned at time step 12. Thus, F.;>12 = 1. These
“found” indicators work into the domain by multiplying each sensor reading
and POI value by the F},; as follows. For the sensors:

12



S1,qi = ZFptSzp (L L) (12)

pel,

S2q0 = D FpuS(i,i) (L ™ (13)
€Ny @

And for the global evaluation:

oo Z V(’) F,,7 14

min; & L)’

And in turn the difference evaluation:

v, 0, v, 0,
D Z pt (mmz (Lp,Li) B miniz#(LP,Li/)) (15)

Note that each simulation is conducted independently, and a POI that is
discovered early in one simulation might not be discovered until much alter in
another simulation, or may never be explored at all. In this way the payload
rovers must be develop very generalizable policies that function highly with the
information available to them, and the performance of the scout rovers bounds
the performance of the team as a whole.

We now turn our attention to the scout rovers, which do not function based
on the sensory information or evaluations outlined to this point, but instead are
concerned with exploring as much new terrain as possible. In order to encour-
age the scouts to explore new terrain, we place a series of fictional “beacons”
in an evenly spaced Cartesian grid across the surface. Each of these beacons
remains active (Upegcon = 1) until a scout passes within dpeqeon distance of it,
at which it point it is considered deactivated (Vpeqcon = 0). This implies that
the scouts do have short-range communication ability and a shared database of
which beacons have and have not been deactivated. The process of deactivating
beacons after they are closely observed encourages the scouts to constantly seek
out unexplored areas of the domain. Scouts discover future POIs by passing
within dgiscovery distance of the POI location (and subsequent sending of the
location and preliminary sensory data back to Earth based on the communica-
tion cycle described previously). The scouts can sense the beacons from a longer
distance (dbefsemo,y = 2 dgiscovery), SO that their sensors represent the relative
density of active beacons that could be deactivated (new territory that could be
explored) by traveling toward each quadrant. The scouts can sense other scout
rovers from an even longer distance (dsc_sensory = 4 - ddiscovery), to reduce the
chance of redundant exploration.

13



The scout’s sensor representation is formulated similarly to the payload rover
representation, with each quadrant having a beacon sensor and a scout sensor:

Vbeacon
S(i 16
Z Lba ) ( )

bel,

Sscout,q,i — Z S Z l L I ) (17)

Sbeacon,q,i

where the beacon sensor Spegcon,q,; identifies all active (Vpeqcon = 1) beacons b
in quadrant I, within dgepsory distance of rover ¢ (so that S(i,b) = 1). The
scout Sensor, Sscout,q,i identifies all scout rovers within sensory range of rover ¢
(S(2,7") = 1 iff 6(4,7") < dsc_sensory) to provide a distance-weighted value per
quadrant. It is of note that the state variables of scout and payload rovers are
not affected by each other. In other words, when computing the rover value for a
particular quadrant on a scout rover, sensed payload rovers are not incorporated
into this computation. Similarly, sensed scout rovers are not incorporated into
payload rover state variable computations.

The global evaluation that the scout rovers attempt to maximize is the
number of beacons that have been deactivated:

Gocout = Z (1 - 'Ubeacon,b) (18)
b

When we apply Equation 1 directly to Equation 18, we arrive at:

Dscout,i = Z (1 - chacon,b) - Z (1 - Ubeacon,b,—i) (19)
b b
Where vpeqcon,b,—i is the value that vpeqcon,y would take if agent ¢ did not con-
tribute to the system. Note, then, that any beacon which 2 or more scouts would
have deactivated gives zero contribution to each agent’s difference evaluation,
and only the beacons that would have been uniquely deactivated by one agent
contribute to that agent’s difference evaluation.

4 Proposed Algorithm

We now describe the CCEA algorithm used in this work, including detailing the
general algorithm, the population initialization operator, the mutation operator,
and the selection operator. In the CCEA algorithm, N coevolving populations of
neural networks are utilized to form teams comprised of M agents. For this work,
M and N are equal, meaning that each coevolving population is responsible for
developing a policy for one of the agents in the system. Each population is
initially comprised of k neural networks. The networks are randomly initialized
by drawing weights from the normal distribution A/(0, 0;), where o; = 1.0 is the
standard deviation used for weight initialization in this work.

For each generation, k successor networks are generated in each population,
doubling the population size. For every network in the population, a mutated
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Algorithm 1 Standard CCEA
1: Initialize N populations of k& neural networks
2: for each Generation do
3: for each Population do

4: produce k successor solutions

5: mutate successor solutions

6: end for

7: fori=1— 2k do

8: randomly select one policy from each population
9: create team T; of agents with selected policies
10: simulate 7T; in domain

11: assign fitness to each agent in T; using ¥(2)
12: end for

13: for each Population do

14: select k networks using binary tournament

15: end for

16: end for

copy is created by randomly selecting 10% of the weights to be mutated. These
selected weights are mutated by adding a value drawn from the normal distri-
bution N (0, oy, ), where o, = 0.25 is the standard deviation used for mutation
in this work.

After mutation, 2k teams of N agents are formed by randomly selecting
agents from each population and placing these agents on a team. Each agent
in a population is selected only once. The performance of each team is then
evaluated in the domain, and the fitness of every agent on the team is set based
on a fitness assignment operator ¥(z). For the purposes of this work, ¥(z)
is either the global evaluation function or the difference evaluation function.
After being assigned fitness values, each agent in the team is placed back into
its respective population.

Once each team has been evaluated and every agent in each population has
a fitness value, agents are selected to survive to the next generation. Selection
is conducted using a binary tournament operator for each population [17]. Two
agents are randomly drawn from a population at a time, and the agent with the
higher fitness value is chosen to survive, while the agent with the lower fitness
value is discarded. After the selection stage, the population are of size k, and
the next generation begins by returning to the mutation step. This process
is repeated for a set number of generations. The CCEA used in this work is
detailed in Algorithm 1.

For the HLCRD, two separate CCEAs are utilized. The first CCEA evolves
control policies for the payload rovers. In this case, the fitness values are assigned
based on Equation 14. The second CCEA evolves control policies for the scout
rovers. In this case, the fitness values are assigned based on Equation 18. These
two CCEAs are conducted in parallel and the performance of the payload rovers
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is implicitly coupled with the performance of the scout rovers: if potential POIs
are never discovered by a scout and subsequently identified as a POI by the
human ground team on Earth, the payload rovers will never be able to observe
those POIs, which directly leads to degraded system performance. There does
not exist such a link in the other direction; the performance of the scout rovers
is not affected by the performance of the payload rovers.

5 Experimental Results
We present here the experimental results for the following four experiments:

(i) Scout rovers’ coverage of the unknown terrain (§5.1);

(ii) Scout/payload performance with 10% domain observability and no sen-
sor/actuator noise (§5.2);

(iii) Scout/payload performance with 10% domain observability and 10% sen-
sor/actuator noise (§5.3);

(iv) Scout/payload performance with 10% domain observability, 10% sensor/actuator
noise, and 10% agent failures (§5.4)

For each experiment, we examine teams of 10, 50, and 100 rovers attempting
to observe 20, 100, and 200 POls, respectively. The rovers act in a 100x100 grid,
where there are equal numbers of scout and payload rovers; for example, the 10
rover case has a team of 10 scout rovers and 10 payload rovers. The simulation
runs for 100 time steps, with Earth-communication available every 10 time steps.
In all cases, POIs are assigned equal value, and their total values sum to 50. All
rovers (scouts and payload rovers) are initialized near the center of the domain,
with their (z,y) locations being drawn from (N (50,10), A (50,10)), assuming
the world dimensions are in the bounds (z € [0,100],y € [0, 100]). For the scout
rovers, beacons are arranged uniformly in the 100x100 grid, being located at
the center of each grid cell.

Initially, 10% of the POIs are known to the rovers, and scouts attempt
to explore new areas to increase the number of POIs discovered. Every 10
time steps, information from the scout rovers is transmitted to earth, and POI
locations found from this data are sent back to the payload rovers. Once these
new POIls are discovered, payload rovers must go to these POIs and observe
them.

5.1 Scout Rover Results

Figure 4 shows the coverage of the domain (percent of fictitious beacons suc-
cessfully deactivated by the scouts) generated by the scout rovers as a function
of generation. In all results plots to follow, error bars report error in the mean;
in many cases, error bars are smaller than the plot markers and cannot be
seen. As might be expected, more scout rovers are more capable of exploring
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the unknown area, and identifying POIs for the payload rovers more quickly.
The scout rovers trained with the difference evaluation perform significantly
better than those trained with the global evaluation function, covering at 9%
to 16% more of the domain depending on the number of agents in the system.
This demonstrates that difference evaluation functions are capable of improving
coordination between agents.

For the 100 agent case, scouts trained with the difference evaluation function
achieve 97% coverage on average, with 21% of the statistical trials achieving
optimal performance. This suggests that multiagent surveillance tasks can be
achieved in a fully autonomous manner, requiring minimal input from expert
system designers.
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Figure 4: Scout rover coverage as a function of generation for 10, 50,
and 100 rovers; difference evaluations left, global evaluations right

5.2 Limited Observations

The second experiment involves the ideal case of rovers having limited observ-
ability (sensors can see a distance equal to 10% of the world length), but having
no sensor or actuator noise. This experiment gives us a performance baseline to
analyze how the addition of noise or agent failures affects system performance.

Figure 5 shows the global performance attained by teams of 10, 50, and
100 rovers in turn. It also shows the converged performance as a function of
team size. In all three of these cases, agents trained using difference evaluations
achieve higher performance than agents using global evaluation functions. This
is due to the fact that agent-specific feedback based on difference evaluations
during learning allow agents to more easily discern the effects of their actions,
allowing them to more easily optimize their local feedback signals in order to
improve overall system performance. In the 100 agent case, agents using dif-
ference evaluations reach 91% of the theoretically optimal value, while agents
using global evaluations only reach 68% of the theoretical optimal value.

Of particular interest is the scaling plot in Figure 5. The performance of 10
agents using difference evaluations is almost equivalent to the performance of 100
agents using global evaluations. Thus, an improved fitness assignment operator
reduces the hardware requirements tenfold for similar performance. This is
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an important finding, because the cost of sending hardware on extraterrestrial
missions is extremely high, meaning that attaining a similar performance level
with less hardware results in significant monetary savings.
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Figure 5: Global team performance under limited observation radius,
as a function of generation for 10 (top left), 50 (top right), and 100
(bottom left) rovers. In all cases teams trained with difference evalu-
ations outperform teams trained with the global evaluation. Bottom
right shows converged system performance as a function of team size.

5.3 Limited Observation, Sensor/Actuator Noise

The third experiment involves the case of rovers having limited observability
(equivalent to experiment in §5.2), but also having 10% sensor and actuator
noise. In real-world settings, sensors and actuators always have noise, and it is
important to determine the effects of noise on system performance. Figure 6
shows the global performance achieved by teams of rovers in a limited observa-
tion environment with sensor and actuator noise, for 10, 50, and 100 agents. It
also shows the converged performance as a function of the number of agents in
the system.

As in the results from § 5.2, agents using difference evaluations significantly
outperform agents using global evaluations. Interestingly, the addition of 10%
noise had no statistically significant impact on system performance. This is due
to two key reasons. First, the coarse state representation which reduces quad-
rant information to single values is inherently robust to noise, because of the
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loss of resolution when compactly summarizing the state of a quadrant. Sec-
ond, neural networks are excellent at rejecting noise in input signals, because
small changes in inputs do not strongly affect their outputs. This property al-
lows neural networks to encode extremely robust control policies. This is an
encouraging result, because noise always exists in sensors and actuators, and
could potentially become worse in extreme environments found in extraterres-
trial exploration. A control strategy which is robust to this noise is therefore
critical.
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Figure 6: Global performance in the presence of limited observation,
sensor noise, and actuator noise as a function of generation for 10
(top left), 50 (top right), and 100 (bottom left) rovers. Bottom right
shows converged performance as a function of the number of agents
in the system. The addition of 10% noise does not alter performance
in a statistically significant manner compared to the noise-free exper-
iments.

5.4 Limited Observation, Noise, Rover Failure

The final experiment involves the case with 10% observability, 10% sensor and
actuator noise, and agent failures. After 3000 generations, 10% of the agents
fail. When a rover fails, it is unable to move, sense, or observe nearby POlIs.
However, it can still be sensed by other rovers. This requires the remaining
rovers to account for the presence of the failed rovers in their policies, and adds
to the complexity of the problem: if a rover A senses another rover B in the
scenarios without failure, A may be able to assume that B will be observing
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POIs close to its current location. Once the failures occur, this assumption
is no longer valid and the rovers must adapt their policies accordingly. This
experiment demonstrates a real-world scenario, in which sensors have limited
sensing ranges, sensors and actuators are noisy, and some amount of hardware
will fail.

Results for the 10, 50, and 100 rover cases are shown in Figure 7. This figure
also shows the converged performance as a function of the number of agents
in the system. The distributed multi-rover setup leads to the team, no matter
whether it was trained on the global or difference evaluation, experiencing only a
degradation of system performance, instead of the complete end of the mission,
which might happen in the case of a monolithic rover. Notice that after the
failures, the team does continue adapting to the absence of the failed rovers,
and recovers some system performance by reconfiguring (this is shown most
clearly in the bottom left figure of the 100 agent team).

Agents using difference evaluations outperform agents using global evalu-
ations, regardless of the system size. As in the previous experiments, the 10
agent system using difference evaluations performs almost identically to the 100
agent system using global evaluations. This demonstrates the mission cost sav-
ings attainable by using difference evaluation functions, because 10 times less
hardware is needed for similar performance.

A particularly interesting result is the robustness to noise demonstrated by
difference evaluations. For the 100 agent case, 10% agent failures resulted in a
5.8% decrease in overall system performance. For agents using global evalua-
tions, 10% agent failures led to a 9.1% reduction in system performance. Thus,
difference evaluations not only result in higher overall system performance, but
they also are more robust to agent failures within the system.

6 Discussion and Conclusion

Extraterrestrial exploration missions are exceedingly difficult due to the variety
of challenges faced in space. In particular, these missions require operations
in uncertain and extreme environments. Exploring unknown environments is
slowed considerably by light-time delays, as exploring robots often can’t make
control decisions until they communicate with human scientists on Earth, which
can take hours or days. Further, as the monetary cost of such missions is
extremely high, reliability and robustness of the exploring system is paramount.

Artificial intelligence techniques can be used to develop autonomous sys-
tems which address many of these difficulties. In particular, learning-based
multiagent techniques can be used to develop a team of multiple autonomous
coordinating agents. Agent-specific control policies can be developed such that
agents can autonomously act in uncertain environments, while coordinating with
other agents in the system. By adding autonomy to the system, uncertainty in
the environment can be addressed without mission downtime being caused by
light-time delays and waiting for direction by scientists on Earth. However,
full autonomy (free of any human intervention) is not always desirable. For
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Figure 7: Global performance in the presence of limited observation,
sensor noise, and actuator noise as a function of generation for 10 (top
left), 50 (top right), and 100 (bottom left) rovers for teams trained on
the global (red) and difference (blue) evaluation. Bottom right plot
demonstrates converged performance as a function of the number of
agents in the system.

example, autonomous agents which can make low-level decisions in real time
are desirable, but high-level tasks should still be capable of being altered by
human scientists on Earth. Further, multiagent exploration missions have no
single point of failure. If a single robot in a team of robots fail, the science re-
turn is not all lost. This inherent robustness of multiagent systems is extremely
desirable for costly space exploration missions.

In this work, we present a novel human-in-the-loop cooperative coevolution-
ary algorithm for a team of rovers exploring an unknown environment, using
agent-specific fitness assignment operators known as difference evaluation func-
tions. Low-level actions such as task distribution between agents and navigation
are handled autonomously by agents in the system. However, high-level tasks
such as mission goals can be altered by human scientists on Earth. This allows
for light-time delays to be minimized, and only affect the system when changes
to high-level tasks must specified.

Our results demonstrate that the use of our algorithm dramatically outper-
forms traditional cooperative coevolutionary algorithms. In fact, 10 agent sys-
tems trained with our algorithm perform similarly to 100 agent systems trained
with traditional algorithms. This result leads to two possibilities. First, less
hardware can be sent on an extraterrestrial mission while achieving the same
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performance, dramatically reducing mission costs. Second, the same amount of
hardware can be sent on the mission, resulting in superior science return.

In addition to increasing the science return of exploration missions, our al-
gorithm results in control policies which are extremely robust to sensor and
actuator noise as well as agent failures, properties which are critical in extreme
and uncertain environments. The addition of 10% sensor and actuator noise
results in system performance which is not different from a noise free system
in a statistically significant manner. When 10% of the agents in the system
fail, the science return is only reduced by 5.8%. These results demonstrate the
capability of this algorithm to develop autonomous control policies for multia-
gent extraterrestrial exploration robots which are robust to sensor and actuator
noise, can perform low-level tasks autonomously, and require minimal interven-
tion from human scientists on Earth while maximizing the science return of the
mission.
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