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Abstract

This work explores diverse techniques for improving the generalization
ability of supervised feed-forward neural networks via structural adapta-
tion, and introduces a new network structure with sparse connectivity.
Pruning methods which start from a large network and proceed in trim-
ming it until a satisfactory solution is reached, are studied first. Then,
construction methods, which build a network from a simple initial con-
figuration, are presented. A survey of related results from the disciplines
of function approximation theory, nonparametric statistical inference and
estimation theory leads to methods for principled architecture selection
and estimation of prediction error. A network based on sparse connec-
tivity is proposed as an alternative approach to adaptive networks. The
generalization ability of this network is improved by partly decoupling
the outputs. We perform numerical simulations and provide compara-
tive results for both classification and regression problems to show the
generalization abilities of the sparse network.

1 INTRODUCTION

An Artificial Neural Network (ANN) that does not have any feedback loops
in the underlying signal flow graph, is referred to as a Feed-Forward Network
(FFN). Popular FFNs that use supervised learning include multi-layered per-
ceptrons (MLPs), and Radial Basis Function networks. Such supervised FFNs
have been successfully applied to a wide variety of problems involving learning
from examples, and are largely responsible for the recent popularity of ANN
technology.

While the use of multilayered FFNs has been widespread, their inner work-
ings are often not fully understood, resulting in “black box” type tools, with
the network performance varying greatly depending on what is inside the box.
Demystifying the box for any specific problem involves obtaining satisfactory
solutions to questions of
(i) appropriate network structure (type; number and sizes of hidden layers;
full/local /sparse connectivity),



(ii) operational aspects such as training modes, training data selection and choice
of learning and momentum rates, and
(iii) network evaluation including interpretation of results, performance predic-
tion on unknown samples with associated prediction confidence, and extraction
of rules from a trained network.

Over the past few years, several methods have been proposed for obtaining
a suitable network structure, either by an analysis of the data set or by incre-
mentally growing/shrinking a given network. Also, ideas from disciplines such
as function approximation and applied statistics have been applied to guide net-
work structure selection and network evaluation. This article summarizes some
of these developments using a common framework centered around the notion of
generalization in supervised neural networks, and introduces the sparsely con-
nected network as an alternative to structurally adaptive networks. We also
present experimental results that show good generalization ability for simple
sparse networks.

1.1 Generalization

One of the most important features of learning systems is their ability to “pre-
dict” the outcome of a certain event based on “experience.” This experience
is provided by the (possibly repeated) presentation of a training set of input-
output mappings. The performance of the network is then evaluated on a test
set, a data set that is disjoint from the training set. The trained network is
expected to predict the correct input-output relationship for the data in the
test set by generalizing the learned mapping. Clearly there is an underlying
assumption that the training set is representative of the test set, for example,
that they are both extracted from the same unknown distribution, or are an
outcome of the same physical phenomena.

The prevalent definition for generalization ability then, is the performance
of the network on the test set, or more strictly, the expected performance on
test sets for the specified problem. A learning system that can generalize well is
extremely useful as it is flexible and robust when faced with new and/or noisy
data [1].

In general, the number of possible generalizations from a small training data
set is immense. This poses a serious problem in analyzing and interpreting the
performance of an FFN. “Common sense” as we perceive it, is generalization
within certain constraints that is some sense reflect our expectations. This does
not make the other generalizations “wrong,” it simply emphasizes that there
are many possibilities, and that “correctness” depends on the framework one
chooses to adopt.

1.2 Efficient Feed-Forward Network Designs

The generalization ability of an FFN is influenced by its size. For example,
an MLP network with too few hidden units (under-determined) does not learn
the required tasks, while one with too many hidden units (over-determined)



Figure 1: (a) Under-fit data: Poor fit on training set. (b) A good fit. (c) Over-
fit data: Perfect fit on training set, but poor fit on test patterns. (z’s represent
training patterns, o’s represent testing patterns.)

usually generalizes poorly[2]. Such behavior is qualitatively similar to curve
fitting, where the right complexity is needed for a good fit to both training and
test data, as illustrated in Figure 1. This observation motivates the following
definition:
An FFN design methodology is called efficient for a given mapping problem, if it
results in a network architecture whose structural and functional characteristics
lead to quick training and good generalization for that problem.

This paper presents and evaluates diverse approaches, theoretical and heuris-
tic, for obtaining efficient FFN design methodologies. First, we note that FFNs
are applied to two broad classes of problems:

e Classification: discrete-discrete and continuous-discrete mappings.
e Regression: discrete-continuous and continuous-continuous mappings.

Classification consists of a decision making task where the output fits into well
defined categories. The performance of the network in this case can be eas-
ily evaluated. The output is compared to the target, and is either correct or
incorrect. Regression problems on the other hand, involve approximating a
continuous-valued target function. In this type of problem, the performance of
the network has to be gauged by a suitable distance metric such as mean square
error (MSE) [3].

Section 2 discusses different possibilities with static MLP networks and in-
troduces the sparsely connected network, which is designed to perform in noisy
and high dimensional environments. Section 3 studies dynamic approaches that
have been used to obtain efficient networks. “Pruning” methods, which progres-
sively remove weights and/or connections until a desirable performance level is



reached, are discussed first. Then, “construction” algorithms, which start with
a limited number of units and add layers and/or units to achieve the desired
performance level, are presented. Section 4 examines several theoretical frame-
works dealing with the generalization issue and with the estimation of prediction
error. Section 5 provides a comparison of certain algorithms discussed in the
previous sections. These results are based on simulations performed on both
regression and classification problems.

2 STATIC ARCHITECTURES

2.1 Generic MLP Networks

Figure 2 depicts the generic structure of an MLP network with a single hidden
layer. The responses of the k** hidden unit, hy, and the jy;, output, o0; are given
by

hi = g(z Ugii); 0 = f(z wikhy), (1)
i k

where the indices ¢ and k sum over the input and hidden units respectively.
If the activation function g(-) is sigmoidal and f(-) is linear, then the network
can uniformly approximate any continuous function provided sufficiently many
hidden units are used [4]. Moreover, the Ly norm of the approximation error
by an MLP with h hidden units is bounded by 2C}/h'/2, where C; denotes
the first moment of the Fourier magnitude distribution of the function to be
approximated [5]. Interestingly, this bound is independent of input dimension
d. These two properties partly explain why MLPs have been successfully applied
to a wide range of function approximation problems and have often eluded the
“curse of dimensionality.”

Learning in the network of Figure 2 entails adapting the weights (vg;s and
w;s) in order to minimize a cost function such as the Mean Square Error (MSE)
function:

FE = %Z (tjp - ij)2 (2)

Jp

where ¢;7 is the target value for the pt" pattern, and o;7 is the actual output
for the pt" pattern.

The well known back—propagation algorithm for training MLPs is a general-
ization of the delta rule, and is obtained by performing steepest descent on the
“Instantaneous gradient” of E in weight space [6, 7]. The use of differentiable
activation functions for the hidden units allows the use of the chain rule for
updating the weights of links that are not directly connected to an output unit.
Each weight can then be updated using

Awji =16 o, (3)



Figure 2: A Feed-forward Network with one hidden layer.

where 7 is the learning rate, and §; = (¢; — 0;) f'(h;) for the output layer, and
0 = Zj w;0; for all other layers with the k" layer preceding the j layer.
Details of the “back—propagation of error” learning rule, and of various meth-
ods for more effective gradient descent can be found in many textbooks [8, 3].
We note that even with the use of sophisticated techniques of conjugate gra-
dient and second-order methods, many iterations may be required for training.
The main problem is in the structure of the algorithm, a gradual search of the
weight space with susceptibility to local minima, rather than in the specific way
of implementation. The default MLP network introduced earlier in this section
is “fully connected” in the sense that all the units in one layer are connected
to all the units in the subsequent layer. However there are situations where
more restricted connectivity could be sufficient or even preferable. For example,
Rosenblatt studied “diameter limited” perceptrons in which each output cell re-
ceived input only from a localized group of input cells forming a visual receptive
field [9]. A follow-up on the biologically motivated idea of local connections is
the idea of weight replication. In this scheme, each unit of a layer is connected
to a limited number of units from the preceding layer by the same weights.
By replicating or sharing weights, the number of free parameters in a network
is reduced, which may increase the training speed and improve generalization
abilities [10]. Weight duplication also introduces bias in the network and can be
exploited to enforce some invariance (shift, rotation) in the network response.
The theoretical relationship between biased and unbiased networks is discussed
in more detail in Section 4.2.



Figure 3: Sparsely connected network with Cy > Cy > --- > C,,, where C};’s
refer to connectivity between layers.

2.2 Sparse Connectivity

In this section we introduce the sparsely connected network as an alternative
to a locally connected network. In this scheme, not all units from a layer are
connected to all units in the subsequent layer, yet the connections are not lo-
calized. The restrictions of a diameter limited perceptron do not apply to this
type of network.

Suppose we were to remove certain connections before training starts. The
advantages of the resulting sparsely connected network are twofold. Due to
the “freedom” gained by the hidden units, the outputs are more decoupled.
Moreover, the number of parameters is reduced. From theoretical considerations
elaborated on in Section 4 (also see [2, 11]), we expect these two features to lead
to better generalization and reduced sensitivity to noise.

The connections between the input layer and the first hidden layer is where
the feature extraction takes place. Therefore it is advisable to keep the connec-
tivity of this layer close to full. The subsequent layers can then have decreasing
connectivity until the outputs are clearly separated. Let the probability that
two units in layers ¢ and j are connected be denoted by C;. Figure 3 shows the
structure of a sparsely connected network built with these specifications. The
shading of the weights indicate the degree of connectivity with lighter shades
having lower connectivity than the darker ones. Such a network will be experi-



mentally evaluated in Section 5, and compared with schemes that start with a
fully connected network and remove weights during or after training.

3 STRUCTURAL ADAPTATION

The fully-connected, locally connected and weight replicated network structures
described in the previous section are called static because the number of units
and connections are predetermined. The learning algorithm consists of finding
a set of weights that minimizes the error function. In this section, we sur-
vey networks with dynamic structures where the learning algorithms not only
search the weights space, but also modify the architecture of the network during
training.

3.1 Pruning Methods

Pruning methods start from initial architecture that is overparameterized, and
selectively remove units and/or connections during training, until a satisfactory
performance level is reached. The pruning phases may be interleaved with
retraining of the pruned network. The following heuristic methods attempt to
reach an efficient network topology using this approach (also see [12]).

3.1.1 Weight Removal and Optimal Brain Damage

A first cut at pruning a trained network is simply to delete weights with small
magnitude, as they are expected to have the least influence. However, there
are several problems with this method. First, the assumption that a weight’s
importance is directly proportional to its magnitude is a gross approximation.
For example, a hidden unit whose net input activation is very low or very high
(i.e. which is in a saturation region) will be less sensitive to an afferent weight
as opposed to another unit whose net input activation is near zero. Second, the
threshold for deletion overly influences the outcome and has to be fine-tuned,
rendering the method difficult to apply.

The actual effect of the deletion of a weight can be quantified if the cost func-
tion is recomputed after that weight has been removed. This method though,
is impractical due to the high cost associated with computing the MSE at each
step. A method called Optimal Brain Damage (OBD) [13] attempts to circum-
vent this problem by analytically determining the relative importance of weights
in an FFN| using second derivative information. OBD operates by building a lo-
cal model for the cost function using a Taylor series. The effect of a perturbation
dw; of weight w; results in a change in the objective function F, by

OF 1 )
SE ~ Z_ a—w&uﬁi;hmﬂi (4)

2 . . .
where h;; = #ab;}j . In Equation 4, cross terms in the Hessian (h;;’s), and

terms of order higher than two are neglected. Furthermore, if the perturbation



is performed after the network has reached a local minima, the first term of
Equation 4 can be ignored. This motivates defining saliency s; of a weight w;
2

as s; = hy; % . Geometrically, h;; denotes the convexity of the error surface
in weight space about the local minima, along the it weight. Weights with
small saliencies are those which influence the objective function the least and
are prime candidates for removal. Thus the OBD method involves training
a network that is sufficiently large, and then removing those weights whose
saliencies are below a threshold. The pruned network can be further trained
and pruned if necessary. The speed of this algorithm can be increased if the
perturbations are performed on sets of weights instead of individual weights.
A more general use of the Hessian matrix leads to the Optimal Brain Surgeon
(OBS) algorithm, where the h;; terms are not assumed to be zero [14].

3.1.2 Weight Decay

Weight decay is another method that concentrates on reducing the number of
parameters in a network. The essential idea behind this approach is the gradual
removal of connections that are not frequently reinforced during training [15].
One way to implement this scheme is to allow each weight to decay towards zero
by adding a negative term to Equation 3, that is proportional to the current
weight. The new update equation becomes

ijk = n(éjok — )\wjk) s (5)

where A is the decay parameter. This updating scheme incorporates weight
decay by reducing weights by Aw = —nAw, unless they are reinforced.

The modified updating rule of Equation 5 can be also obtained through
gradient descent on a biased cost function £’ = E + AP, obtained by adding to
the cost function F, a penalty term P = Zj’k w?k,, that is weighted by A. We
shall see later that this can be viewed as a method of complexity regularization.

The main drawback of this simple method is that it overly penalizes large
weights. A more suitable approach is to select
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The advantage of weight decay is that the training time is not increased
by requiring the network to be retrained after weight removals. Learning and
pruning take place simultaneously, since the updating itself incorporates the
decay mechanism. Numerical simulation results report improved generalization
ability of networks trained with weight decay [16].

A variation on weight decay is weight group decay, which can lead to the
removal of entire hidden units [17]. Here a bias term similar to that in Equation 6

is defined as either 754, or (1 —e™***) where wy, = 3 |wx| . This method



isolates weight updates to groups of weights that can be traced to specific hidden
units.

3.1.3 Suppression of Hidden Unit Activations

Another approach to reducing the size of a network is to suppress hidden units
rather than weights, by choosing the penalty term P of Section 3.1.2 to be of
the form Y, ; e(or?) where e(-) is a positive monotonic function, and oy, is the

output of the k" hidden unit in the [*” hidden layer. Gradient descent is then
performed on the modified cost function.

When a unit’s activation summed over the entire training set falls below a
certain limit, that unit is removed. The essential idea behind this method is
that some of the units in an FFN may be redundant. By placing constraints
on the weight space, this method forces the hidden units to efficiently represent
the input features, and therefore results in a reduction in the number of hidden
units needed.

This method is sensitive to the selection of the function e(x), which can
simply be z or a nonlinear functions, such as e(r) = 7 ore(z) = log(1+x)
. When applied to the “exclusive or” problem (XOR), Chauvin reports [18] that
the activation of all but two hidden units were suppressed, essentially removing
the others. This method was also tested on a phonetic labeling task, and was
reported to reduce the number of hidden units from twelve to three, without
significantly affecting the performance.

3.2 Construction Methods

An opposing approach concentrates on incrementally building networks starting
from simple structures. The resulting architectures are more varied than the
ones obtained by pruning large networks, since one has more options while
adding new units.

Dynamic Node Creation, introduced by Ash [19], is designed to add
hidden units to the network whenever the learning appears to slow down. A
small network is first trained using the back—propagation algorithm. When the
slope of the MSE vs. number of epochs curve falls below a certain threshold,
a new node is added. The network is then retrained and the process continues
until the MSE reaches a satisfactory value or starts curving upwards.

The use of this method is limited to a network with one hidden layer, since
there are no contingencies for creating new layers. The network has to relearn af-
ter each node creation, increasing the training time considerably. Furthermore,
the final network is prone to overfitting the training data.

Cascade-correlation, introduced by Fahlman and Lebiere [20], builds a
multi-layered FFN starting from a one-layer network. The most important
feature of this approach is an incremental construction scheme that avoids the
back-propagation of the error through several layers, and thus reduces the train-
ing time. The starting point of this algorithm is a one-layer FFN, which is



trained with the simple delta rule. When the performance cannot be signifi-
cantly improved upon, a new unit is added that receives connections from the
input units and all the currently present hidden units, as shown in Figure 4.
The connections to this hidden unit are calculated before it is connected to
the network, in a way which maximizes its usefulness. Details can be found in
[20, 8, 21].

Figure 4: Cascade-correlation network [20].

Dynamic node creation and cascade-correlation are special cases of data-
dependent incremental model construction techniques that are studied in ap-
proximation theory. For example, constructive polynomial-based function ap-
proximation is provided by the GMDH algorithm [22], the self-organizing neural
network [23], the ridge polynomial network [24] and the LMS tree of Sanger [25],
among others. Even in the context of MLP type networks, other heuristics such
as splitting nodes based on principal component analysis of oscillating weight
vectors [26], can be found in recent literature.

Another class of constructive algorithms depend on the performance of cer-
tain units at intermediate stages, and are only applicable to classification type
problems. The tiling algorithm and the upstart algorithm for example build a
network by incrementally adding units and layers [3].

10



3.3 Incremental Construction of Radial Basis Function
Networks

Multi-layered perceptrons are not the only type of supervised FFNs for which
structural adaptation algorithms exist. RBF networks, a class of single hidden-
layer feed-forward networks in which radially symmetric basis functions are
used as the activation functions for the hidden layer units, are becoming pop-
ular particularly for localized or low-dimensional problems. RBF networks are
primarily aimed at multivariate function interpolation or function approxima-
tion, and have been used successfully for problems such as prediction of chaotic
time series[27]. They also serve as universal approximators using only a single
hidden layer [28, 29].

For RBF networks, a constructive algorithm involves incrementally adding
kernel nodes, and possibly adjusting the widths along with the weights. A par-
ticularly effective method is imbibed in the resource-allocation network (RAN)
of Platt [30]. RAN works by either performing gradient descent or creating a
new kernel, depending on the current training pattern. If the network performs
well on the pattern, the weights are adjusted using standard LMS descent. If,
on the other hand, the performance is deemed poor, a new unit is added, and
the pattern is “memorized.”

RAN is tailored to on-line training. When the entire training data set is
available, an effective method for incremental growth is provided by the hier-
archically self-organizing learning technique of Lee and Kil [31]. The algorithm
incrementally (and stingily) recruits centroids based on control of effective radii
of influence (boundaries) of individual centroids with Gaussian receptive fields.
It also adapts the locations and widths of the centroids using gradient descent.
Each centroid has an accommodation boundary and a class representation. If
a training sample not within the accommodation boundary of some centroid
with the same class label, a new centroid is created. Also, if MSE curve flattens
out, the boundaries of all units are shortened. Otherwise, the parameters are
adapted using gradient descent. A notable feature of this approach is that it
changes both dimension and shape of error surface during training, thus making
it easier to escape local minima.

4 THEORETICAL CONSIDERATIONS

This section deals with different theoretical approaches for determining the re-
quirements on the architecture of FFNs, and the selection of training sets for
achieving good generalization. These methods are obtained from the related
areas of nonparametric statistical inference, statistical pattern recognition, esti-
mation theory and the classical theory of functions. They provide useful insights
into the behavior of FFNs, and provide more systematic alternatives to some
of the heuristics presented in the previous section. The first three disciplines
also provide several well-studied techniques for selection of training data and for
estimating performance on test data in classification problems. These include
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density estimation, cross-validation, resampling and bootstrap methods. Since
such techniques are treated in several books [32], they will not be discussed here.

To begin, observe that FFNs as a general class are part of nonparametric
regression models [2]. Of course, if a particular network is chosen and its archi-
tecture is fixed, the network becomes a specific parametric scheme, since only
the weights (the parameters) have to be determined.

First, an account of learning as function approximation is presented to evoke
parallels between the two concepts. Second, the statistical properties of learn-
ing are discussed in order to formalize the problems that are involved in FFN
designs, including the fundamental bias-variance tradeoff. This leads to the
concept of complexity regularization, which can be directly applied to obtain
suitable network structures. Finally, the complexity of functions realizable by a
network class lead to quantifiable results on their generalization ability, and on
the prediction of the test set error rate. Some of these issues are also examined
in [33, 8, 34].

4.1 Learning as Function Approximation

The problem of function approximation consists of representing an unknown
function f(X) by F(W, X), an approximating function that uses a set of pa-
rameters W. The task consists of either finding a set W for a given function F,
or of finding both F and W in order to perform the best possible approxima-
tion. Classical approximation theory provides well established results for this
type of query [35, 36]. Observe that the process of searching for the “right”
functional form and/or parameters is equivalent to learning if the function is
realized through a neural network based on samples of the input-output map
[37].

Function approximation can be expressed formally as the search for the set
of parameters W’ which satisfies

dlF(W', X), f(X)] < d[F(W,X), f(X)] (6)

for all W, where d is a suitable distance metric, and X is the multi-dimensional
input. The solution W’ satisfying Equation 6 is referred to as the best approzi-
mation. The likelihood of finding the best approximation depends on both the
class of functions to which F(W, X) belongs, and the original function f(X).

The analogy with learning in FFNs is clear on considering the following two
forms of F' for approximation:

e The linear approximation in a suitable basis {Z;}, which characterizes a
two-layer FFN with linear output units, such as the RBF network:
FW,X) = Y WiZi(X) (7)

e The nested sigmoids method, which corresponds to a multi-layered FFN,
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such as the MLP:

F(W, X) :g(zng(mg(zwiwi)m)) (8)

where g is a sigmoidal function, and the weights are W = {- -+ jv;, - -, w;, - -

Note that the type of nested nonlinear functions expressed by Equation 8 is
unusual in classical approximation theory, and the results on the powerful ap-
proximation capabilities of such forms, for a single hidden layer of sigmoidal
units, are very recent [33, 38, 4, 37].

Pictorially, function approximation can be viewed as reconstructing a sur-
face (desired function) from sparse sample points (training set). Pursuing this
analogy, generalization can be defined as estimating the height of the surface
(output value) at a point in space where no examples are available. If the
surface is reconstructed faithfully, generalization ability will be good, and the
system will have “learned” the mapping. Clearly, generalization is based on the
assumption that there is redundant information in the data. If a mapping is
totally random, generalization is not possible since there is no regularity that
can be learned.

4.2 Statistical Framework

Given the approximation theory framework presented above, the immediate
question that arises is, by choosing F' and W appropriately, how well can a
network perform based on a given training set. Are there any fundamental
limits to performance against test data? Note that the training and test sets
are considered as random samples from the same but unknown distribution,
and that the observations are typically noisy. So it is not surprising that some
answers to the questions above are provided by statistical estimation theory [2].

As mentioned earlier, the main objective in supervised learning is to ac-
curately estimate a function f(X) from repeated observations of (X,y) pairs,
where y = f(X) 4+ noise, if any. For a minimum squared error criterion, the
regression of y on X, E[y|X] = F*(X), is the best predictor of y given X, since
for any function F’

Bl(y - F(X)*IX] > El(y - Ely|X])*|X] (9)

(for proof see Geman et al [2]).
Thus, a valid goal is to minimize an error function

r(F,F*) = E[(F(X) - Bly|X])*]. (10)

This error can be further divided into two parts, called “bias” and “variance,”
respectively [2]:

B[(F(X) - EIX])’] = (B[F(X)] - EIX])* + E[(F(X) - E[F(X))?. (11)
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Reducing the total error is a tricky process, because a model-free estimator
with low bias leads to high variance, and an incorrect model leads to high
bias. This is similar to the problem encountered while predicting the size of an
FFN. Too few hidden units result in poor learning because it corresponds to an
inadequate model with high bias. Too many hidden units, on the other hand,
prevent generalization, because the excess of parameters leads to high variance.
Equation 11 then demonstrates the heart of the problem: How to reduce bias
without increasing variance or how to reduce variance without increasing bias.

In order to avoid this dilemma the network has to be large enough not to
introduce an initial bias, and the training set has to be large enough to overcome
any variance introduced by individual sample points. The goal is to reduce the
variance progressively without introducing too much bias, and is the rationale
behind the pruning methods of Section 3.1, and regularization, addressed in the
next section. Alas, the training set is often limited in size in the real world.
The biases and added uncertainties due to small sample size have been studied
in [39].

An important issue in statistics is that of asymptotic convergence, or “con-
sistency.” Most non-parametric regression algorithms—including FFNs—are
consistent, i.e. they would approximate the objective function, to an arbitrary
degree of accuracy given unlimited data. The question then becomes, is there a
large enough training set that allows learning in practice? The answer given by
Geman et al [2] is that for truly model-free estimators, learning is a practical
impossibility. Yet FFNs in general are never truly model-free. The architec-
ture, the size, the connection scheme, and even the selection of the data set
often conveys considerable information, and introduces bias. Satisfactory per-
formance is then attainable with a finite set of training patterns, since some a
priori knowledge is encoded before purely statistical learning begins.

4.3 Regularization

The statistical framework provided a theoretical basis for separating the error
due to the model (bias) and the error due to the data (variance). If a model-free
estimator is used to minimize MSE over the training set, the resulting model
will be too complex and lead to high variance and thus high total error, leading
to poorer performance on the test set. In other words, increasing the complexity
of the model improves the training set error at the expense of the generalization
ability.

Complexity regularization counters this problem by choosing the network
estimate to minimize a criteria of the form }_ (y” — F(XP))? + AP(F) where
A is positive and determines the amount of regularization, and P(F') is a non-
negative penalty term that uses a priori knowledge about the mapping to con-
strain the solution. For example P(F) = || [, V2 F [|* penalizes approxi-
mating functions F' that are not smooth. The penalty functions corresponding
to the weight decay schemes of Section 3.1, on the other hand, prefer networks
with smaller or lesser weights. They embody the “Occam’s razor principle”
which states that unnecessarily complicated models should not be selected over
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simpler models.

A more rigorous approach shows that for squared error and log-likelihood
loss functions and given n training samples, complexity regularization indicates
selecting an estimating function [40]

ﬁ=argminp(%Zd(yp,F(Xp))—&-)\%Cn(F)), (12)

p=1

where d is the distance function and F' is searched from the class of functions
considered. The measure of network complexity, C),, is essentially the loga-
rithm of the number of functions required to approximate functions in the class
to within a prescribed accuracy. Moreover, the estimation error is bounded in
probability by r(F, F*)+ C,(F)/n (for squared error or log-likelihood loss func-
tions), where r() is given by Equation 10. For more details, see [5, 40]. The
results indicate that the one can afford more complex estimators if the training
set is larger.

Regularization theory has been used to form regularization networks, FFNs
with a single hidden layer [37]. These networks use a variety of activation func-
tions for the hidden layer, one of which can be a Gaussian, making RBFs with
Gaussian kernels a subset of regularization networks. Complexity regularization
is difficult to implement directly, as both A and C,,(f) have to determined. The
Bayesian framework alleviates this problem by tuning the parameters (including
A) during training [41, 42].

4.4 Expected Test Set Error and Risk Minimization

We now focus our attention to the test set error, and establish the “prediction
risk,” a measure of the generalization ability of the network. In many practical
situations, only the training set error is known, but of course the most important
measure is the performance on test set which is presumably sampled from the
same distribution as the training set, but is otherwise unknown. If a bound
can be imposed on the difference between the test set and training set errors,
the level of trust one can place on network results can be known. Also, since
varying the test set can lead to different generalization performance measures,
and it becomes apparent that a method independent of the test set is needed
to determine the expected performance on it.

Equation 10 gives an indication that the difference between training and test
error is related to model complexity. In a linear model the test set error ¢4 is
related to the training set error €¢yqin by

<€test> = <€t7"ain> + 202% (13)

where o2 is the noise variance, p is the number of parameters, n is the number
of training patterns, and (- ) is the expected value operator [35]. The basic
tradeoff between the number of parameters in the network and the training set
error is illustrated in Equation 13. Increasing the number of free parameters

15



in the network initially decreases (ecst) as the reduction in (€4.4,) counteracts
the increase in the second term of Equation 13. Further increase in the number
of parameters provides only a modest decrease in {(€4.4in) if any, resulting in an
increase in the overall test set error.

For a nonlinear system such as MLP, Moody has shown that a similar relation
can be obtained with a second order approximation [11]:

(etest ) ~ (etrain(V) + 202 L1 (14

where pesr and O'gf ¢ are the “effective” number of parameters and the effective
noise variance respectively, and A is the regularization parameter as in Equa-
tions 12, emphasizing the importance of proper tuning. Moody also shows that
for an MLP, the effective number of parameters increases sublinearly with the
number of weights, thus providing more insight into the robustness of even fairly
large MLP networks. Moreover, Equation 14 provides a Generalized Prediction
Error measure that can be minimized while training the network, thus extending
prediction error criteria developed for linear estimators. Obtaining the values of
the effective parameters and a suitable choice of A for a given problem however,
is not trivial.

4.5 Results based on VC Dimensionality

Since network architectures are directly related to the types of functions they
can successfully implement, it would be beneficial if the complexity of function
classes could be quantified. Both Equation 10 and 14 indicate that a “complexity
parameter” could be used to predict the difference between training set and test
set errors. The Vapnik-Chervonenkis (VC) dimension, d,.., is such a parameter
and provides bounds on the generalization ability of network families in terms
of the classes of functions they can realize [43, 44]. Due to the difficulty involved
with estimating the VC dimension, its use is generally restricted to classification
problems, even though the theory encompasses both binary and continuous
functions.
It can be shown that [43]:

n

[ B PG aP( ) < 3 Bl FOG W) + Cal7-01)
i=1 ve

(15)
with probability 1 — 7, where Co(7*~ ,n) is a confidence interval depending on
the training set size and the VC dlmensmn of the class of functions under inves-
tigation. In the above equation, F is an error measure, y is the actual output,
F(X,W) is the approximating function, and P(X,y) is the joint probability
distribution. Thus the left hand side is the expected value of the error, and the
first term on the right, called the empirical risk, is the error measured over the
training set. The VC dimension used in this manner provides a conservative
bound for the generalization error.
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5 EXPERIMENTAL RESULTS

In this section, we report the results of the numerical simulations that we con-
ducted to examine the learning and generalization properties of different net-
works. The experiments were based on two regression problems and one classifi-
cation problem. The chosen problems had enough regularities to be “learnable,”
but were complex enough to provide a good measure of the abilities of different
algorithms.

5.1 Comparative Studies with Regression Problems

5.1.1 The Gabor Function

The first regression problem consists of approximating a 2-D Gabor function.
It is well known that the highly-oriented simple cell receptive fields in the vi-
sual cortex of mammals can be closely modeled by 2-D Gabor functions, which
are Gaussians modulated by sinusoidal functions. Gabor functions play an im-
portant role in physics, since they are the unique functions that achieve the
lower bound for the space-frequency uncertainty product, which is a measure
of a function’s simultaneous localization in both spatial and frequency domains
[45]. The convolution version of complex 2-D Gabor functions have the following
form:
2 2
G(z,y) = Tiaz e g2riluoutuoy), (16)

Here, A is the aspect ratio, o is the scale factor and (ug,vg) are modulation
parameters.

For simulation, the cosine function was used for the modulation and the
parameters were set as follows; A = 1,0 = 0.5,u9p = 1 and vg = 1. Thus the
actual function to be approximated was:

1 224y

G(z,y) = 3705 e 2052 . cos(2m(z +y)). (17)

Then, 256 input points were selected from an evenly spaced 16x16 grid on
—0.5 <z £ 05 and —0.5 < y < 0.5. For training, 64 input points were
randomly selected from these 256 points. The remaining 192 points were used for
testing. Since Equation 17 has both positive and negative values, the hyperbolic
tangent was used as the activation function.

The first network that was used was a fully connected MLP with two in-
puts, one output, and a single hidden layer consisting of 10, 20, 40, or 80 hidden
units. The training scheme consisted of the back—propagation algorithm with
a momentum term. Figure 5 shows the results obtained with a noiseless data
set, and Figure 6 shows the results for a data set with 20% noise (additive). In
the absence of noise the networks with 20 and 40 hidden units performed better
than larger or smaller networks, but the differences were quite small. In the
presence of noise, the small network (10 hidden units) performed poorly. The
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Figure 5: Back—propagation algorithm for the Gabor function with noiseless
data: Effect of network size.

network with 20 hidden units proved to be the best as larger networks tended
to overfit the data on the training set and had difficulty with generalization.

The next network was trained using Optimal Brain Damage (OBD). The
major difficulty in applying this algorithm arose while selecting the thresholds
for weight removal. The results were very sensitive to minor adjustments in
this parameter and made the process difficult to automate. After changing
the threshold several times, it became clear that with large networks, the al-
gorithm would be difficult to fine-tune. The results presented were obtained
with approximately 25% of the weights removed. Figure 7 compares OBD with
back—propagation for a network with 80 hidden units. The OBD algorithm fared
poorly for smaller networks.

The algorithm based on the suppression of hidden units activation presented
in Section 3.1.3 was also implemented. It performed as expected for smaller
problems, where it suppressed the activation of all but a few hidden units, but
had trouble with the larger problems. As the number of hidden units and the
number of training patterns increased, the algorithm’s effectiveness decreased.
The algorithm performs gradient descent on the following error surface:

E = pepror Error + AP (18)

where the terms Error and Penalty, P, are discussed in Sections 2.1 and 3.1.3,
respectively. Selecting A too large prevented the descent on the error surface
by suppressing all hidden units, and selecting it too small had no appreciable
effect on the hidden units’ activation.

The next algorithm tested was the sparsely connected network which has a
static architecture, and was presented in Section 2.2. Figures 8 and 9 show the
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Figure 6: Back—propagation algorithm for the Gabor function with noisy data:
Effect of network size.
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Figure 7: Back—propagation vs. OBD. (80 Hidden units.)
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Figure 8: Sparse connectivity, with noiseless data.
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Figure 9: Sparse connectivity, with noisy data.
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performance of the sparsely connected network. In the presence of noise the
choice of the size of the network is not as critical as for other learning schemes.
Moreover the generalization ability of the sparsely connected network is better
than the generalization ability of the simple back—propagation network in the
presence of noise.

Table 1: Comparative Results for the Gabor Function.

Training Algorithm Noiseless data Noisy Data
Training Test Training Test
Set MSE | Set MSE | Set MSE | Set MSE

Back-Propagation

(20 Hidden Units) 0.00152 0.00373 0.00322 0.00501
(40 Hidden Units) 0.00130 0.00334 0.00296 0.00571
(80 Hidden Units) 0.00151 0.00342 0.00288 0.00583
OBD

0.00182 0.00472 0.00683 0.00683
0.00142 0.00316 0.00452 0.00630
0.00129 0.00392 0.00543 0.00603

(20 Hidden Units)
(40 Hidden Units)
(80 Hidden Units)
Sparse Connectivity

)

)

)

(20 Hidden Units
(40 Hidden Units
(80 Hidden Units

0.00137 0.00472 0.00432 0.00496
0.00132 0.00382 0.00401 0.00554
0.00161 0.00421 0.00397 0.00553

Table 1 shows how each algorithm performed on both the noiseless and the
noisy data sets!. The results indicate that in the absence of noise, the back—
propagation algorithm applied to a fully connected MLP is the best alternative.
Even though OBD provided slightly better generalization for certain network
sizes, the improvements were not significant enough to warrant the increased
complexity. When noise is added, the sparsely connected network gives better
generalization than both back—propagation and OBD algorithms.

5.1.2 Electrical Log Inversion Problem

The second regression problem is that of estimating formation resistivities through
an instrument placed in a borehole. When the measuring instrument is in the
borehole, the electrodes placed on its surface record different potentials which
characterize the formation. Computing these potentials given the formation re-
sistivities is the forward modeling part and is well formulated. Computing the
formation resistivities from a set of electrode potentials, on the other hand, is
the inverse modeling problem which is quite challenging due to the unknown,
highly nonlinear relation between the two sets of parameters.

The problems encountered with OBD This set of experiments consisted of
generating artificial formations, computing the corresponding instrument read-

LAll values reported in this section are averages over 10 runs.
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Table 2: Comparative Results for the Electrical Log Problem.

Training Algorithm | Training Test
Set MSE | Set MSE
Back-Propagation
(10 Hidden Units) 0.0724 0.212
(20 Hidden Units) 0.0718 0.197
(40 Hidden Units) 0.0704 0.209
OBD
(10 Hidden Units) 0.0717 0.176
(20 Hidden Units) 0.0710 0.287
(40 Hidden Units) 0.0707 0.225
Sparse Connectivity
(10 Hidden Units) 0.0763 0.222
(20 Hidden Units) 0.0827 0.175
(40 Hidden Units) 0.0724 0.196

ings using a forward model, and training the network to reproduce the actual
formation resistivities. Then a second set of artificial formations was generated
and the instrument potentials computed. This second set was used as the test
set to analyze whether the network had learned the highly non-linear mapping
of the backward model.

The training set consisted of 343 vectors, each comprising seven inputs and
three outputs. The output resistivities ranged between 1 and 100 ohm-m. The
test set consisted of 343 patterns with outputs ranging between 1.5 and 150
ohm—m. The values used for training and testing consisted of the logarithms
of the actual values scaled to be between —1 and 1, and the the hyperbolic
tangent activation function was used. Table 2 presents the results of the tested
algorithms on the test set.

while approximating the Gabor function were also apparent during this set
of experiments, and a satisfactory range for the saliencies was difficult to find.
Even for a “good” set of parameters, OBD did not provide significant gains
over the basic back—propagation, and was in fact outperformed by the sparsely
connected network all but once. The sparsely connected network provided a
slight improvement over the standard back—propagation algorithm for all but
the smallest network, where the number of weights was not large enough to
successfully decouple the outputs. These improvements were mainly due to the
increased dimensionality of the output space. The sparsely connected network’s
principle is based on reducing the coupling among the outputs, which is achieved
by reducing the number of connections between the hidden layer and the output
layer. The performance of such an algorithm improves when the number of
output units is increased. It is important to note that the improvements, though
not drastic, were obtained without any sacrifice in computational complexity.
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5.2 Comparative Studies with a Classification Problem

The data set used for the experiments consists of 25-dimensional feature vectors
extracted from short-duration passive sonar signals due to six types of natu-
rally occurring oceanic sources. The signal source type and number of training
and test samples are given in Table 3 [46]. Each feature vector consisted of
16 coefficients of Gabor wavelets—a multiscale representation that does not as-
sume signal stationarity; 1 value denoting signal duration, and 8 other temporal
descriptors and spectral measurements.

Table 3: Description of the Oceanic Data Set.

Class | Description Training | Testing
1 Porpoise Sound 116 284
2 Ice 1 116 175
3 Ice 2 78 39
4 Whale Sound 1 116 129
5 Whale Sound 2 148 251
6 Background Noise 116 127
Total: 690 1005

Figures 10-12 show the learning curves for the back—propagation algorithm,
the sparsely connected network, and OBD algorithm respectively. Both the
basic back—propagation algorithm and the sparsely connected network learn
with a smooth gradient with improvements in generalization ability slowing
considerably after the initial 150 iterations. The fluctuations in Figure 12 are
due to the elimination of weights. In certain cases, the drop in classification
accuracy is followed by a subsequent increase overcoming the initial drop (e.g.
network with 20 hidden units). In other cases though, the OBD network never
reaches the initial level of accuracy (e.g. network with 40 hidden units).

The results obtained by different networks for the classification problem are
shown in Table 4. The differences between methods appears to be minimal.
Training results indicate that the classification accuracy can be pushed to the
limit, without improving the generalization ability. The sparsely connected
network was the most consistent, although not the best classifier. Surprisingly,
OBD out-performed the back—propagation algorithm for smaller network sizes
(10 and 20 hidden units) when theory would suggest improvements taking place
with larger networks. This may be due to the increasing difficulty in tuning the
thresholds with larger network size. The OBD results for networks with 40 and
80 hidden units may be improved upon if a better threshold could be found.

6 CONCLUDING REMARKS

Even though supervised feedforward networks are often used as model-free black
boxes that will learn from examples, effective generalization is contingent on
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Figure 10: Performance of the Back—propagation algorithm for SONAR classi-
fication.
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Figure 11: Performance of the Sparsely connected network algorithm for
SONAR classification.
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Figure 12: Performance of the OBD algorithm for SONAR classification.

appropriate selection of network structure and the amount of training. We
surveyed several methods for dynamically determining the network size and
pointed out several theoretical approaches that enable us to understand network
behavior. In particular, the concept of complexity regularization provides a
powerful framework for developing dynamic-structured networks as well as for
estimating performance on the test set using these networks. Heuristics such
as weight decay can be well understood within the framework of regularization
theory. Bayesian back—propagation prescribes one way of obtaining a suitable
amount of regularization during training.

The benefits provided by dynamic architectures have to be weighed against
the increased complexity of obtaining these structures. Their performance is
sensitive to proper choice of the added parameters, e.g. the cutoff threshold for
saliency in OBD, or the value of regularization factor A used. Heuristics also
creep into the choice of lengths for sub-procedures, e.g. the number of epochs
needed to train the input layers versus the number of epochs needed to train
the output layer in the cascade-correlation algorithm. Indeed, without specific
guidelines, the additional time spent in fine-tuning the extra parameters may
outweigh the advantages gained by a dynamic algorithm.

Several experimental results indicate that dynamic networks provide only an
incremental improvement of the solutions [43] over a static approach. In such
cases, further improvement may be obtainable by encoding a priori information
into the network: either as a set of initial weights, or as the architecture of
the network. For example, Kolen and Goel [47] show that the success of the
tic-tac-toe player designed by the PDP group [6] is based on the internal rep-
resentation reflecting a priori knowledge provided to the network. Experiments
using a single hidden layer with various number of hidden units, showed that
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Table 4: Comparative Results for Oceanic Data Classification.

Training Algorithm | Training Set Correct | Test Set Correct
Classification Rate Classification Rate

Back-Propagation

10 Hidden Units 93.48 83.98

20 Hidden Units 98.55 89.15

40 Hidden Units 98.11 90.54

80 Hidden Units 99.27 90.95

Sparse Connectivity

10 Hidden Units 90.87 85.17

20 Hidden Units 96.52 89.35

40 Hidden Units 98.84 89.95

80 Hidden Units 98.70 89.75

OBD

10 Hidden Units 90.14 86.16

20 Hidden Units 92.31 89.26

40 Hidden Units 96.23 90.14

80 Hidden Units 90.43 89.65

the network with random initial weights performed considerably worse than the
original experiment where hidden units were designed to reflect certain “bits”
of knowledge [47].

When a priori knowledge is not available or easily encodable, the sparsely
connected network introduced in this paper can be considered as its gener-
alization ability is better than that of fully connected networks for problems
with multi-dimensional output spaces and/or noisy input data. Moreover, these
modest improvements are obtained without a sacrifice in either architectural
complexity or training time.

This paper concentrated on MLP-type feed-forward networks. While such
models are remarkably resilient and applicable over a wide range of approxima-
tion problems, it is often worthwhile to investigate whether a specific problem
is more amenable to other methods such as spline approximation, projection
pursuit, or local potential functions [33, 35], since, as Jerome Friedman reminds
us, “there is no method that works best for all problems” [48]. Finding powerful
ways to use a priori information in the selection of the model/network as well
as the training data continues to be an active area of research.
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