
Graphical Models in Continuous Domains for Multiagent
Reinforcement Learning

Scott Proper
Oregon State University

Corvallis, OR 97331, USA
proper@eecs.oregonstate.edu

Kagan Tumer
Oregon State University

Corvallis, OR 97331, USA
kagan.tumer@oregonstate.edu

ABSTRACT
In this paper we test two coordination methods – difference rewards
and coordination graphs – in a continuous, multiagent rover domain
using reinforcement learning, and discuss the situations in which
each of these methods perform better alone or together, and why.
We also contribute a novel method of applying coordination graphs
in a continuous domain by taking advantage of the wire-fitting ap-
proach used to handle continuous state and action spaces.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Multiagent Coordination, Reinforcement Learning

1. INTRODUCTION
The problem of scaling reinforcement learning to large multia-

gent domains is very challenging because the agents in the system
provide a constantly changing environment in which each agent
needs to learn its task. Agents must somehow learn to coordinate
among themselves and develop a joint set of policies to solve the
problem.

In this paper, we examine two popular forms of coordination:
coordination graphs, which allow small groups of agents to coordi-
nate actions based domain-specific dependencies, represented by a
graph of edges between agents [4]; and difference rewards, which
are a specific type of shaped reward that encourages good agent
behavior by rewarding actions that are closely aligned with the de-
sired overall system behavior, while still allowing agents to learn
from the reinforcement signal [1]. We compare these techniques in
a simulated domain of continuous rover navigation and observation
with multiple agents. Our conclusions should be helpful for future
researchers who wish to understand the differences between these
methods for their own applications. The results illustrate some of
the possible differences between domains that can cause one or an-
other coordination method to be an appropriate choice.

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2. BACKGROUND
We combined several methods for coordination and learning in

this paper: Q-learning, wire-fitting, advantage learning, coordina-
tion graphs, and difference rewards. We discuss these briefly below.

Q-learning: Q-learning is a well-known reinforcement learning
algorithm for solving Markov Decision Processes (MDP). We adapt
a heavily-modified version of this algorithm in this paper.

Wire-fitting: To deal with the problem of acting in a space in
which states and actions may be continuous, Baird and Klopf pro-
pose the wire fitting algorithm, which efficiently stores an approxi-
mation of a continuous Q-function [2]. They propose using a func-
tion approximator (in this paper, a neural network) to concurrently
output a fixed number of actions and corresponding values (“wires”),
given a certain state. We use this wire-fitting approach in this paper
to deal with the continuous nature of the rover domain.

Difference rewards: When providing the reward signal to an
agent, one option is to provide each agent with the global reward
G(z) for each step. However, this reward signal is insensitive to
an agent’s actions and for large systems, leads to particularly slow
learning. Instead, we can apply a reward shaping method known as
difference rewards, which are given byDi(z) = G(z)−G(z−zi),
where z − zi specifies the state of the system without agent i [1].
The difference reward has two key advantages: first, it provides an
agent with a “cleaner” signal than G. Second, because the second
term does not depend on the actions of agent i, any action by agent
i that improves D, also improves G.

3. COORDINATION GRAPHS
A coordination graph (CG) can be described over a system of

agents to represent the coordination requirements of that system. A
CG contains a node for each agent and an edge between pairs of
agents if they must directly coordinate their actions to optimize the
global policy. Typically, the assumption made for CGs is that the
global reward may be decomposed as a sum R =

P
i ri of local

agent rewards. In this paper, we allow a variety of possible ways in
which the reward may be decomposed. As in Kok and Vlassis [4]
our implementation is context-specific, thus we use an edge-based
decomposition with an agent-based update. We combine this with
the Max-plus algorithm [4] for action selection.

Several issues arise when adapting CGs for use in continuous
domains. One issue is the use of advantage learning [3]. We de-
rive the agent-based update equation using the advantage learning
update as:

Qij(sij , ai, aj)
α←−X

b∈{i,j}

1
k

[rb(s,a) + γQb(s
′
b, a
∗
b)] + (1− 1

k
)Qb(sb, a

∗
b)

|Γ(b)|
(1)

This update propagates the temporal-difference error from all edges
including agents i and j to the Q-function of each edge (i, j).

A second issue is that it is not always clear from the dynamics of
the domain which agents should coordinate with each other. Ideally,
all agents should coordinate, but this is impractical. We choose to
limit coordination based on two factors: distance, and an additional
upper limit on the number of neighbors for each agent. If there are
too many potential neighbors within the distance limit, the closest
neighbors are chosen. This forces the CG into a limited coverage
allowing practical application of Max-Plus algorithm to compute a
good joint action in reasonable time.

A further problem is that the Max-Plus algorithm requires a finite
number of actions that each agent may select from. Unfortunately, a
continuous action space has an infinite number of possible actions.
Thus, we select a set of “candidate” actions for each agent from the
output of the wire-fitter storing the value function for each agent.
Only the top three candidates are selected.

4. CONTINUOUS ROVER PROBLEM
We implement a variation of the continuous rover problem, as

described in [1]. In this problem, there is a set of rovers on a two
dimensional plane which are trying to observe points of interests
(POIs). A POI has a fixed position on the plane and has a value
associated with it. At every time step, the rovers sense the world
through eight continuous sensors. From a rover’s point of view, the
world is divided up into four quadrants, with two sensors per quad-
rant. For each quadrant, the two corresponding sensors each return
a function of the POIs or rovers in that quadrant at that moment [1].
These eight sensor inputs provide the inputs to a neural network
which stores the policy for each rover.

We requireN rovers to observe a POI simultaneously in order to
receive a reward. We do this by defining a maximum observation
distance δ0. The global, local, and difference rewards G, L, and D
for the rover problem are as follows:

G(z) =
X
i

Vi ·N · I(|ci| ≥ N)PN
k=1 δi,ci(k)

Lj(z) =
X
i

Vi · I(δi,j ≤ δ0) · I(|ci| ≥ N)

δi,j

Dj(z) =
X
i

8>>>><>>>>:

ViNPN
k=1 δi,ci(k)

− ViNPN+1
k=1,k 6=j

δi,ci(k)

if |ci| > N ∧ j ∈ {ci(1)...ci(N)}
ViNPN

k=1 δi,ci(k)
if |ci| = N ∧ j ∈ ci

0 otherwise

where Vi is the value of the ith POI, ci is the set of the agents
within viewing range δ0 of POI i and ci(k) is the kth closest agent,
N is the minimum number of agents required to make a successful
observation, and I(|ci| ≥ N) and I(δi,j ≤ δ0) are indicator func-
tions. The observation information δx,y = max{‖x − y‖2, d2}
results from observing a POI and is bounded by a minimum obser-
vation distance d [1].

5. EXPERIMENTAL RESULTS
We conducted experiments with a 10-agent, 30-POI version of

the Rover domain with a dynamic, randomly generated distribu-
tion of agents and POIs, averaged over 30 runs. All results were
measured against the global reward G(z). Error bars are calculated
using the sample standard error of the mean σ/

√
30.

We compared experiments with four variations on the rover do-
main: two experiments with agents starting in very congested con-
ditions, uniformly distributed in 5x5 area at the center position, and

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

P
e
rf

o
rm

a
n
c
e
 (

G
(z

))

Episodes

Global reward, no coordination graphs
Local reward, no coordination graphs

Difference reward, no coordination graphs
Global reward with coordination graphs
Local reward with coordination graphs

Difference reward with coordination graphs

Figure 1: Results with agents starting scattered, with N = 3.
two experiments with the agents uniformly scattered in the same
70x70 area the POIs are scattered. These experiments were further
varied based on the minimum number of agents required to per-
form an observation: N = 1 or N = 3. The result of only one of
these experiments is shown in Figure 1. Here, the learning problem
is for agents to join up across their scattered positions to observe a
POI together. This is an uncongested domain, so difference rewards
do not contribute to the solution. However, CGs are necessary for
agents to find each other and navigate to a POI together; without
them, agents do not learn to converge and observe POIs.

In our experiments with agents all starting near the center, we ob-
served that difference rewards were very useful in relieving the con-
gested conditions. However, if we require only one agent to make
an observation (i.e. N = 1) the addition of CGs adds unnecessary
complexity to the learner: CGs are not needed to solve a coordina-
tion problem in this domain and thus the extra parameters of the
neural network required to store the CG only slow convergence.

From our results, we conclude that while CGs and D solve re-
lated problems, the particular issues each method is suited to differ.
Difference rewards are most useful in highly congested domains,
where agents might compete for resources if they behave selfishly.
CGs are well-suited to cases in which pairs or groups of agents
must take specific coordinated actions together to succeed. Differ-
ence rewards may not provide enough information to the agent in
such cases. Including either form of coordination when it is not
needed may be harmful, but rarely prevents learning from taking
place and may only slow convergence slightly. Cases exist when
using both coordination techniques together is helpful, i.e. when a
problem requires more than one form of coordination. These con-
clusions are supported by past work involving these methods: co-
ordination graphs have primarily been used for domains in which
tight coordination between agents is needed [4], while difference
rewards have primarily been applied to domains in which conges-
tion is an important factor [1].

6. REFERENCES
[1] A. K. Agogino and K. Tumer. Analyzing and visualizing

multiagent rewards in dynamic and stochastic environments.
Journal of Autonomous Agents and Multi Agent Systems,
17(2):320–338, 2008.

[2] L. Baird and H. Klopf. Reinforcement learning with
high-dimensional continuous actions. Technical Report
WL-TR-93-1147, Wright Laboratory, Wright-Patterson Air
Force Base, 1993.

[3] M. E. Harmon and L. C. Baird. Residual advantage learning
applied to a differential game. In In Proc. of the International
Conference on Neural Networks, Washington D.C, 1995.

[4] J. R. Kok and N. A. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. J. Mach. Learn.
Res., 7:1789–1828, 2006.

