
Learning to Trick Cost-Based Planners into Cooperative Behavior

Carrie Rebhuhn, Ryan Skeele, Jen Jen Chung, Geoffrey A. Hollinger and Kagan Tumer

Abstract— In this paper we consider the problem of routing
autonomously guided robots by manipulating the cost space to
induce safe trajectories in the work space. Specifically, we exam-
ine the domain of UAV traffic management in urban airspaces.
Each robot does not explicitly coordinate with other vehicles in
the airspace. Instead, the robots execute their own individual
internal cost-based planner to travel between locations. Given
this structure, our goal is to develop a high-level UAV traffic
management (UTM) system that can dynamically adapt the
cost space to reduce the number of conflict incidents in the
airspace without knowing the internal planners of each robot.
We propose a decentralized and distributed system of high-level
traffic controllers that each learn appropriate costing strategies
via a neuro-evolutionary algorithm. The policies learned by
our algorithm demonstrated a 16.4% reduction in the total
number of conflict incidents experienced in the airspace while
maintaining throughput performance.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) in com-
mercial applications seems inevitable, and recent proposals
to update legislation regarding UAV operation in the US
airspace [1] have accelerated this discussion. Many operators
seem poised to take advantage of any relaxation in the current
legislation to introduce UAVs to the urban airspace, with the
goal of having these aerial robots fulfill emergency aid and
package delivery roles among other tasks.

Allowing commercial use of UAVs up to 500ft may lead
to dense UAV traffic in the urban airspace, which will need
to be managed to reduce conflict incidents arising from
traffic congestion. A UAV traffic management (UTM) system
will need to adapt to changing demands on the airspace
and dynamically apply travel costs to influence traffic flow.
Furthermore, with any number of UAV operators designing
custom hardware and software, it is desirable to design a
system that is capable of managing traffic density without
needing to know or regulate the onboard planning algorithms
of each UAV in the airspace.

Existing work in air traffic control has focused on the
flow of airplanes through fixed geographical points and
have typically used multiagent system methods to model
the distributed system of traffic controllers [2]. A multia-
gent reinforcement learning framework was used in [3] to

This work was supported by NASA grant NNX14AI10G.
Carrie Rebhuhn, Jen Jen Chung and Kagan Tumer are with the Au-

tonomous Agents and Distributed Intelligence Lab, School of Mechan-
ical, Industrial and Manufacturing Engineering, Oregon State Univer-
sity, OR, 97330, USA rebhuhnc@onid.oregonstate.edu,
{jenjen.chung, kagan.tumer}@oregonstate.edu

Ryan Skeele and Geoffrey A. Hollinger are with the Robotic
Decision Making Lab, School of Mechanical, Industrial and
Manufacturing Engineering, Oregon State University, OR,
97330, USA skeeler@onid.oregonstate.edu,
geoff.hollinger@oregonstate.edu

Fig. 1: The UAV traffic management problem. The airspace is divided into
discrete sectors with a single UTM agent controlling the cost of travel
through each sector. UAVs traveling from start (triangle) to goal (circle)
locations plan and execute paths to reduce their individual travel cost without
explicitly coordinating with other UAVs in the airspace. This can lead to
potentially dangerous conflict incidents with significant knock-on effects.
The goal of the sector agents is to learn appropriate costing strategies to
alleviate bottlenecks in the traffic and minimize congestion in the airspace.

reduce congestion by setting the required separation between
aircraft, ordering ground delays or ordering reroutes. A
hierarchical system of management was considered in [4],
with airlines negotiating for airspace to minimize chances
of congestion at the higher strategic level, and at the lower
tactical level, air traffic controllers could reroute aircraft by
introducing no-go zones called “shocks”.

While some aspects of these approaches can be applied
to the UTM problem, many new issues arise in this new
domain that are not addressed by existing traffic management
strategies. Most notably, the national airspace is a large
and relatively obstacle-free environment, whereas this is not
always the case in an urban setting with UAVs operating
in close proximity to one another. If the flow of UAVs
is not well-managed, congestion in cluttered environments
may exceed a UAV’s ability to plan around other UAVs’
trajectories, potentially escalating to larger knock-on effects
throughout the system. However, it is impractical to model
the behaviors of all the actors in the system. This is further
complicated by the diverse range of planning software that
may be used across the platforms present in the airspace,
especially if they are competing for throughput and do not
explicitly coordinate with foreign platforms to avoid conflict



situations.
This motivates the use of a high-level UTM learning

framework that can map the salient features of the UAV
airspace to control actions that can mitigate congestion, such
as increasing the cost of flying through particular areas.
In this paper, we propose a UTM strategy employing a
decentralized system of neuro-evolutionary learning agents
that manage the flow of UAV traffic through their designated
sectors of the airspace. Each sector agent learns a policy that
assigns the cost of travel through the sector according to the
current number of UAVs in the airspace. Policy evaluation
is performed by assessing the total number of UAV conflicts
in the airspace during a single learning epoch.

Results from testing on a simulated urban environment
show that given only local information regarding the number
of UAVs in their sector and the intended heading of each
UAV, and training on the total conflict count, the team of
sector agents was able to learn appropriate costing strategies
to reduce the number of conflicts experienced in the entire
airspace. Comparison to a uniform costing strategy showed
on average a 16.4% reduction of conflicts in the airspace
after 100 learning epochs.

II. RELATED WORK

The UTM problem draws from two areas of research. The
first is multiagent learning for air traffic routing. In this
area there has been successful research demonstrating the
improved performance of machine learning techniques for
complex system management over traditional air traffic man-
agement methods [3]. The second research area is in robotic
routing and scheduling where both global and distributed
approaches have been applied to routing robot teams.

A. Multiagent Learning for Air Traffic Routing

Recent work in multiagent systems has focused on de-
veloping effective routing for commercial air traffic across
the national airspace. In air traffic, delays and congestion
can cascade throughout the system, and are difficult to
mitigate and control. Using reinforcement learning agents
to manage air traffic through geographical fixes, Agogino
and Tumer [3] were able to reduce airspace congestion by
over 90% when compared to current traffic control methods.
Similar demonstrations were performed using evolutionary
algorithms to train the learning agents [5], [6].

In this work, we apply a similar network of routing agents
to control the flow of UAV traffic. However, we consider the
UAV domain where platforms are not restricted to fly through
particular fixes in the environment. Furthermore, our routing
algorithm is based on the assumption that we have no direct
control over the path planning aspect of the UAVs.

B. Robotic Routing and Scheduling

Previous research has explored congestion as a centralized
controller scheduling and routing problem. A comprehensive
survey of centralized scheduling methods for automated
vehicles is given in [7]. Using centralized methods, every
robot in the system is told when it can travel, and where it can

travel. In order to compute a solution, these methods require
full state information and are often slow and computationally
complex. Dynamic routing methods [8], [9] manage the time-
window of each robot through time expanded graphs without
needing full state information [10]. However these methods
become computationally expensive when applied to a fast-
changing system.

Other methods for traffic routing have focused on vehicle
negotiation to resolve conflicts in congested areas. Large
numbers of aircraft can use these schemes to resolve local
conflicts resulting in improved system performance [11].
Some research has developed peer to peer collision avoidance
protocols. More specifically, a software called AgentFly uses
an agent-based distributed negotiation approach to the air
traffic routing problem [12]. This technique works well in
domains with standardized communication and vehicle abil-
ities. However, UAVs are very diverse in both hardware and
software. The method that we propose in this paper allows
for these characteristics of the domain and still leaves open
the possibility of future progression towards standardization.

Unlike previous research we use an incentivized routing
technique instead of a central controller or vehicle negoti-
ation scheme. Our proposed UTM system does not assign
paths to each robot nor does it require the robots to act in
a cooperative manner. Our algorithm assumes each UAV is
using a cost-based planner and so manipulates the cost of
travel through the airspace to incentivize the robots to avoid
congested areas.

III. PROBLEM FORMULATION

Consider an airspace containing multiple UAVs traveling
between various start and goal locations. Each UAV plans
its trajectory through the airspace according to a cost-based
path planner aimed at minimizing travel cost. Furthermore,
it is assumed that apart from low-level collision avoidance
procedures, each UAV acts independently and does not
coordinate with any other UAV in the airspace. Our goal in
this work is to monitor and reduce congestion in the airspace
by employing high-level UTM agents that manage the cost
of traveling through sectors of the airspace.

A schematic of the problem setup is shown in Fig. 1. The
airspace is divided into sectors that are each controlled by a
single UTM agent. UAVs flying from start to goal locations
in the world must travel through a series of sectors and
are subject to the cost of travel in each sector. The sector
agents act as a decentralized system of traffic controllers
that each individually learn to apply the appropriate costs
in their respective sectors to minimize overall congestion in
the entire airspace. The obstacle map shown in Fig. 1 is a
section of San Francisco’s South of Market area, with data
gathered from a building height map [13].

Given the potentially large number of UAVs in each sector,
it is impractical to specifically account for the individual
states and policies of all UAVs. This motivates the use
of a learning algorithm for developing costing strategies
that map a reduced sector state space to the travel costs
applied in the sector. In this work, we formulate the control



Fig. 2: Graph Gh of sector agent connections used in the experiments.
Agent policies assign edge costs based on the current sector state s, and the
discretized cardinal direction followed on the edge.

policy of each sector agent as a single-layer neural network
(NN) where the weights of the NNs are learned using an
evolutionary algorithm. The following section describes the
neuro-evolutionary algorithm used to develop the control
policies for each sector agent.

A trivial solution to this problem would seem to be to
move to different altitudes in order to avoid congested areas.
However if this space is sufficiently congested, a UAV could
encounter areas of congestion above or below it as well,
particularly if other UAVs are taking the same congestion-
avoidance maneuvers. Our approach to incentivizing travel
through an airspace could be extended for use with 3-
dimensional path-planners and multiple layers of sector
agents, but for now we restrict the UAV planner actions and
essentially look only at one altitude cross-section of UAV
traffic.

Our approach presents a reasonable formulation of the
UAV traffic management problem because it decouples the
traffic management approach from the technology on the
UAV. Competing commercial entities may not use the same
planners or UAVs, but cost-based planners are commonplace
in robotics. Furthermore, because airspace safety is essential
to the operation of aerial vehicles, it is reasonable to assume
that an airspace authority (for our work, sector agents) will
have control over the movement of traffic. We present this
control in an incentive structure, similar to imposing tolls.

IV. NEURO-EVOLUTIONARY LEARNING

Neural networks are function approximators that can be
used to model continuous state-action control policies to
arbitrary accuracy while only requiring a coarse approxi-
mation of the system state [14]. This is suitable for the
UTM problem considered in this paper since it allows a
simplification of the system state to the discretized UAV
headings while requiring the sector agents to output actions
drawn from the space of continuous travel costs. For each
NN controller, the four-dimensional input state is defined as
the number of UAVs in the sector discretized into the four

N UAVs 

M sector agents 

xn 

sm 

am 

vl 

L NN 
nodes 

F 

wml 

Fig. 3: Interaction between sector agents and UAVs in the airspace. The
state, s, of each sector agent includes the number of UAVs in its sector
discretized into four cardinal travel directions. The actions, a, output by
each agent are the cost to travel in each direction in the sector. The total
number of conflicts, F , in the airspace is tracked for each training epoch
and represents the fitness of the NN controllers, which each have L nodes
in their hidden layer. The evolutionary algorithm selects the NNs with the
fittest set of weights, w, at the end of each epoch.

cardinal heading directions, that is,

s = [nN , nE , nS , nW ] . (1)

The output action is also a four-dimensional vector specify-
ing the cost of travel in each of the cardinal directions,

a = [cN , cE , cS , cW ] . (2)

These costs are applied to each of the directed edges
connecting the sector agent graph (shown in Fig. 2) by
again discretizing the bearing of each edge to the nearest
cardinal direction. The edge costs are broadcast to UAVs in
the airspace that then recompute their flight trajectories to
reduce their individual cost of travel. This abstraction into
four cardinal directions allows greater generality, and does
not impose the graph structure on the learning process.

As the UAVs execute their planned trajectories, conflicts
occur when two or more UAVs pass within some distance,
dconflict, of one another. The number of conflicts detected in
the entire airspace over a single learning epoch is then used
to calculate the team fitness evaluation. A graphical model
of the system is shown in Fig. 3.

The weights of the NN controllers of each sector agent
are trained using a cooperative coevolutionary algorithm
(CCEA), as given in Algorithm 1. As an extension of
standard evolutionary algorithms, CCEAs have been shown
to perform well in cooperative multiagent domains [15]. This
allows multiple populations to evolve in parallel such that
each population develops a policy for a single sector agent in
the UTM system. In the following experiments, there are M
coevolving populations of NN controllers, one for each sector
agent and each with a population size of k. For mutation of
the NNs, 50% of the network weights are chosen at random
and values drawn from a normal distribution (zero mean and
unit variance) are added to the weights.

The neuro-evolutionary algorithm used in the fol-
lowing experiments is given in Algorithm 1. The



Algorithm 1 Neuro-Evolution for Sector Agents

1: Initialize population of k neural networks for each agent
2: while epoch < total epochs do
3: Mutate populations to produce k more children
4: for i = 1→ 2k do
5: Select the ith NN from each population
6: Assign NNs to sector agents
7: team fitness = SIMULATE(agents)
8: ASSIGNFITNESS(team fitness)
9: Select fittest k policies and repeat from line 2

SIMULATE(agents) function on line 7 represents the ex-
ecution of the policies of the current set of sector agents
in the UTM domain and is described in further detail in
Algorithm 2. ASSIGNFITNESS(agents) allocates the fitness
calculated from the detected conflicts to each of the agents
that participated in the learning epoch.

V. SIMULATION SETUP

We tested our UTM learning algorithm on a simulated
urban airspace derived from a 256×256 unit cell map of San
Francisco, which is shown in Fig. 1. Simulation timesteps
were discretized into 1s time intervals with each learning
epoch defined as an evaluation of each random team in the
population over 100 simulated timesteps.

A. Sector Agent Parameters

The tested airspace was divided into 15 Voronoi partitions
with each sector controlled by a single agent in the UTM
system. Voronoi partitioning was hand-selected to place
sector agents in locations where congestion was expected
due to the obstacle layout of the region. The airspace sectors
are shown in Fig. 1 by the dashed lines.

At the start of learning, each sector agent is initialized
with a population of k = 10 random NN control policies.
As described in (1), UAV headings are discretized to the
nearest cardinal direction such that at each timestep and in
each sector, the total north-, south-, east- and west-bound
UAV traffic is tallied to form the input state vector of the
NN policy. The output action of each agent, that is, the costs
to travel in each direction as shown in (2), were restricted to
lie within c = [0, 1].

B. UAV Parameters

Each UAV generates an initial path to the goal by querying
the initial cost to travel along all edges of the sector agent
graph and performing a high-level A* search to determine
the lowest-cost sequence of sectors to travel through to reach
their goal location. Given the sector sequence, each UAV then
performs a low-level A* search across a discretized unit cell
representation of the free space to plan a trajectory from
start to goal. The set of initial paths planned by 27 UAVs
are shown in Fig. 4.

At each timestep during a learning epoch, sector agents
update sector traversal costs based on the current sector
state causing each UAV to update its path according to the

Algorithm 2 SIMULATE(agents)

1: while t < T do
2: for each f ∈ fix do
3: if pgen then
4: generate a UAV

5: for each m ∈ agents do
6: m.s← [nN , nE , nS , nW ]
7: m.a← GETEDGECOSTS(m.s)

8: for each n ∈ UAV do
9: n.pathhigh = SECTORPATH(Gh,m.a)

10: n.pathlow = TRAVERSALPATH(n.pathhigh, Gobs)
11: n.x = EXECUTEPATH(n.pathlow)

12: conflicts += UAVs within a distance dconflict of
others

13: if any UAVs have reached goal then
14: Remove respective UAVs from airspace
15: F = f(conflicts)
16: return F

Fig. 4: Initial planned paths for 27 UAVs in the airspace travelling from
start (solid green triangle) to goal (solid green circle) locations. It can be
seen that high levels of congestion may be expected in some thoroughfare
regions of the airspace, such as the bottom right area where there are a
group of close fixes.

new cost information. Furthermore, at each timestep and at
each start location, or fix , a new UAV is generated with
probability pgen = 5% with a randomly-selected goal fix and
executes the planning procedure outlined above. This value
was selected to produce about 100 UAVs in the airspace in a
single run, demonstrating the effectiveness of the algorithm
in a high-traffic situation. Once a UAV reaches its goal
location, it is removed from the airspace.

In the following experiments, each UAV traveled at a
constant speed of 1 cell per timestep and had a conflict radius
dconflict = 2 unit cells. The complete simulation algorithm
is provided in Algorithm 2.

C. Hierarchical Path Planner

We used two levels of path planners for the simulation, a
high-level sector planner and a low-level traversal planner.



(a) (b)

Fig. 5: Change in congestion observed over one run of the linear conflict evaluation trials. The overlaid heat map shows the number of conflicts experienced
in an area for (a) the best evaluation trial for agents with random initialized sector travel costs and (b) the best evaluation trial for agents with evolved
sector travel costs after 100 epochs. The overall number of conflict instances has reduced with some high congestion regions removed completely.

(a) (b)

Fig. 6: Change in congestion observed over one run of the quadratic conflict evaluation trials. The overlaid heat map shows the number of conflicts
experienced in an area for (a) the best evaluation trial for agents with random initialized sector travel costs and (b) the best evaluation trial for agents with
evolved sector travel costs after 100 epochs. As with the linear trials, the overall number of conflict instances has been reduced.

Each of these took in a graph of costs and performed an
A* search to find the minimum-cost path across the graph
from a given start point to a given goal point. Though both
planners used A* to traverse a graph, the graph construction
was different for each of the planners.

The role of the high-level planner was to find the lowest-
cost sequence of sectors to visit according to the costs
assigned by the sector agents. The A* search was performed
over the spatial connection graph, Gh, generated by identi-
fying the neighboring Voronoi sectors shown in Fig. 2. This
graph did not consider obstacles across the map, and it was
assumed that a clear path existed from points in one sector
to the edge of another.

The low-level planner represented the connectivity of
the unit cell graph with the obstacle map, Gobs. An 8-
connected graph was constructed with unit traversal costs
in any direction. The connectivity of the graph was further
restricted by the high-level path. The low-level path was
restricted to only those sectors present in the high-level plan.

Furthermore, sectors could only be traversed in a particular
order and the connectivity of the graph reflected this fact.
For example, if a high-level plan specified a path visiting
the sequence of sectors {1, 5}, there would be connections
between cells along the border of sector 1 and 5, but only
in the direction of 5. Backward traversal into sectors in the
high-level map was not permitted.

Path failure occurred when it was impossible to satisfy
the high-level plan using a low-level path. This could occur
when the path to the specified sector was blocked by an
object. In the case that no path was available that satisfied
the high-level planner, the UAV did not move in the airspace.
Multiple occasions for replanning were available, due to the
fact that high-level edge costs changed each time a UAV
changed sector membership, so the UAV may have a chance
to generate a different high-level plan if a particular one was
infeasible.



Fig. 7: Comparison of conflict occurrence over epochs using fixed costs
versus evolved costs with two different fitness functions.

VI. RESULTS

We performed three sets of simulation experiments, the
first tested the proposed UTM learning algorithm trained
using the total number of conflicts in the airspace (linear
conflict evaluation). The second set of trials tested the same
algorithm, however in this instance, policies were evaluated
according to the sum of squared collocated conflicts in the
airspace (quadratic conflict evaluation). As a baseline, we
performed a set of simulations using uniform costs for travel
between the sectors. This meant that the UAVs took the path
that traveled through the smallest number of sectors. Each
set of experiments contained 20 runs of 100 learning epochs.
The algorithm was implemented in C++ with the high-
level and low-level planners using the A* search algorithm
provided by the Boost Graph Library. Planners re-planned
whenever the cost map generated by the agents changed.

Figure 5a shows the congestion observed in the first
learning epoch of one linear trial. Sector agents initially
assign travel costs randomly, so there are areas of high
congestion that occur. Figure 5b shows the performance at
the end of evolution. Comparing Fig. 5a and Fig. 5b we can
see a reduction in the number of conflict instances.

In a realistic UAV routing scenario, the number of close
calls doesn’t necessarily matter as much as the severity of
the congestion in the system. For example, if two UAVs get
within a dangerous distance of one another, a backup safety
mechanism may be able to divert one and avoid a collision.
However, if more UAVs get within dangerous distance of
one another, the backup safeties must then deal with the
cascading effects of the collision-avoidance maneuver. This
could lead to a failure of the lower-level collision-avoidance
systems if the conflict density is too high. To address this
fact, we also tested a quadratic fitness evaluation function
that summed the squared number of conflicts for each cell.
This attempts to decrease the likelihood that there will be
large numbers of conflicts that the UAV’s low-level planner
cannot handle. By comparing Fig. 6a and Fig. 6b we see a
larger reduction in the severity of congestion across the map,

that is, there are fewer conflicts in each hotspot.
We also quantitatively compare the reduction of conflicts

using evolution with the linear and quadratic fitness evalu-
ations to the conflicts arising in the fixed-cost map. We see
in Fig. 7 that the number of conflicts using the fixed-cost
map is higher than the conflicts using the learned costs after
evolution has been performed for 100 epochs. The number of
conflicts in the baseline comparison algorithm remains high,
with an overall average of 1023 conflicts, while the neuro-
evolutionary system is able to reduce the number of conflicts
seen in the system. Note that the evolution process does not
monotonically decrease the occurrence of conflicts due to the
fact that there is randomness in the population generation as
well as in the goal selection of the UAVs. However evolution
still significantly decreases the occurrence of conflicts in the
system, particularly compared with the fixed-cost method.
Comparing to the fixed-cost method, we see an average of
856 conflicts at the end of learning with the linear fitness
evaluation, which represents a 16.4% reduction in total
conflicts after 100 epochs using the linear fitness evaluation
with evolution. Learning with the quadratic fitness evaluation
does not outperform the linear fitness evaluation in terms of
total number of conflicts, however this is to be expected since
it is not what the fitness function uses to determine survival.
Nonetheless we see an average performance of 950 conflicts
after 100 epochs, giving us a 7.1% improvement over the
fixed-cost method.

The number of UAVs in the system was not held constant
during the simulation. Because of the probabilistic generation
process, there could be a variable number of UAVs present
in the system, but generally this number was close to 100. If
the generation rate is lowered, it is possible to achieve zero
conflicts in the system without learning intervention, with the
tradeoff of severely reduced throughput. If the generation
rate is increased, it is also possible to saturate the system
with UAVs such that a learning policy cannot effectively
reduce the number of conflicts. However, these extremes
would not demonstrate realistic scenarios, and would not
show the improvements that the algorithm offers. We leave
further exploration of the scalability of this policy to future
work.

VII. CONCLUSION

The results presented in this paper show that a distributed
UTM system can learn appropriate costs to apply to UAVs
traveling in the airspace to incentivize implicit cooperation
between the UAV planners. Using our method, we achieved
an 16.4% reduction in conflicts compared to the baseline
method with uniform sector costs. In terms of the simulated
values, this represents a reduction from about 10.2 conflicts
to about 8.6 conflicts per timestep over the entire simulation.
We also showed a reduction in severity of conflict occur-
rences using a quadratic fitness function The agents were
able to take in directional sector congestion information and
appropriately weight the cost of travel to promote safety in
the system. It is also worth noting here that agents do not
require a model of the available airspace or knowledge of the



obstacles in the sector, the number of conflicts experienced
in the sector was sufficient information by which to evaluate
the performance of the current policy.

This structure gives a method by which neural networks
may be trained for managing conflict occurrences through an
obstacle-filled area. Because we introduced random traffic
throughout the run, the policies generalize to a variety
of different traffic scenarios. The computation time in the
evolved policy is therefore a combination of the time to
calculate the output of a neural network. The UAVs then
independently calculate their trajectories through the space
with this information.

The ability to manipulate high-level planners allows us to
reduce occurrences of potentially dangerous congestion in
the system. UAVs in the real world can handle encounters
with other UAVs using low-level collision avoidance proce-
dures, but by reducing the congestion in the airspace at a
high level we can permit safer travel by avoiding many of
these conflicts before they occur.

This work forms an important step toward the formula-
tion and exploration of the UTM problem. Handling the
challenges associated with free flight in an obstacle-filled
environment will become critical as UAVs become more
prolific in the airspace. Shortest-path algorithms for UAV
routing may lead to unsafe UAV density. Intelligent high-
level coordination must occur in conjunction with low-level
collision-avoidance in order to ensure safety in the airspace.

There are many possible avenues for future work. The
first involves research into the optimal placement of sectors
in the space. In this work the placement was performed
manually, placing sector centers in places that were likely to
be intersections, similar to traffic lights. Further optimization
could be explored in order to better shape the topology of
the desired control points to accommodate the presence of
obstacles in the map. The bounds of the usefulness of this
neural network approach to routing must be explored as well.
We used a probabilistic generation of UAVs, but we did
not explore a variety of traffic conditions. Experiments with
varying this parameter could lead to insight into the system
requirements when using this traffic routing approach.

A* is also not the only or necessarily the most common
solution to path planning in an obstacle-filled environment.
Different graph-based planning algorithms may be explored
at the high and lower levels, using the same evolutionary
infrastructure for setting the graph weights. Additionally, the

routing algorithm currently does not account for possible
heterogeneity in the system. Further improvements could
be made to this algorithm if heterogeneity in UAV type or
priority could be accommodated.

REFERENCES

[1] FAA, “Operation and certification of small unmanned aircraft sys-
tems,” February 2014, FAA-2015-0150.

[2] H. Emami and F. Derakhshan, “An overview on conflict detection and
resolution methods in air traffic management using multi agent sys-
tems,” in 16th CSI International Symposium on Artificial Intelligence
and Signal Processing (AISP). IEEE, 2012, pp. 293–298.

[3] A. K. Agogino and K. Tumer, “A multiagent approach to managing
air traffic flow,” Autonomous Agents and Multi-Agent Systems, vol. 24,
no. 1, pp. 1–25, 2012.

[4] C. Bongiorno, G. Gurtner, F. Lillo, L. VAlori, M. Ducci, B. Monechi,
and S. Pozzi, “An agent based model of air traffic management,” in
Proceedings of the Third SESAR Innovation days. Stockholm (Sweden),
Novermber, 2013.

[5] L. Yliniemi, A. K. Agogino, and K. Tumer, “Evolutionary agent-
based simulation of the introduction of new technologies in air traffic
management,” in Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation. ACM, 2014, pp. 1215–1222.

[6] W. J. Curran, A. Agogino, and K. Tumer, “Addressing hard constraints
in the air traffic problem through partitioning and difference rewards,”
in Proceedings of the 2013 International Conference on Autonomous
Agents and Multi-Agent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2013, pp. 1281–1282.

[7] L. Qiu, W.-J. Hsu, S.-Y. Huang, and H. Wang, “Scheduling and routing
algorithms for AGVs: a survey,” International Journal of Production
Research, vol. 40, no. 3, pp. 745–760, 2002.

[8] F. Taghaboni-Dutta and J. M. A. Tanchoco, “Comparison of dynamic
routeing techniques for automated guided vehicle system,” Interna-
tional Journal of Production Research, vol. 33, no. 10, pp. 2653–2669,
1995.

[9] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1482–1504, 2011.

[10] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel, “Dynamic
routing of automated guided vehicles in real-time,” in Mathematics
- Key Technology for the Future, H.-J. Krebs and W. Jäger, Eds.
Springer, 2008, ch. 5, pp. 165–177.

[11] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air
traffic management: A study in multiagent hybrid systems,” Automatic
Control,IEEE Transactions on, vol. 43, no. 4, pp. 509–521, 1998.

[12] M. Pechoucek and D. Sislak, “Agent-based approach to free-flight
planning, control, and simulation,” Intelligent Systems, IEEE, vol. 24,
no. 1, pp. 14–17, 2009.

[13] D. Burgett, “Sf building heights,” https://api.tiles.mapbox.com/v3/
dnomadb.ArcToMapbox/page.html, 2014.

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[15] S. G. Ficici, O. Melnik, and J. B. Pollack, “A game-theoretic and
dynamical-systems analysis of selection methods in coevolution,”
Evolutionary Computation, IEEE Transactions on, vol. 9, no. 6, pp.
580–602, 2005.


