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ABSTRACT
Quadrotors are unique among Micro Aerial Vehicles in pro-
viding excellent maneuverability (as opposed to winged flight),
while maintaing a simple mechanical construction (as op-
posed to helicopters). This mechanical simplicity comes at
a cost of increased controller complexity. Quadrotors are
inherently unstable, and micro quadrotors are particularly
difficult to control. In this paper, we evolve a hierarchical
neuro-controller for micro (0.5 kg) quadrotor control. The
first stage of control aims to stabilize the craft and outputs
rotor speeds based on a requested attitude (pitch, roll, yaw,
and vertical velocity). This controller is developed in four
parts around each of the variables, and then combined and
trained further to increase robustness. The second stage
of control aims to achieve a requested (x, y, z) position by
providing the first stage with the appropriate attitude.

The results show that stable quadrotor control is achieved
through this architecture. In addition, the results show that
neuro-evolutionary control recovers from disturbances over
an order of magnitude faster than a basic PID controller. Fi-
nally, the neuro-evolutionary controller provides stable flight
in the presence of 5 times more sensor noise and 8 times more
actuator noise as compared to the PID controller.
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1. INTRODUCTION
The ability to safely and accurately gather information

about an environment is critical to the rapid and safe de-
ployment of personnel in response to many military or civil-
ian needs. The recent growth of Micro Aerial Vehicle (MAV)
platforms is a testament to their strategic importance. Small,
light, and versatile crafts will dominate the field of recon-
naissance, be it military intelligence, or search and rescue
[?]. MAVs biggest strengths and weaknesses lie in their size.
Being small, MAVs are easier to transport, harder to detect,
and cheaper to operate. However, it also makes them more
unstable, harder to control, and requires greater miniatur-
ization of payload sensors and controller hardware.

Traditional MAVs have been miniaturized airplanes due
to their greater inherent stability [?]. However, as controller
hardware and software become more capable, rotorcraft are
gaining strength [?]. Their ability to hover and perform
vertical take-offs and landings, make them ideal for close-
quarter information gathering missions. A quadrotor craft
consists of 4 rotors as shown in Figure ??. Instead of a vari-
able pitch main rotor as in a helicopter, the craft is maneu-
vered by adjusting the relative speed between the individual
motors. For example, increasing the speed of rotor 1 while
at the same time decreasing the speed of rotor 3 by the same
amount will cause the craft to pitch up. Adjusting in the
opposite direction causes the opposite motion. Roll adjust-
ments are similarly made using rotors 4 and 2. Finally, the
difference in rotation directions between the pairs of motors
can be used to cause the craft to rotate about the z-axis.
Such control makes the craft inherently unstable, where any
motor unbalance requires constant controller input to keep
the craft aloft. However, it significantly reduces mechanical
complexity by using fixed-pitch rotors and smaller motors.
It also provides for greater safety with smaller blades and
the ability to enclose them within the airframe.

Related Work:
Previous work on quadrotor controllers ranges from tradi-
tional model-based Proportional Integral Derivative (PID)
controllers [?, ?], to modern and optimal model-based tech-
niques [?, ?, ?, ?, ?]. However, MAVs are very susceptible to
disturbances and unknown dynamics, making accurate mod-
els very difficult and leading to the exploration of adaptive
methods for control. A primarily model-based controller,
with the addition of neural networks to account for non-
linearities in the dynamics and unknown parameters, has
also proven successful [?, ?, ?]. Similarly, using a neural
network to act as an observer for a modern control solution
may be desirable [?].



Figure 1: Quadrotor layout: Roll (rotation around
the x axis) controlled by adjusting speeds of rotors 2
and 4 by opposite amounts. Pitch (rotation around
the y axis) similarly adjusted using rotors 1 and 3.
Yaw (rotation around the z axis) controlled by ad-
justing 2 and 4 together by an equal and opposite
amount to adjustments done to 1 and 3.

Using both neural networks and reinforcement learning to
train an entire controller from data points taken during hu-
man controlled flight has also been explored [?, ?]. However,
because of the inherent instabilities of quadrotors, they are
not flyable by a human without some stability assistance.
Since the previous work uses data taken under human pilot
control, it creates an artificial constraint of needing to use
these smoothing and stability routines even after the adap-
tive controller is trained. However, this sort of supervised
reinforcement learning control has shown to be very effec-
tive, in the case of autonomous helicopter control [?, ?].

Model-free adaptive control has a proven success rate in
many domains, from robotic manipulators [?], to single robotic
navigation [?], to coordination of multiple autonomous ve-
hicles [?, ?, ?]. Such control allows for design of a controller
without the need for a fully developed model or pilot training
and the associated stability routines. In this work, instead of
a model of the world, a neural network is used to functionally
approximate the necessary information for quadrotor flight.
Neural networks create a non-linear mapping from inputs to
outputs that we hypothesize can fully capture the quadrotor
dynamics and create a robust controller.

Instead of using supervised learning and a recorded set
of data points to determine the correct actions, as in the
case of several previously noted works, we use a neuro-
evolutionary algorithm to arrive at a trained controller. A
neuro-evolutionary algorithm ranks each controller based on
some cost function. Higher performing controllers are then
mutated with some probability, in order to search for an op-
timal solution. This work uses the NeuroEvolution of Aug-
menting Topology (NEAT) algorithm [?]. This algorithm
allows modifications in networks to include both changes to
the weights as well as the topology. Our work uses the real-
time NEAT algorithm to enable later implementation on real
hardware for further training and tuning of controllers [?].

One shortcoming of many neuro-evolutionary algorithms
is that in large search domains, they require many iterations
before even a mediocre solution is found. Although neuro-
evolution work done with land-based robots has been very
successful, a poor solution in that domain means the robot
does not move towards the goal but may still provide enough

information for learning [?]. A poor solution in an aerial
vehicle means a crash and provides little useful information
for learning.

Contributions:
The aim of this work has been to develop a controller capa-
ble of maintaining quadrotor stability during motion in three
dimensions. We hypothesize that the adaptive controller de-
veloped will be robust and maintain this stability in several
types of conditions: unmodelled disturbances (to represent
wind gusts), sensor and actuator noise (as is present in all
physical environments), and parametric differences (to show
the range in design parameters describing a craft capable of
being stabilized by this controller).

This paper explains the development and testing of a hier-
archy of neuro-controllers for MAV quadrotor flight. Section
2 explains the model used to develop the simulator. Section
3 discusses the formulation of the controllers, as well as their
training. Section 4 summarizes our key experimental discov-
eries with the final controllers. Section 5 provides concluding
remarks and a reiteration of the contributions of this work.

2. MODELING & SIMULATION
The mathematical quadrotor model is based upon the pre-

viously developed model [?]. We briefly summarize that de-
velopment here. As a starting point, there are two coordi-
nate systems to be aware of, that of the earth, and that of
the craft. These are related through three successive rota-
tions:

Roll: Rotation of φ around the x-axis
Pitch: Rotation of θ around the y-axis
Yaw: Rotation of ψ around the z-axis

The main aerodynamic effects, Ui, applied by the rotors
in the body frame are proportional to the square of the rotor
speeds Ωi:
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where U1 is the total thrust due to all four rotors, U2 is the
difference between the thrusts of rotors 2 and 4 (i.e. the roll
moment), U3 is similarly the difference between the thrusts
of rotors 3 and 1 (i.e. the pitch moment), and U4 is the
difference between the thrusts of oppositely spinning motors
(i.e. the yaw moment). The thrust and drag coefficients, b
and d respectively, are craft dependent values. There are
also gyroscopic effects proportional to the difference in rotor
speeds Ω:

Ω = Ω2 + Ω4 − Ω1 − Ω3 (2)

In order to reach the equations of motion, we start with
a force balance,

ma = R
X

Fb (3)

where R is the rotation matrix and Fb are the body forces.
This yields the x, y, and z acceleration of the craft in earth
coordinates. To find angular accelerations we also require a
torque balance,

Iα = −ω × Iω − Jr(ω × ẑ)Ω + τb (4)



Table 1: Quadrotor Parameters
Variable Value Description

m 0.4794 kg mass
l 0.225m craft diameter

b 3.13× 10−5N s2 thrust factor

d 9× 10
−7N ms2 drag factor

Jr 3.74× 10−5 kgm2 rotor inertia
Ix 0.0086 kgm2 moment of inertia along x
Iy 0.0086 kgm2 moment of inertia along y
Iz 0.0172 kgm2 moment of inertia along z

where I is the body inertia matrix, Jr is the rotor inertia, α
is the angular acceleration, ω is the angular velocity, and τb
are the airframe torques.

This leads to the equations of motion in terms of the above
applied forces and torques:
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where x, y, and z represent the craft’s position in the earth
reference frame, and φ, θ, and ψ are the roll, pitch, and
yaw angles as explained above. The other variables, not
including Ui and Ω, are parameters of the craft. The values
of these parameters, as used in this work, are in Table ??
[?].

Assuming a constant acceleration over some small time
step, we can determine the changes in velocity and position
during that timestep. An appropriate choice of timestep
provides us with a relatively accurate simulation based on a
few parameters of the selected quadrotor.

3. CONTROLLER FORMULATION
Flying a quadrotor, even in simulation, is a difficult prob-

lem because of the inherent sensitivity to differences in rotor
speeds. Although, theoretically, the information needed for
learnability could be encoded in a single objective function,
the search space is very large, and the solution space of suc-
cessfully flying controllers is very small. Since we have an
understanding about the way the craft responds to speed
differences in the four rotors, we used this knowledge in the
development of our controller.

Instead of having a single controller with inputs of a de-
sired position and outputs of the required rotor speeds to
move towards that point, we developed a hierarchy of con-
trollers. At the highest level, the position controller is re-
sponsible for moving the craft by suppling the attitude con-
troller with the desired roll, pitch, and yaw angles as well
as the vertical velocity. This attitude controller is further
decomposed into several simpler controllers that each make

Figure 2: The structure of the attitude controllers
independently generate adjustments to the rotor
speeds to control the roll, pitch, and yaw angles as
well as the vertical velocity. Each controller receives
as input a difference from the desired set point as
well as the difference’s integral and derivative.

adjustments to the rotor speeds to independently control the
four attitude variables.

3.1 Attitude Controller
The attitude controller is responsible for stability and

movement of the craft. It adjusts the rotor speeds to place
the craft into a desired attitude and trajectory, described by
roll, pitch, and yaw angles, and a vertical velocity.

3.1.1 Attitude Controller Formulation
This controller receives information about the desired at-

titude as well as sensory information in the form of an error
between the desired and actual, derivative and integral of
that error for all four attitude variables. This provides the
controller with information about the absolute error, and
how that error is changing. From this, the controller out-
puts the desired rotor speeds for all four rotors.

Due to the quadrotor’s attitude being very sensitive to
even small variations in rotor speed, training the attitude
controller directly proved challenging. Instead, it was bro-
ken down into the four controllers shown in Figure ??, ad-
justing the roll, pitch, and yaw angles and vertical velocity
independently using the appropriate three inputs. These
four attitude parameters are combined as follows:

Ω1 = Av −Aθ −Aψ
Ω2 = Av −Aφ +Aψ
Ω3 = Av +Aθ −Aψ
Ω4 = Av +Aφ +Aψ

(6)

where Ωi is the speed of each rotor, Aφ, Aθ, and Aψ are
the adjustments to control the roll, pitch and yaw angles,
and Av is the adjustment to control the vertical velocity.
Breaking down the attitude controller allowed each of the
four neuro-controllers to be trained independently resulting
in very quick learning of their respective effects on the craft.

When all four controllers were trained, they were com-



Figure 3: The inputs and outputs for each of the
neuro-controllers are combined to form a single,
higher level, attitude controller that outputs the ro-
tor speeds based on the adjustments calculated by
the four sub-controllers.

bined as shown in Figure ?? and stated in Equation ??.
This resulted in a single attitude controller that produces
the desired rotor speeds from the original twelve inputs.

3.1.2 Attitude Controller Training
Each of the individual controllers described above and il-

lustrated in Figure ?? (for roll, pitch, yaw, and vertical ve-
locity) were trained separately. In order to start from a
stable hover, Av was first set to a level that just overcame
gravity. A PID controller was developed for each of the three
angles. This PID controller was tuned to provide a reason-
ably fast rise time without significant overshoot. The PID
controller was used as a starting point for the training.

Instead of training against some stability objective func-
tion, the individual angle controllers were trained to match
their respective PID controllers. Fitness during the neuro-
evolutionary training was provided as:

F = e−|Ann−Apid| (7)

whereAnn is the adjustment estimated by the neuro-controller
and Apid is the adjusted for the same inputs as calculated
by the PID controller. This fitness is based on the distance
between the PID and neuro-controller rotor speed changes.
The fitness was the negative exponential of this distance so
that small distances would equate to large fitnesses near one
and large distances to a fitness near zero.

During training, each of the attitude controllers was given
a set of seven data points that covered the range of expected
motion: [−π

2
, π

2
] for the roll and pitch controllers and [−π, π]

for the yaw controller. The neuro-controller’s ability to in-
terpolate would allow it to successfully hit any angle in the
given range and to hold the craft at that attitude. These
data points were the same for all potential controller fitness

evaluations. The fitness measured the controllers reaction
compared to the PID action for 10 seconds. During the run-
time, the neuro-controller, and not the PID controller was in
control of the craft’s next commanded rotor speed. This al-
lowed the controller to learn to track the approximate shape
of the PID curve in achieving a given set-point. At the end
of 10 seconds, the simulation was reset and the next desired
angle was presented.

There were 100 potential controllers in the population.
Each started with zero hidden nodes and an otherwise fully
connected network with random weights between -3 and 3.
The NEAT algorithm allowed hidden nodes (3%) and addi-
tional links (5%) to be added with some probability. Because
the adjustments made to the rotor speeds would need to be
both positive and negative depending on the sign of the de-
sired attitude variable, a hyperbolic tangent was used as the
activation function, giving activated nodes values between
-1 and 1. Training was complete after 3000 episodes.

Learning the PID controllers used for fitness evaluation
provided a stable starting point for further training. A new
population was developed from the best controllers with up
to 20% mutation of the weights. This new population was
evaluated against the desired target based on the actual rise
time and overshoot. This population was trained for another
1000 episodes at the end of which, the best controller was
selected to be used in the combined attitude controller.

Since previous work had difficulty in using a PID con-
troller to adjust the altitude, the fourth controller responsi-
ble for vertical velocity was evaluated based on the actual
vertical velocity seen during the 10 seconds of simulation.
Although the angles can be controlled independently of each
other, the thrust adjustment will be different depending on
the roll and pitch angles of the craft. An increase in the
thrust adjustment of a level quadrotor will only increase the
vertical velocity, however when the craft is tilted, an adjust-
ment of the same amount will result in a smaller increase in
the vertical velocity, as well as an increase in speed in the
direction of the tilt.

To account for this, each evaluation of a vertical velocity
controller included 70 different configurations, each run for
ten seconds. This allowed for a wide range of roll and pitch
values to be used in any evaluation. This was run for 1000
training episodes.

Once all four controllers were trained, they were combined
into a single attitude controller as mentioned previously. De-
pending on the final operation environment, this attitude
controller could be further trained to handle specific types
of disturbances. For this work, further training was not pro-
vided to the controller and testing showed that training sep-
arately was sufficient to yield a final attitude controller that
can be used to stabilize the quadrotor into any requested
attitude.

3.2 Position Controller
To actually move the craft, a higher level controller must

provide attitude targets to the attitude controller. For this
work, the higher level controller was only concerned with
moving a craft to a new (x, y, z) position. However, depend-
ing on the mission, this may be better suited by a controller
with greater perception of its surroundings and the ability
to perform path-planning.

3.2.1 Position Controller Formulation



Figure 4: The inputs are the difference between the
desired and current positions as well as the current
speeds, and the outputs are the desired roll and
pitch angles as well as the desired vertical velocity.
The desired yaw angle is always set to zero, since
full motion is achievable by setting roll, pitch and
vertical velocity.

In this work, the position controller receives as inputs the
difference between the desired and current positions in the
x, y, and z directions, and the current velocity in all three
directions. The controller outputs the attitude needed to
move towards the desired position. Due to the quadrotor’s
flexibility, only two attitude angles are needed to reach any
position. Although using all three angles would allow various
pointing maneuvers (e.g. changing spatial position through
roll and pitch, while the yaw angle aims a solid-mounted
camera at a fixed point), for this work the desired yaw angle
was set to 0, allowing the full motion of the craft to be
controlled by only the roll and pitch angles in conjunction
with the desired vertical velocity. This greatly reduces the
search space for successful controllers.

3.2.2 Position Controller Training
Training consisted of evaluating each potential controller

based on the ability to reach a desired position as well as
the total distance travelled in doing so. The set of training
destinations included a grid of points covering every direc-
tion of travel from the origin. Initial population and muta-
tion properties were similar to those used for the attitude
controllers. Training time however, took upwards of 15000
episodes to provide a controller with direct travel towards
the destination.

4. EXPERIMENTAL RESULTS
Once the development of the entire hierarchy of controllers

was complete, we performed several experiments to test their
robustness. Our testing bore our hypothesis that the devel-
oped adaptive controller is robust and maintains craft stabil-
ity in several types of conditions: Un-modeled disturbances
(to represent wind-gusts), sensor and actuator noise (as is
present in all physical environments), and parametric dif-
ferences (to show the range in design parameters describing
a craft capable of being stabilized by this controller). The
success of the controller in each of these areas, as well as
the controller’s ability to move the craft through series of
waypoints is explored in this section.

4.1 Waypoint Control
The most important test of the controller was to see if

Figure 5: Final controller piloting through a series
of waypoints. Straight line path is the dashed line,
actual path is the solid line. a) Shows waypoints a
few crafts lengths away. b) Shows the same pattern
of waypoints where the distances have been scaled
upwards an order of magnitude. The larger dis-
tances resulted in much smoother quadrotor flight
paths, but both cases successfully reach the given
waypoints.

it is able to perform actual flight. For this test, a series of
waypoints was selected. Each waypoint was given to the
controller and when the craft had reached stability around
that point, a new waypoint was provided. Figure ?? shows
the craft moving through a selection of waypoints as well
as showing the optimal path. It is evident in Figure ??a
that on a very small scale this controller is not finding the
optimal path. However, it is finding a path that arrives at
the goal and maintains stability. When this same pattern is
followed on a much greater distance scale, the path is much
smoother, as seen in Figure ??b.

4.2 Disturbance Rejection
One major obstacle for MAVs is disturbances. The effects

of even very small wind gusts become quite noticeable due
to the craft’s light weight. The weight and small size re-
quires slower controller hardware unable to process that a
disturbance is happening, only to indicate that it has. Dis-
turbance is thus modeled as discontinuous jumps in attitude
and/or position from which the controller must recover.

We tested the controller by knocking the craft about the
roll and pitch axes with isolated disturbances for each axis
in addition to disturbances affecting both axes. The results
were similar in all cases, but are shown in Figures ?? and ??



Figure 6: Position recovery for repeated pitch angle
disturbances of 60◦ occurring every 30 seconds. The
PID controller stabilizes the craft but would take
several minutes to restore it to the starting location.
The neuro-controller is able to stabilize and restore
the position in less than 3 seconds.

Figure 7: Time for controller recovery after pitch an-
gle disturbances of increasing amounts. The neuro-
controller can even handle being flipped upside
down, whereas the PID controller does not recover
at all from disturbances greater than 60◦.

for the pitch axis case only. Figure ?? shows the effects of
disturbances buffeting the craft every 30 seconds, knocking
the pitch angle 60◦. The neuro-controller is very successful
at stabilizing the craft, and restoring it to its original hover
position in less than three seconds. This is vastly superior to
the PID controller which is unable to restore the craft’s posi-
tion before the next disturbance strikes. The PID controller
does maintain stability, but is not able to quickly restore the
craft’s position.

Figure ?? shows that a 60◦ disturbance is right at the
extreme edge of the envelope the PID controller can handle.
The neuro-controller however, can still recover after being
flipped completely upside down. In this case, it does require
several meters of altitude in which to recover, but it performs
a complete recovery in under 15 seconds. As mentioned
above, disturbances along the other axes perform similarly
to a pure pitch disturbance.

4.3 Noise Tolerance
Real world controllers, unlike in simulation, must deal

with noisy data. This comes in both the form of noisy sen-
sors describing the craft’s position and attitude, and noisy
actuators controlling the rotor speeds. Our simulator was
developed with this in mind, allowing for the addition of
varying amounts of both types of noise. Beyond the two
sources of noise, there are two types of noise, biased and
random. Biased noise will affect the ability to know the ac-
tual position or attitude unless the controller goes through
some additional training with the sensors that will actually
be used in flight. Thus in our simulations, we focused on how
well the designed controllers could handle random noise of
increasing amounts. We expected that random variations in
values would cancel out, and so as long as the noise does not
swamp out the signal, stability should be maintained.

Our simulator does not model the dynamics of the motors.
They were allowed to achieve great changes of speed in a sin-
gle time step. In noisy conditions this amplified the distance
the quadrotor would travel in maintaing stability. The er-
ratic response to noise may be filtered by the dynamics in
actual motors when this controller is used on hardware.

Figure 8: Plot of random sensor noise versus the
average range of stable motion, showing the neuro-
controller’s ability to handle five time more noise.
Noise values outside those plotted resulted in un-
stable flight.



Figure 9: Plot of random actuator noise versus the
average range of stable motion, showing the neuro-
controller’s ability to handle five time more noise.
Noise values outside those plotted resulted in un-
stable flight.

4.3.1 Sensor Noise
The developed controller needs position, velocity, and at-

titude sensor data. Our testing showed that the final con-
troller can withstand large random variations in all of these
readings. The larger the noise level, the larger the sphere
of space the quadrotor would move through in maintaining
a stable hover. Figure ?? shows how the noise variation al-
ters the stability of the craft. The neuro-controller was able
to take about 45% noise in the sensors while maintaining a
stable hover within 0.5 m. The PID controller on the other
hand was only able to handle about 10% noise, and even
this required a 2 m radius of space in which to hover. The
neuro-controller is able to handle nearly 5 times as much
noise, and needs only 1/12 of the volume to do so.

4.3.2 Actuator Noise
Actuator noise can stem from various outside influences

preventing the rotor from reaching the desired speed, or it
could be the result of dynamics in the motor itself. In order
to explore the effects of this sort of noise, random noise was
added to each of the actuators. Our testing showed that even
2% actuator noise with a PID controller caused catastrophic
failure. The trained neuro-controller was able to maintain
stability with up to 15% noise. With increasing noise, the
quadrotor would move through an increasing sphere of space
while attempting to maintain stability. The average distance
from the origin used in maintaining a hover under increasing
amounts of noise is shown in Figure ??.

4.4 Parameter Sensitivity
A significant challenge when moving between a simulated

controller design and actual hardware is model inaccuracies.
Often the controller is being tested before final hardware is
assembled, meaning design changes can still occur affecting
the parameters of the system and thus the simulated sys-
tem no longer matches the hardware. Even if the hardware
is available before controller design commences, difficulty in
measuring some parameters (drag coefficients for example)
can result in inaccuracies between the simulation and the
hardware. A robust controller, is able to handle a range of

Figure 10: The time to complete a simple move il-
lustrates the ability to handle changes in the design
parameters. The neuro-controller is shown being
able to handle roughly twice the variation in both
mass and thrust coefficient.

parameter values allowing for stability even when the hard-
ware and simulation do not match.

To test this aspect of robustness, the controller, after be-
ing trained with the design parameters was asked to perform
a simple move on a simulated quadrotor with adjusted pa-
rameters. The time to complete the maneuver, while chang-
ing two key design parameters, the thrust coefficient and
mass are shown in Figure ??. The neuro-controller is able
to handle roughly twice the parameter change as the PID
controller.

5. CONCLUSIONS
Quadrotors are unique among MAVs in providing excel-

lent maneuverability, allowing hover flight as opposed to the
required forward motion for winged flight, while maintaing a
simple mechanical construction without the need for control
surfaces as on an airplane or variable-pitch propellers as on
helicopters. This mechanical simplicity comes at a cost of
increased controller complexity. Quadrotors are inherently
unstable as they are highly sensitive to even the smallest
differences in rotor speeds.

Prior work has developed model-based controllers that
successfully control quadrotors operating near hover con-
ditions, but such control becomes more difficult for small
quadrotors. This work has demonstrated a consistent way
to develop an adaptive controller for quadrotor craft. It has
also highlighted the ability of this type of controller to with-



stand several shortcomings of model based controllers when
the model does not match reality.

In this paper, we present a hierarchical neuro-controller
for small (0.5 kg) quadrotor control. The first stage of con-
trol aims to stabilize the craft and outputs rotor speeds
based on a requested attitude (pitch, roll, yaw, and vertical
velocity). This controller is developed in four parts around
each of the variables, initially training them to achieve re-
sults similar to a PID controller. The four parts are then
combined such that the controller could be trained further
to increase its robustness. The second stage of control is to
achieve a requested (x, y, z) position by providing the first
stage with the appropriate attitude.

The simulation results show that stable quadrotor control
is achieved through this control architecture. In addition,
the results show that the hierarchical control approach re-
covers from disturbances over an order of magnitude faster
than a basic PID controller. It provides stable flight in the
presence of 5 times more sensor noise and 8 times more ac-
tuator noise than the PID controller. Finally, although the
controller was designed around a single set of design param-
eters, the robustness allows for significant variation in these
parameters without retraining the controller.

Further work will be to validate this simulation work with
implementation on actual hardware. Current work also in-
cludes expanding the high level position controller to not
only track towards a desired position, but to accept sensory
input to allow for obstacle avoidance.
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